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Abstract: Interferometers are widely used as sensors in precision measurement. Compared with
a conventional Mach–Zehnder interferometer, the sensitivity of a correlation-enhanced nonlinear
interferometer can break the standard quantum limit. Phase sensitivity plays a significant role in
the enhanced performance. In this paper, we review improvement in phase estimation technologies
in correlation-enhanced nonlinear interferometers, including SU(1,1) interferometer and SU(1,1)-
SU(2) hybrid interferometer, and so on, and the applications in quantum metrology and quantum
sensing networks.

Keywords: precision measurement; phase sensitivity improvement; SU(1,1) interferometers; loss
resistance

1. Introduction

Precision measurement plays a crucial role in developing fundamental ideas in physics.
Interferometry, a technique based on wave interference to catch phase shift information, is
an irreplaceable and invaluable tool to realize precision measurements [1,2]. The physical
quantities, such as small distance, gravity constant, angular velocity, and magnetic fields
can all be measured by the interferometric technique. A world-famous project is using the
Michelson laser interferometer for gravitational wave detection [3] and other works in the
world [4,5]. A typical traditional interferometer consists of three building blocks: splitting
light into two paths, phase encoding on one path and recombining two lights to make
the encoded phase detectable. The sensitivity of phase measurement for the traditional
interferometer, the Mach–Zehnder interferometer (MZI) as an example [6–8], is limited by
the shot noise limit (SNL) due to the vacuum noise injected into the unused input port,
or the so-called standard quantum limit (SQL) for an interferometer with classical fields
injected, i.e., ∆φSNL ∝ 1/

√
N, where N is the mean photon number [9,10].

Usually, it is necessary to increase the power of the input laser to improve the measure-
ment accuracy. However, the higher the power, the stronger the radiated noise, resulting
in damage to components [11]. To enhance the sensitivity of the phase measurement but
not increase the input laser power, on the one hand, a quantum state, such as a squeezed
vacuum state, is employed to inject the unused port of the MZI, which was first proposed
by Caves [12]. This proposal aims at reducing the shot noise below the vacuum level. If a
squeezed vacuum state with squeezed degree r is injected, then the phase sensitivity of MZI
can reach 1/

√
e2r N, where the phase sensitivity beats the SNL by a factor of er. Following

this approach for quantum noise suppression, there are several studies to improve the
phase sensitivity of the traditional MZI by using different types of quantum states [13–17].
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On the other hand, a NOON state or other macroscopically entangled states (Bose–Einstein
condensates) are used [18–35]. They aim to enhance the phase signal without amplifying
noise to super-sensitive phase measurement. The phase sensitivity here can arrive at the
Heisenberg limit (HL) ∆φHL ∝ 1/N. Although all the above schemes can improve the phase
sensitivity of MZI, these states mentioned are difficult to prepare in an experiment [36,37].

To make the phase sensitivity reach HL, a new type of quantum interferometer scheme,
the so-called nonlinear SU(1,1) interferometer (SUI), was proposed by Yurke et al. in
1986 [38]. The term SU(1,1) means that this kind of interferometer performs Bogolyubov
transformations of the optical fields [39]. On the contrary, the ordinary traditional linear
interferometers perform an SU(2) transformation [40]. In contrast with the conventional
MZI with a suitable quantum state injection, SUI can achieve HL with fewer optical
elements. It only needs to employ two active optical parametric amplifiers (OPAs), such
as four-wave mixers (FWM) or parametric down conversion (PDC), to replace the 50:50
beam splitter (BS) elements in MZI to realize splitting and recombining. This way, it does
not need to inject any states, i.e., vacuum state injection. SUI simultaneously utilizes the
quantum entanglement produced in parametric amplification (PA) for signal enhancement
and quantum noise cancellation.

Up to now, SUI can be realized not only in all-optical [41–48], but also in all-atom [49–55]
and atom–light hybrid [56–60] systems. These systems employ nonlinear Kerr interaction,
coherent spin-mixing dynamics (SMD), and Raman effect to realize splitting and combing,
respectively. All the evolution operators follow the same SU(1,1) form (κâ† b̂† + κ∗ âb̂) where
the modes a and b with strength κ are created or annihilated simultaneously. The all-atom
version of SUI in spinor Bose–Einstein condensate (BEC) was first discussed by Gabbrielli
et al. [54]. It splits and superposes atomic spin-mixing states in different magneton modes.
The experimental realizations can be seen in [49,51,52], etc. This can be also seen in [55]
an excellent review written by Pezzé et al. The atom–light hybrid SUI was first proposed
and experimentally realized by Chen et al. [56]. Different from the all-optical or all-atom
SUI where the interference wave is the light field or atom only, the interference waves of
hybrid SUI consist of an optical Stokes field and an atomic spin wave. Such hybrid SUI
can be applied to measure the information about the light field and the atomic spin. It
is applied in the photon number of the off-resonant light field in the sense of quantum
non-demolition (QND) measurement [61,62]. As its name suggests, a parametric amplifier
amplifies the intensity of the injected light field, meaning the amplification of the signal and
noise. However, the parametric amplifier is also a nonlinear quantum device, generating an
entangled quantum state, ‘signal’ and ‘idler.’ The noise of ‘signal’ and ‘idler’ are correlated.
In SUI, the two interference arms are ‘signal’ and ‘idler’, respectively. After they combine
in the second parametric process, the noise is reduced to the vacuum level at destructive
interference due to noise correlation. Thus, the signal in the SU(1,1) is increased while
the noise level is not. Due to its special quantum characteristic, the SUI has attracted
the attention of researchers successfully. In addition, it can apply in quantum metrology,
quantum information, quantum state engineering, and quantum imaging [63–67], especially
the ones with the spontaneous parametric down-conversion regime [68–71]. (See [39,72,73]
for latest reviews on SU(1,1) interferometers.)

The original SUI proposed by Yurke is unseeded, resulting in an extremely low total
photon number (NOPA = 2 sinh2 ξ where ξ is the strength of the OPA) inside the interfer-
ometer to feel the phase shift, and that limits the phase sensitivity. To enhance the total
phase-sensing photon number, a variation of the SUI with coherent states injected into two
input ports was proposed [74]. It showed that the coherent light in the SUI can effectively
boost the phase-sensing photon number produced by the first OPA process into a high-
intensity regime while the system can still maintain the sub-SNL scaling. Therefore, its
phase sensitivity can go beyond conventional MZI, even better than MZI with a squeezed
vacuum state injected, where the degree of the squeezed vacuum state is smaller than the
amplification factor of OPA. See [75,76] for the experimental demonstration. Later, different
input forms, coherent state⊗ vacuum state, coherent state⊗ squeezed-vacuum state [77,78],
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coherent state⊗m-photon-added squeezed vacuum state [79], coherent state⊗m-coherent
superposition squeezed vacuum states [80], thermal state ⊗ squeezed-vacuum state [81],
coherent state ⊗ displaced squeezed-vacuum state [82,83], Fock state [84], were studied
to enhance the phase sensitivity of SUI at sub-SNL scaling [85–89]. Using a single-mode
squeezed state or a squeezed vacuum can both improve the sensitivity of the phase mea-
surement due to the noise reduction, where the usage of a single-mode squeezed state
can provide more parameters to realize the flexibility of operation. Moreover, the phase
sensitivity of above-mentioned SUIs with a suitable photon number of injected state can
reach HL. Taking the coherent state ⊗ squeezed-vacuum state injected as an example,
when the amplitude of the input coherent state |α| and the degree of squeezed-vacuum
state r satisfy the condition |α| = tanh(2ξ)er/2, then the interferometer can reach HL.

In addition to inject various seed fields, some variations of SUI were proposed for
improving the phase sensitivity. A ‘truncated’ scheme [42,90–93], introducing one PA
process only, saturates the Quantum Cramér–Rao bound (QCRB) and beats the conventional
SU(1,1) scheme with a bright seed. A ‘PA + BS’ scheme [94–96] turned the second PA
process back to BS and can improve the phase sensitivity beyond the SQL. The BS used
in this scheme can superimpose the two quantum fields produced by first PA process.
When the system operates at the dark point, the noise will be reduced below the vacuum
level. Further improvement is possible when a squeezed state is injected into one mode
of the first PA. Note that if a BS replaces the first PA process in SUI (‘BS+PA’ scheme),
the phase sensitivity cannot improve due to the signal being amplified while the noise is also
amplified. More recently, a new type of interferometer was proposed and demonstrated.
A SU(2)-in-SU(1,1) nested interferometer [97–100], nested an MZI in one arm of the SUI,
combines the advantages of SU(1,1) and SU(2) interferometry. It can achieve the significant
signal strength of SU(2) and the loss-tolerant quantum noise reduction of SU(1,1) to improve
the phase sensitivity. An SUI based on two-port feedback nondegenerate OPA [101] has
better phase sensitivity than the traditional SUI. It employs two linear BSs to feed the two
output beams of the nondegenerate OPA back to its input ports to form the feedback loop.
An SUI with nonlinear phase shift [102,103], where a Kerr medium induces the phase shift,
shows the significant enhancement of the phase sensitivity and quantum Fisher information
(QFI) compared with the linear-phase-shift-based SUI.

Quantum-noise correlation is a beneficial way to enhance phase sensitivity, which is
well-proven in SUI by utilizing destructive interference. However, both noise correlation
and phase-sensing photon number depend on the system losses, decreasing the phase
sensitivity [104]. Hence, studying phase sensitivity mitigation in a lossy environment ranges
among the most important topics of current research. The losses can be divided into internal
losses (such as photon dissipation) and external losses (such as photodetectors’ quantum
inefficiency). Researchers have shown that the SUI in a balanced gain configuration where
the gains of PA1 and PA2 are equal can naturally resist the external losses by increasing
PAs’ gains, while the phase sensitivity improvement is unlimited. Whereas the phase
sensitivity improvement is limited when taking into account the internal losses, such as
with the unseeded SUI, it may be impossible to reach the HL or beat the SNL [87]. Recently,
unbalanced gain between PA1 and PA2 provides a new opportunity for SUI to resist the
internal losses [105–107]. Yu et al. summarized the relationship between the internal losses
and the gains of PA processes and gave an optimal condition to help the SUI in resisting
the internal losses [108]. This optimal condition contains the balanced gain situation and
unbalanced gain situation. When the gain of the PA1 and the internal losses are given,
phase sensitivity improvement can be achieved by adjusting the gain of PA2 to satisfy the
optimal condition. Here, we focus on the enhanced phase estimation performance using
various architectures of active beam-splitters SUI. We then review techniques which are
resilient to losses.

The structure of the remainder of the paper is as follows. We begin in Section 2 with the
basic setup mechanism of SUI compared with MZI. Section 3 reviews the phase sensitivity
of SUI with different injection states via different detection methods and presents the QCRB
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in each situation. Section 4 summarizes the several variations of SUI. Section 5 shows the
phase sensitivity improvement technology in lossy SUI via unbalanced gain compared with
the balanced gain case. Finally, Section 6 concludes with a discussion of the outlook for
phase sensitivity improvement technology of SUI.

2. SU(1,1) Interferometer vs. SU(2) Interferometer
2.1. Input–Output Relations

To establish a nonlinear SUI, one needs to employ two active PAs to replace the
traditional linear passive BSs in MZI to realize splitting and combining processes. The BS
can be expressed by an operator ÛBS(θ) which is a kind of unitary operator being an SU(2)
transformation [109] (ÛBS(θ)Û†

BS(θ) = I)

ÛBS(θ) = exp
[
θ(âb̂† − â† b̂)

]
, (1)

where â and â† (b̂ and b̂†) are the annihilation and the creation operators of the BS input
port a (b) as shown in Figure 1a, respectively. θ means the degree of splitting ratio. When
θ = π/4, it applies as a 50:50 BS. From Equation (1), one can calculate the evolution of
input state |Ψ〉in as [110]

|Ψ〉out = ÛBS(θ)|Ψ〉in. (2)

Commonly, the input–output relationship of the BS can also be expressed in matrix
form, [

âout
b̂out

]
=

[ √
T

√
R

−
√

R
√

T

][
âin
b̂in

]
, (3)

where âout and b̂out are the annihilation operators of the BS output ports. T and R are the
transmissivity and reflectivity of BS with T + R = 1. In addition, there are other general
types of transfer matrix of BS as follows[ √

T i
√

R
i
√

R
√

T

]
,
[ √

T −i
√

R√
R i

√
T

]
. (4)

Here, when a PA replaces the BS, the evolution of the system and the input–output
relationship are changed. The PA process can be realized by a degenerate or nondegenerate
PDC or FWM process. In nondegenerate cases, the PA process can be described by one
strong pump light field with frequency ωp and phase θp interacts with a nonlinear χ(2)

medium which can be a three-level atom or four-level atom or crystal. Then, a ‘signal’
light field with frequency ωs and phase θs and an ‘idler’ light field with frequency ωi and
phase θi are produced. The frequencies satisfy 2ωp = ωs + ωi, meanwhile, the phases
satisfy 2θp = θs + θi. These two fields, ‘signal’ and ‘idler’ form a two-mode squeezed state.
The time-evolution operator ÛPA of the nondegenerate PA process can be represented by a
two-mode squeezed operator

ÛPA(ξ) = exp
[
ξ â† b̂† − ξ∗ âb̂

]
, (5)

where ξ is some parameter proportionally related by the pump field to the nonlinear
coefficient. If the frequencies ωs = ωi, the case corresponds to the degenerate parametric
process. Then, the time-evolution operator is described by a single mode squeezed operator
ÛPA(ξ) = exp

[
ξ â†2 − ξ∗ â2].

Of course, the transfer matrix of the PA process has the form[
G eiθp g

e−iθp g G

]
, (6)
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where G = cosh(ξ) and g = sinh(ξ) are the magnification of the PA progress, and they
satisfy G2 − g2 = 1. θp is the phase shift in the PA process.

In the following discussion, we mainly show the nondegenerate PA process results.
Taking θp as 0, and assuming that input states of port a and b are the coherent state |α〉
and vacuum state |0〉, respectively. The mean photon number of injected coherent state
is nain = |α|2 with α = |α|eiθα . After the nondegenerate PA process, the mean photon
numbers of output ports are naout = G2|α|2 + g2 and nbout = g2|α|2 + g2. The difference
mean photon number naout − nbout = |α|2 comes from the seed light injection in port a.
If |α|2 = 0, it represents the unseeded situation, then naout = nbout = g2. It can be seen
that the intensities of the light fields a and b after the PA process are amplified. Moreover,
the intensity variances at output ports are also amplified compared with that under the same
photon number of the coherent state, where

〈
(∆n̂)2〉

aout
= G2|α|2

(
1 + 2g2) + G2g2 and〈

(∆n̂)2〉
bout

= g2|α|2
(
1 + 2g2)+ G2g2. Additionally, from the variances of the quadrature

components point of view, it has
〈
(∆X̂)2〉

out =
〈
(∆P̂)2〉

out =
(
1 + 2g2), which are larger

than the case of coherent state 1. However, the degree of intensity-difference squeezing
(IDS) between the two output ports with regard to the SNL [111]

IDS =
Var(n̂aout − n̂bout)PA

Var(n̂aout − n̂bout)SNL

=
1

2G2 − 1
, (7)

indicates that the noise of these two output modes is correlated. These two modes form a
two-mode squeezed state. The squeezed degree is well dependent on the parametric gain
G. In contrast, the BS, as a member of passive devices, rely on the input state and maintain
the total number of photons throughout the whole process. The properties of the light field
have not changed. Figure 1 shows the noise at each stage in PA and BS processes.

(a) (b) 

BS

a

PA

in

bin

aout

bout

aout -bout

ain

bin

aout

bout

aout -bout

Figure 1. (Color online) Input–output noise diagrams of (a) BS and (b) PA, respectively. ain and bin

are two input states. aout and bout are two output states. The colored area represents quadrature
distribution.

2.2. Phase Measurement

The interferometer is a device that realizes precision measurement by detecting the
relative phase shifts which are imprinted in the interference pattern of its output ports.
The phase difference between these two arms can be measured by counting the photon
number of any output port of the interferometer, and then, the interference pattern is
obtained. Commonly, an SUI is formed by two PA processes. The first PA process (PA1
with parametric gains (G1, g1) and the phase shift θ1) are used to achieve splitting, while
the second PA process (PA2 with parametric gains (G2, g2) and the phase shift θ2) are used
to combine the light fields propagating on the interference arms to realize interference.
Whereas the MZI employs two linear BSs (BS1 with transmissivity T1 and reflectivity R1
and BS2 with transmissivity T2 and reflectivity R2) to achieve splitting and recombining.
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The diagrams of the SU(2) and SU(1,1) interferometer are shown in Figure 2a and Figure 2b,
respectively.

(b)

PA1

a

b

 c

d

c-d
PA2

 e

f

e-f

h

g
phase shifter

(a)

BS1

a

b

 c

d

c-d
BS2

 e

f

e-f

h

g
phase shifter

(c)

SU(1,1)
SU(2)

Figure 2. (Color online) (a) A conventional SU(2) interferometer. (b) A nonlinear SU(1,1) interfer-
ometer. (c) Interference patterns of SU(1,1) and SU(2) interferometers with the same phase-sensing
photon number [41]. The blue line represents SU(1,1), while the red represents SU(2). In Figure (b), it
can be seen that the noise between the two arms of the SUI is correlated. After a second PA process,
the noise is reduced to vacuum level while the signal is amplified.

Using the input–output relations of PA and BS, one can obtain the transmission matrix
of the interferometers formed by the creation and annihilation operators of the light field.
Assume that the phases of the interferometer arms c and d are ϕ1 and ϕ2, respectively.
After the calculation, the operators of SUI’s two final output ports ĝSU(1,1) and ĥsu(1,1) are

dependent on the operators of two input ports â and b̂ which are obtained as

ĝSU(1,1) =
(

G1G2eiϕ1 + g2g1e−i(ϕ2+θ1−θ2)
)

â +
(

g1G2eiθ1 eiϕ1 + G1g2eiθ2 e−iϕ2
)

b̂†, (8)

ĥsu(1,1) =
(

g1G2eiθ1 eiϕ2 + g2G1eiθ2 e−iϕ1
)

â† +
(

G2G1eiϕ2 + g2g1e−i(ϕ1+θ1−θ2)
)

b̂. (9)
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Similarly, the two outputs ĝSU(2) and ĥSU(2) at MZI are written as (here, we selected the
transfer matrix of BS in Equation (3))

ĝSU(2) =
(√

T1T2eiϕ1 −
√

R1R2eiϕ2
)

â +
(√

R1T2eiϕ1 +
√

T1R2eiϕ2
)

b̂, (10)

ĥSU(2) =
(√

T2T1eiϕ2 −
√

R1R2eiϕ1
)

b̂−
(√

R1T2eiϕ2 +
√

R2T1eiϕ1
)

â. (11)

Simply, the interference pattern can be obtained by calculating
〈

ĝ† ĝ
〉

or
〈

ĥ† ĥ
〉

. They

rely on the terms
〈

â† â
〉
,
〈

b̂† b̂
〉

,
〈

â† b̂
〉

,
〈

âb̂†
〉

,
〈

â† b̂†
〉

, which strictly depend on the input
fields. It can be seen that different input states lead to different output forms. Select the
input state of port a as coherent state with photon number

〈
â† â
〉
= |α|2 and input port b as

vacuum state with
〈

b̂† b̂
〉
= 0 as an example. Then, the photon numbers of output ports g

and h are〈
ĝ† ĝ
〉

SU(1,1)
= |α|2 +

(
G2

2 +
g2

2G2
1

g2
1

)
INC
ps + 2

g2G1G2

g1
cos(ϕ1 + ϕ2 + θ1 − θ2)INC

ps , (12)

〈
ĥ† ĥ
〉

SU(1,1)
=

(
G2

2 +
g2

2G2
1

g2
1

)
INC
ps + 2

g2G1G2

g1
cos(ϕ1 + ϕ2 + θ1 − θ2)INC

ps , (13)

where INC
ps = g2

1

(
1 + |α|2

)
is the phase-sensing photon number of the SUI. These two

output ports are always created or eliminated in pairs by the parametric processes. Note
that the output photon numbers depend on the sum of the two arm phases when θ1 and θ2

assume certain values and the energy conservation
〈

ĝ† ĝ
〉

SU(1,1)
−
〈

ĥ† ĥ
〉

SU(1,1)
= |α|2 = Iin.

The interference visibilities for these two output ports are given as Vg = 2G2G1g2g1(1 +

|α|2)/[(G2
2G2

1 + g2
2g2

1)(1 + |α|
2)− 1] and Vh = 2G2G1g2g1/

(
G2

2 g2
1 + g2

2G2
1
)
. It can be clearly

seen that the larger gain can result in almost perfect visibility for outputs [88,112]. Mean-
while, the h port (‘idler’ field) always has a visibility of 100% when G2

2 = G2
1 . Moreover,

the photon numbers of MZI at output g and h are

〈
ĝ† ĝ
〉

SU(2)
=

(
T2 +

R1R2

T1

)
Ips − 2

√
R1R2T2

T1
cos(ϕ1 − ϕ2)Ips, (14)

〈
ĥ† ĥ
〉

SU(2)
=

(
R2 +

R1T2

T1

)
Ips + 2

√
R1R2T2

T1
cos(ϕ1 − ϕ2)Ips, (15)

where Ips = T1|α|2 is the phase-sensing photon number of the MZI. It can be seen that the
output intensities depend on the phase difference of two interference arms and

〈
ĝ† ĝ
〉

SU(2)
+〈

ĥ† ĥ
〉

SU(2)
= |α|2. It is different from the case of the SUI. For simplicity, setting G1 =

G2 = G, and T1 = T2 = 1/2, then the output intensities of SUI and MZI at h port equal to
2G2 INC

ps (1 + cos ϕ) and Ips(1 + cos ϕ) where ϕ is the phase difference in interferometers.
When INC

ps = Ips, it can be seen that the output intensity of SU(1,1) is 2G2 higher than in
the case of MZI. The interference pattern can be obtained by counting the interferometer
output port’s photon number when the phase difference is changed continuously from 0 to
2π. Figure 2c experimentally shows the interference patterns of these two interferometers
with the same phase-sensing photon number [41].

3. Phase Sensitivity of SU(1,1) Interferometers
3.1. Phase Sensitivity

The precision of the interferometer for displacement depends on its sensitivity to
a small phase shift ∆ϕ. The relation can be expressed as ∆x = λ

2π ∆ϕ where λ is the
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wavelength of the interference wave. Due to the uncertainty principle, the limit of the
interferometer to sensitize the phase shift is 1/

√
N. This limit is the so-called SQL. Similarly,

there is another phase sensitivity limit 1/N called HL due to the Heisenberg principle.
The sensitivity of a phase measurement for a linear interferometer injected coherent state
is usually at the SQL. In contrast, the phase sensitivity of the nonlinear SUI with vacuum
state input can reach HL [38]. Using the larger number of pump photons in a simple
MZI and nonlinear SUI can both improve the absolute phase sensitivities. However,
the phase sensitivity of MZI cannot beat the SQL. Under the same number of pump
photons, the nonlinear SUI can realize better sensitivity and beat the SQL. Mathematically,
the mean-square error in the parameter ϕ (phase sensitivity ∆ϕ) can be given by the error
propagation formula as follows

∆ϕ2 =

〈(
∆Ô
)2
〉

∣∣∂〈Ô〉/∂ϕ
∣∣2 , (16)

where Ô is the measurable operator of the interferometer’s output port and
〈(

∆Ô
)2
〉
=〈

Ô2〉− 〈Ô〉2 is the variance of operator Ô. As can be seen from Equation (16), the phase
sensitivity of the interferometer depends on the noise of the measured variable and its rate
of change for the phase of the interferometer. Commonly, the measured variable can be
the photonic number, orthogonal component, parity operator, and product operator of
the output ports, corresponding to the intensity detection (ID), homodyne detection (HD),
parity detection, and product detection [113].

Now, we introduce the phase sensitivity of SUI using the ID as an example. One can
consider the total number of photons at the output of the interferometer, that is,

N̂T = ĝ† ĝ + ĥ† ĥ, (17)

as the variable to be measured to estimate the phase. In a balanced configuration (G =
G2 = G1, g = g2 = g1, θ2 = θ1 + π) and assuming that the two input ports of the SUI are
vacuum states with

〈
â† â
〉
=
〈

b̂† b̂
〉
= 0, we can obtain [87]

∆ϕ2 =
1 + 2(1− cos ϕ)g2G2

2(1 + cos ϕ)g2G2 (18)

=
1

(1 + cos ϕ)

[
2

NOPA(NOPA + 2)
+ (1− cos ϕ)

]
,

where NOPA = 2g2 is the total number of internal photons created by the first PA process.
When the interferometer is operated at destructive interference ϕ = 0, the uncertainty
∆ϕ2 = 1/[NOPA(NOPA + 2)] has a ~1/n2 scaling characteristic of the HL, which corre-
sponds to the result obtained in [38]. Beside the ID, researchers have shown that the

optimal phase sensitivity with parity detection where Ô = (−1)〈ĝ
† ĝ〉 can also reach the HL

and beat the SNL [114,115].
With the unseeded situation, PA1 produces a low total mean photon number (NOPA);

these produced photons are not enough for the practical implementation of the scheme.
For effectively increasing the total mean photon number, Plick et al. first proposed to
inject coherent states into two input ports of SUI while maintaining sub-SNL scaling. Their
scheme circumvents the low photon number problem encountered by Leibfried et al. [116]
in the experiment. The coherent state in SUI successfully enhances the total mean photon
number from NOPA into the high-intensity regime NTol = NOPA + (NOPA + 1)Nα where
Nα is the total photon number of injected coherent states. It also found that the phase
sensitivity of this scheme ∆ϕ = e−2r/

√
2Nα is better than the case of MZI with an injected

one-squeezed state ∆ϕ = e−r/
√

Nα in the high-gain region. After that, a coherent state ⊗
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squeezed-vacuum state was proposed [86]. In this case, the SUI can reach the HL under a
suitable condition

√
Nα ' tanh(2ξ)er/2.

In addition, the thermal state ⊗ squeezed-vacuum state was also used to inject the SUI
to study the phase sensitivity [81]. With parity detection, the optimal phase sensitivity is

∆ϕ2
opt =

2
NOPA(NOPA + 2)[1 + (1 + 2Nth)(1 + 2 sinh2 r)]

, (19)

where Nth is the mean photon number of the injected thermal state. When Nth = (sinh2 ξ −
sinh2 r)/ cosh2(2ξ), the phase sensitivity is approaching the HL. Other types of input states
were also analyzed, as reported in [79,80,82–84], and so on. The optimal phase sensitivities
with different detection methods are shown in Table 1 and are compared with different
input cases [113,114].

Table 1. The optimal phase sensitivity ∆ϕ of the SUI under gain-balanced condition and the QCRB
of the SUI with different input states. The SUI is operated at the optimal phase ϕopt. The mean
photon number of injected coherent state |α〉 is |α|2 ≡ Nα. The mean photon number of injected
squeezed vacuum state |0, ζ〉 is Ns. The case of coherent ⊗ squeezed vacuum state can be reduced to
the case of coherent ⊗ vacuum state when the squeezed degree is r = 0. For convenience, the sign
K = NOPA(NOPA + 2) where NOPA = 2 sinh2 ξ indicates the amount of light PA1 would emit with
vacuum inputs [113,114].

Input States Product Intensity Parity Homodyne QCRB

|0〉 ⊗ |0〉 1/K1/2 1/K1/2 1/K1/2 Not available 1/K1/2

|α〉 ⊗ |0〉 1/[K(Nα + 1)]1/2 ∆ϕI,coh
a 1/[KNα + 1]1/2 1/[KNα]1/2 1/[K(2Nα + 1)

+2Nα(NOPA + 2)]1/2

| iα√
2
〉 ⊗ | α√

2
〉 1/{Nα[(NOPA + 2)

(
√
K+ 1) +K] +K}1/2 1/[KNα]1/2 ∆ϕcoh

b ≈ 1/[2KNα]1/2 1/{2Nα[(NOPA + 1)
√
K

+K+ 1] +K}1/2

|α〉 ⊗ |0, ζ〉 1/[K(Nαe2r + cosh rer)]1/2 ∆ϕI,coh&Sqz
c 1/[K(Nαe2r + cosh2 r)]1/2 1/[KNαe2r ]1/2

1/[2Nα(NOPA + 2)
+N2

OPA sinh2(2r)/2
+K(2Nα cosh rer

+ cosh2 r)]1/2

|0, ζ〉 ⊗ |0, ζ〉 1/[K(2Ns + 1)]1/2 ∆ϕSqz&Sqz
d 1/[K(2Ns + 1)]1/2 Not available 1/[(1 + NOPA)

2

cosh 4r− 1]1/2

a,b,c,d See Appendix A.

3.2. Quantum Cramér–Rao Bound

The best possible phase measurement precision is determined using the QFI and the
QCRB. The QFI provides a bound on the phase sensitivity that can be achieved by any
read-out procedure and is given by [117]

FQ = Tr
[
ρ(ϕ)L2

ϕ

]
, (20)

where ρ(ϕ) = |Ψ(ϕ)〉〈Ψ(ϕ)| and Lϕ is the symmetric logarithmic derivative which is
defined by ∂ρ(ϕ)/∂ϕ = [ρ(ϕ)Lϕ + Lϕρ(ϕ)]/2. For a pure state input, the QFI can be
simplified to

FQ = 4
[〈

Ψ′(ϕ)
∣∣Ψ′(ϕ)

〉
−
∣∣〈Ψ′(ϕ)

∣∣Ψ(ϕ)〉
∣∣2], (21)

where |Ψ′(ϕ)〉 = ∂|Ψ(ϕ)〉/∂ϕ. The phase sensitivity is related to FQ by the QCRB

∆ϕ > 1/
√

FQ. (22)

As shown in Table 1, the phase sensitivity of SUI with injected vacuum states saturates
the QCRB. Due to its lower phase sensitivity compared with SNL, SUI becomes a new star
to achieve precision measurements.
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3.3. Signal Enhanced and Noise Reduced by Destructive Quantum Interference

The sensitivity of phase measurement for SUI is more sensitive than in the case of MZI
due to the amplification of the PA process in SUI. Here, one can argue whether the phase
sensitivity is enhanced if the parameter amplifier is placed at MZI. The answer is correct
but using correlated injection [118]. It is well known that the parameter amplifier amplifies
not only the signal but also the noise. Sometimes the noise increases more than the signal.
So, using an amplifier in MZI, at best, one reaches SQL. However, using correlated injection,
the phase sensitivity can beat the SQL [85,119]. The keys are intensity amplification
(amplifying phase-sensing intensity) and quantum noise correlation (squeezing shot noise).
The larger the parametric gain, the more phase sensitivity improvement.

In SUI, the parametric amplification process based on three-wave or four-wave mixing
process does not amplify the noise as much as the signal, leading to enhanced sensitivity of
the phase shift. The PA1 produces two mode-squeezed states ‘signal’ and ‘idler’. These two
modes propagate at the two arms of the SUI, respectively. They are quantum-mechanically
entangled, and their noises are correlated (see Section 2.1). When they pass through the
PA2 simultaneously, the noise of the output port becomes

Var(X) = 1 + 4G2g2(1− cos ϕ). (23)

When the interferometer is operated at the dark fringe, ϕ = 0, the noise reduces to 1,
meaning that most of the amplified noises from PA1 are canceled, and only vacuum noise
is left by destructive quantum interference. Meanwhile, the fringe size of SUI is increased
by a factor of 2G2 (see Section 2.2). Therefore, the SUI increases the signal while it keeps
the noise at the vacuum level, leading to an enhancement in signal-to-noise ratio for phase
measurement compared to the MZI [76]. The noise relation can be seen in Figure 2a,b.

4. Various Types of SU(1,1) Interferometers

Not only can the all-optical system (such as circuit quantum electrodynamics sys-
tem [120] or fiber system [121]) build an SUI, but also, in the all-atom, the light–atom
hybrid can form SUI. Unlike the all-optical type of SUI, where FWM or PDC knows the
beam-splitting and combining process, the atomic SUI employs the spin-mixing dynamics
as the nonlinear process to realize the splitting and combining process. At the same time,
the light–atom hybrid SUI takes the Raman effect to achieve the splitting and combining
process. All interaction Hamilitions are similar to that of the PA process. The phase sen-
sitivities of these types of SUI share the same expression as shown above. One feature
of these various types of SUI is that the interference waves are different. In all-optical
or all-atom various SUI, the interference wave is a light field or atom wave, meaning
that they can only measure the physical quantity sensitive to the light field or atom. In
contrast, the interference waves consist of the light field and atom in a light–atom hybrid
SUI, meaning that this hybrid SUI can measure both sensitive physical quantities.

4.1. Atomic SU(1,1) Interferometer

The atomic SUI was first discussed by Gabbrielli et al. in 2015 [54], and then, an
experimental demonstration was given by Linnemann et al. in 2016 [49]. Later, experi-
mental studies were reported in [51,52], etc. The schematic of the atomic SUI is shown in
Figure 3. It divides into three building blocks: entangled state preparation, interrogation,
and nonlinear time reversal for read out. In this kind of SUI, the Spin-changing collisions
in a Bose–Einstein condensate are used as the nonlinear parametric process to achieve
splitting and combining process, where the corresponding Hamiltonian

Ĥ = h̄κâ†
↑ â

†
↓ + H.c., (24)

in which â†
↑ (â†
↓) denotes the creation operator for the signal mode |↑〉 = |F = 2, mF = 1〉

(idler mode |↓〉 = |F = 2, mF = −1〉) in 87Rb. The signal and idler modes are also called
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the side modes. h̄ is the reduced Planck constant, and κ = gN0 is the effective nonlinear
coupling strength. g is the microscopic nonlinearity, and N0 is the number of atoms in
the pump mode |F = 2, mF = 0〉. After the first Spin-changing collisions, the entangled
state produced in this scheme is described by |Ψ〉 = ∑∞

n=0
√

pn|n〉↑|n〉↓, where pn =〈
N↑
〉n/

(
1 +

〈
N↑
〉)n+1.

〈
N↑
〉
=
〈

N↓
〉
= sinh2(κt) is the mean atom number in either mode

after evolution time t. Due to the pairwise scattering during the spin exchange, the side
modes are perfectly correlated. During interrogation, the signal mode accumulates the
total phase nϕ↑, and the idler mode accumulates the total phase nϕ↓, such the probe state
becomes |Ψ〉 = ∑∞

n=0
√

pnein(ϕ↑+ϕ↓)|n〉↑|n〉↓. To determine the unknown phase ϕ↑ + ϕ↓,
the second Spin-changing collisions are working. The second Hamiltonian evolution is
characterized by a nonlinear coupling strength κ → e−iϕκ, where ϕ = 2ϕ0 − (ϕ↑ + ϕ↓) is
the spinor phase and ϕ0 is the pump mode phase. One can reverse the evolution H → −H
for the best sensitivity if the phase ϕ0 satisfies 2ϕ0 = π + (ϕ↑ + ϕ↓).

Figure 3. (Color online) Schematic of atomic SUI [49].

4.2. Atom–Light Hybrid SU(1,1) Interferometer

In 2015, an atom–light hybrid SUI was first proposed by Chen et al. [56]. It couples
different types of waves for interference by atomic Raman amplification processes. One in-
terference wave is a Stokes field and the other is the atom spin wave. The atomic Raman am-
plification processes can be expressed as an ensemble of Na identical Λ-type hot Rb87 atoms
interacting with two fields, a strong Raman pump field W and a Stokes field S. The strong
Raman pump field couples the atomic energy level |g〉 → |e〉 (52S1/2F = 1→52P1/2F = 1)
while the Stokes field S couples the atomic energy |m〉 → |e〉 (52S1/2F = 2→52P1/2F = 1),
producing a collective atomic excitation field Sa ≡

(
1/
√

Na
)

∑k|g〉k〈m|. These three fields
are coupled via an upper excited level |e〉. Under adiabatic approximation, the time-
evolution operator ÛR of the stimulated Raman scattering process is given by

ÛR = exp
(

ηAw â†
s Ŝ†

a − η∗A∗w âsŜa

)
, (25)

where η = tgeggem/∆ with geg and gem are the coupling coefficients between the light fields
and atom, ∆ is detuning from the excited state for both the Stokes and Raman write fields.
Aw is the amplitude of the Raman pump field, â†

s (âs) is the creation (annihilation) operator
of the Stokes field, and Ŝ†

a (Ŝa) is the creation (annihilation) operator of the atom spin field.
Here, the pump field Aw is relatively strong such the input Stokes field will be amplified.
The amplified Stokes field and the produced atomic spin wave are phase-correlated. Note
that the expression (25) has the same form as the SU(1,1) Hamiltonian in Equation (5) for
the PA process. The Stokes field can be regarded as the ‘signal’ field, and the atom spin
wave can be treated as the ‘idler’ field. Hence, just like the all-optical SUI, the atom–light
hybrid interferometer employs nonlinear atomic Raman amplification processes replacing
the beam-splitting and combing elements in a traditional interferometer. The schematic
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diagram is shown in Figure 4. This kind of nonlinear atom–light hybrid interferometer
is sensitive to the light field and atomic state, which can be widely used in precision
measurement and quantum control with atoms and photons.

Figure 4. (Color online) Experimental sketch for the atom–light hybrid SUI and the physical model is
shown as inset picture [56]. A Stokes field S0 and a pump field W1 are sent into the Rb87 atomic cell to
produce a Stokes field S1 and the atomic spin wave Sa via the Raman process, which acts as atom–light
wave-splitting process. Then, Sa stays at the cell and S1 goes out of the cell. After coupling, the phase
shift by PZT, the Stokes field S

′
1 and a write field W2 go back to the atomic cell and interact with Sa

via the second Raman process, which acts as atom–light wave recombination. Finally, the interference
output Stokes field S2 is detected by the detector D.

4.3. Deformation of Nonlinear SU(1,1) Interferometers

Unlike the traditional SUI where one PA is employed to split and the other PA is used
to combine, there are the deformations of SUI that were proposed, such as truncated types
of SUI, PA + BS types of SUI, SU(2) nested SUI, SUI with a feedback mechanism, multi-stage
SUI, and SUI with nonlinear phase shifter. These types of SUI are shown in Figure 5. In the
following, we introduce these types of interferometers.

4.3.1. Truncated SU(1,1) Interferometer

A truncated SUI which can achieve the same phase sensitivity as that of a traditional
SUI was proposed by Brian E. Anderson et al. [90]. The map of the truncated SUI is shown
in Figure 5a. The idea of building a perfect truncated SUI is taking the second nonlinear
PA process out and then directly detecting the probe and conjugate beams via HD or ID,
respectively. When it takes HD, the phase sensitivity can saturate the QCRB. This scheme
can eliminate the losses for imperfect mode-matching of the beams and absorption in the
medium that come from the second nonlinear process in the traditional SUI. Moreover, it
provides a simpler means to achieve quantum-enhanced phase sensitivities and is more
easily implemented in an experiment. Recently, the measurement of the displacement of an
atomic force microscope microcantilever has been realized in truncated SUI [92].
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Figure 5. (Color online) Schematic diagrams of deformation of SUI. (a) A truncated SUI, (b) PA + BS
types of SUI, (c) SU(2) nested SUI, (d) SUI with feedback, (e) multi-stage SUI, (f) SUI with a nonlinear
phase shifter.

4.3.2. PA + BS Type of SU(1,1) Interferometer

In a traditional nonlinear SUI, many photons are absorbed in the beam combining
process, resulting in limited phase sensitivity. To boost the photon number, a deformation
of the SUI with a degenerate PA for beam splitting and a BS for wave superposition and
interference (called PA + BS scheme) was studied [94]. This scheme is shown in Figure 5b.
Consider a vacuum state and coherent state with amplitude α injection, one output noise
is related to the gain of the PA process by 1/

[
2
(

g2 + G2)] when the transmissivity of BS

T =
(

g2 + G2)2/
(
8g2G2 + 1

)
, and then, the optimum phase sensitivity is obtained

∆ϕopt =
1√

4INL
ps (g2 + G2)

=
SQL
2G

, (26)

where INL
ps = g2|α|2. It shows that the scheme of PA + BS improves upon the SQL by a

factor of 2G and the noise level of this scheme is reduced below the vacuum noise level by
2
(

g2 + G2). Compared with PA + PA, whose phase sensitivity improvement is due to the
signal increase, here, the phase improvement is from noise reduction for PA + BS.

4.3.3. Phase-Sensing Amplified SU(2)-SU(1,1) Hybrid Interferometer

It is well known that the phase sensitivity of a nonlinear SUI can break the SQL.
However, the phase-sensing photon number stimulated by the first PA process is limited
and is mostly too small, which imposes constraints on the enhancement measurement.
Seeding can be used to increase the number of phase-sensing photons, and therefore, the
overall sensitivity [122]. However, the uncorrelated noise grows when the intensity of
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the seed light increases for the limitation of the PA process; the result also imposes a
disadvantage on the enhancement measurement.

One technique to enhance the phase-sensing photon number in SUI is proposed by [97].
It employs an MZI where the MZI is nested inside one arm of the SUI, as shown in Figure 5c.
The ‘signal’ beam from the PA1 is injected into the dark input port of the MZI, while an
extra bright coherent state with amplitude |α| is fed into the bright input port of the MZI.
The one output port of the MZI and the ‘idler’ beam are combined at PA2. This model
can also be considered as an MZI in which a coherent state is injected in one input port
and one mode of a two-mode squeezed state is injected in another input port, and takes
active correlation output readout. The phase shift to be detected is encoded in one arm
of the MZI. When the MZI operates at the dark point, the amplitude of MZI output is
about ∝ |α|ϕ, corresponding to the phase-sensing photon number of this hybrid scheme
boosted by the strong coherent state magnitude |α|. It is a noiseless copy of the dark input
when MZI works at the dark output. In this way, SU(2)-SU(1,1) hybrid interferometer can
achieve the large signal strength of MZI and the loss-tolerant quantum noise reduction of
the SU(1,1) approach. In a balanced configuration, the phase sensitivity can beat the SQL
(∆ϕSQL = 1/

√
Nα + 2g2) by a factor of G when R/T = 1. A path-length sensitivity with

SNR 2.2 dB beyond the SQL at power levels 2 orders of magnitude beyond those of the
previous loss-tolerant interferometer was observed in an experiment [99].

4.3.4. SU(1,1) Interferometer with Feedback and SU(1,1) Interferometer with Multi-Stage

It is well known that phase sensitivity can be improved by increasing the gain of PAs.
However, such improvement cannot be infinitely significant because of the saturation of
parametric amplifiers. Usually, the PA is located at a low-gain regime, resulting in the
absolute phase sensitivity of the SUI that cannot be much higher than MZI. Meanwhile,
the quantum correlation between two beams is also limited. Feedback, which can enhance
the relative intensity squeezing between two or three beams [123–125], is employed to
improve SUI absolute phase sensitivity at a given finite gain of the parametric ampli-
fiers [101]. The schema is shown in Figure 5d. It combines one nondegenerate OPA and
two BSs. The two output beams of the OPA are fed back into two input ports via BS1
and BS2, respectively. This creates two structures of feedback loops. The phase shift is
encoded in one feedback loop. The transmissivities of BS1 and BS2 are denoted by k and l.
For simplicity, k = l. Research showed that the performance of this kind of interferometer is
extremely dependent on the transmissivity of the BSs [101]. Considering one port is seeded
by a coherent state while the other port is in a vacuum and taking direct ID to measure
the one output port, the phase sensitivity can go beyond both the SQL and traditional
SUI when k has a suitable value (e.g., 0.6 < k < 0.9). However, when k < 0.4, the phase
sensitivity is worse than SQL and that of the SUI. One can explain that the times of the PA
process are infinite under the feedback structure, which is very different from the SUI made
by two OPAs. For each PA process, the ‘signal’ and ‘idler’ beams are always correlated,
and additional noise is not produced. Hence, it can further amplify the advantages of the
SUI.

For a particular feedback structure, the times of the PA process increase. Here, it is a
multi-stage SUI that adds multiple PAs to form, as shown in Figure 5e [126–128]. It is similar
to the SUI with feedback in which both times of the PA process increase. The difference
between these two kinds of SUIs is that the multi-stage SUI works in a low-gain limit so
that spontaneous emission dominates and two-photon states are generated. Multi-stage
SUI were also experimentally demonstrated in [129,130].

4.3.5. SU(1,1) Interferometer with Nonlinear Phase Shifter

In addition to the nonlinear PA process, a nonlinear phase shifter has also been
proposed for enhancing the phase estimation, which can be viewed as another method of
probe modification [102,103]. The model can be seen in Figure 5f. A nonlinear phase shifter
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can be achieved by the third-order susceptibility of the Kerr medium, corresponding to the
evolution operator

Ŝ(ϕ, k) = exp
[
iϕn̂k

]
, (27)

where ϕ is the phase difference between two arms and n̂ is the phase-sensing photon
number. When k = 1, Ŝ(ϕ, k) reduces to the traditional linear phase shift case. When k = 2,
Ŝ(ϕ, k) corresponds to Kerr nonlinear case. Via HD, the phase sensitivity of the SUI with
nonlinear phase shifter and balanced gain at optimal point ϕ = 0 has the form

∆ϕ2 =
∆ϕ1

1 + NOPA(2 + Nα)
, (28)

where the phase sensitivity of traditional SUI with a linear phase shift is ∆ϕ1 = 1/
(

NOPA
√

Nα

)
.

It can be seen that ∆ϕ2 < ∆ϕ1, corresponding to enhanced phase sensitivity.
In addition, there is a new idea to enhance the phase sensitivity of the SUI by using

photon level operations (PLOs) seen in [131].

5. Phase Sensitivity Improvement via Gain Unbalance in Lossy Interferometers

It is significant to study the effect of losses on phase sensitivity. There are two types of
losses: inside and outside the interferometer. Only a loss-resistant interferometer can be
more widely used.

It is well known that the measurement quality of MZI is reduced quickly in the
presence of external losses [132]. For the LIGO project with a coherent state ⊗ squeezed-
vacuum state input, for example, [133], 10.3 dB of squeezing is injected, resulting in only
2.2 dB of squeezing that can be measured due to loss, meaning that the losses of the linear
interferometer limit the enhancement in phase sensitivity. Solving this problem requires
perfect or almost perfect detectors to obtain a sensitivity below the shot noise limit.

Contrarily, researchers have shown that the SU(1,1) scheme with gain balance (G =
G2 = G1, g = g2 = g1) is not as sensitive to external loss as the linear scheme with a
squeezed state for noise reduction. Even though external losses reduce the sensitivity of
the SUI, the external loss does not prevent SUI from beating the SQL and does not change
the scaling characteristic of the HL. Consider that the effect of the detection efficiency
marked by the notation η as transmissivity, the phase sensitivity with external loss from
Equation (18) becomes

∆ϕ2
l =

1 + η

2η
∆ϕ2. (29)

Showing the effect of the detector efficiency is to reduce the sensitivity by introducing
an overall prefactor (1 + η)/(2η), which can be eliminated by increasing the gains of the
PAs (G, g). The larger the gain, the more resistant to extra loss [85,87]. Thus, making phase
sensitivity small, it is still possible to maintain the HL scaling. From this, the SUI is robust
against external losses. So does the other state injection. The phase sensitivity can resist
external loss by adjusting gains [87].

5.1. Normal All-Optical SU(1,1) Interferometer

In fact, the phase sensitivity of the SUI is susceptible to internal losses. When the
internal loss is introduced, the symmetry of the SUI is broken, and the resulting balanced
configuration of the SUI is not optimal for resisting external loss. Here, unbalanced gain
gives an additional degree of freedom to optimize the properties of the SUI to reduce the
effect of external losses when the internal loss is introduced. M. Manceau et al. pointed out
that a broader super-sensitivity phase range and a better overall sensitivity can be achieved
at gain unbalancing, as shown in Figure 6, where the internal loss is 0.1 and the first PA’s
gain equals 1.15. Figure 6 shows that increasing the gain of the second PA can lead to better
sensitivity and a broader super-sensitive phase range [105]. Meanwhile, the balanced case
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G1 = G2 = 1.15 does not provide phase super-sensitivity even for the external lossless
case seen in Figure 6a. The sensitivity improves as one increases the gain of the second
amplifier. The experiment has verified that the phase super-sensitivity of an unseeded
degenerated, nonlinear unbalanced interferometer on direct detection can be preserved
even with detection losses as high as 80% by increasing the gain of the PA2 [43].
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Figure 6. (Color online) (a) Optimal phase sensitivity ∆φmin normalized to ∆φSNL and (b) the
supersensitive phase range ∆ of unseeded degenerated SUI with direct ID as functions of the gain
r2 of the second amplifier. (c,e) Optimal phase sensitivity ∆φmin normalized to ∆φSNL and (d,f) the
super-sensitive phase range ∆ of seeded degenerated SUI with ( HD, direct ID) as functions of the
gain r2. The values of the detection efficiency η: blue line η = 1, black dashed line η = 0.3, and
red dotted line η = 0.1. The gain of the first amplifier is r1 = 1.15 and the internal transmission is
µ = 0.9 [105].

The above results are applicable when the internal loss is definite. When the internal
loss is variable, things are changed. Figure 7a shows the effect of the internal loss Rd on
the inverse Fano factor Nd,min/∆N2

d,min and Figure 7b the effect of the internal loss Rd on
the optimal phase sensitivity ∆ϕ2

d,min in the absence of external loss. The lower the inverse
Fano factor Nd,min/∆N2

d,min, the more resistant it is to external loss. As seen in Figure 7a,
increasing the gain of the second PA indeed can reduce the external loss effect. However,
for sufficiently large internal loss, the balanced situation is better than the unbalanced
gain situation.
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Figure 7. (Color online) Effect of the internal loss Rd on the inverse Fano factor Nd,min/∆N2
d,min in

(a) and on the phase sensitivity without external loss ∆ϕ2
d,min in (b) [106]. VA means the gain of PA1

and VB means the gain of PA2. Fano factor Nd,min/∆N2
d,min comes from the equation of the phase

sensitivity including extra loss ∆ϕ2
l = ∆ϕ2

(
1 + 1−η

η
Nd

∆N2
d

)
, where Nd is the output total mean photon

number of an interferometer with variance ∆N2
d . It shows that the phase sensitivity in presence of

external loss ∆ϕ2
l strictly depends on the inverse Fano factor Nd

∆N2
d

. The lower the Fano factor, the more

external loss resistance.

The optimal phase uncertainty of degenerate SUI in unbalanced gain configuration
has the following form when taking both external and internal losses off

∆ϕ2
opt =

1(
2G2

ming2
min
) , (30)

where Gmin = min[G2, G1] is the smaller parameter. gmin = min[g2, g1] is defined in the
same way. In this configuration, the form of the optimal phase sensitivity (30) is the same
as in the balanced case ∆ϕ2

opt = 1/
(
2G2g2). The difference is that the phase sensitivity (30)

here is limited by the PAs with smaller gain, independent of whether it is PA1 or PA2.
When considering the internal loss which can be described by a BS with transmittance

Td and reflectance Rd, the optimal phase sensitivity ∆ϕ2
opt = 1/

(
2G2

ming2
min
)

here is still
valid, where now g2

min = min[g2
1Td, g2

2] and G2
min = min[

(
1 + g2

1Td
)
, G2

2 ] are the new defini-
tions. If g2

1Td > g2
2, it means g2 = gmin, the phase uncertainty ∆ϕ2

opt is only limited by the
PA2 and independent of the internal loss. Thus, if the internal loss dominates, it is better to
have a stronger PA1 than PA2 to resist the internal loss, as shown in Figure 7b. Moreover,
for sufficiently small internal loss, the balanced gain situation is better than the unbalanced
gain situation to resist the internal loss. To sum up, a stronger PA2 can effectively reduce
the effect of detection loss, while a stronger PA1 can effectively inhibit the influence of
internal loss. One can accord to the state of the system to decide whether a stronger PA1 or
stronger PA2 is used.

5.2. Atom–Light Hybrid SU(1,1) Interferometer

Leading from the above discussion, Yu et al. provided an optimal condition for the
atom–light hybrid interferometer to resist internal loss when taking ID given by [108]

G1G2

√
(1− l) = g1g2

√
(1− η), (31)

where l is the loss rate of the Stokes beam and η is the loss rate of the Spin wave beam. This
optimal condition applies to any various traditional SUI. It is about the optimal allocation
relationship between the gain of the PA1, the gain of the PA2, and the internal losses.
The SUI can resist internal losses when these parameters satisfy the optimal condition.

The visibility VSU is given by

VSU ≈
2G1G2g1g2

√
1− l

√
1− η

G2
1G2

2(1− l) + g2
1g2

2(1− η)
. (32)
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One perfect visibility in the output port requires the same intensities of the two
interference arms after final amplification. With the internal losses, there is one Stokes beam
∼ G1

√
1− l and the Spin wave beam ∼ g1

√
1− η. After the second PA process and view

on the output port g, the signal beam is amplified to ∼ G2G1
√

1− l while the idler beam is
amplified to ∼ g2g1

√
1− η. When G2 is adjusted to satisfy Equation (31), i.e., the optimal

condition holds, the amplitudes of these two beams are equal, resulting in the visibility of
the output port that can always reach ∼100% even if the internal loss is large. Figure 8a–c
has shown some theoretical examples, where G1 and internal losses l and η are defined.
After modulating G2 to satisfy the optimal condition, the visibility of the atom–light hybrid
interferometer improves from the blue line curve (without optimal the parameter G2) to
the red dashed curve, corresponding to a perfect visibility obtained. Figure 9 shows the
experimental result on the visibility of SUI before and after optimization.
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Figure 8. (Color online) (a–c) The visibilities of the light–atom hybrid interferometer (left-hand
vertical axis) before optimization G2 (blue dash-dotted curve) and after optimization G2 (red dashed
curve). (d–f) The SNR of the light–atom hybrid interferometer (left-hand vertical axis) before and
after optimized G2. The black lines represent the case of MZI. The orange dotted curve is the value
of G2/G1 after optimizing G2 for the largest VSU in (a–c) (right-hand vertical axis). The pink circles
mark the value of G2/G1 after optimizing G2 for the best SNRSU (right-hand vertical axis) [108].
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Figure 9. (Color online) The visibility value as a function of the loss rate l (a) before optimization G2

and (b) after optimization G2. The blue squares are the interference fringes of the atom–light hybrid
interferometer with fixed G1 = 3, η = 0.4, and G2 = 5. The black triangles are the interference fringes
of the MZI under the same operating conditions. The red dots are the values of optimal visibility
with optimization G2 [108].
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The improved visibility corresponds to the improvement of the sensitivity of the phase
shift. Of course, when optimal visibility is obtained, the best signal-to-noise ratio (SNR)
can be achieved. SNR can be calculated by the equation

SNR =

[∣∣∂〈Ô〉/∂ϕ
∣∣δ]2〈(

∆Ô
)2
〉 , (33)

where δ is an small added modulation phase. When SNR = 1, the added modulation δ
represents the minimal phase sensitivity ∆ϕ. Figure 8d–f shows the SNR of the SUI before
and after optimization G2 and the SNR of the MZI with the same parameters theoretically.
It can be seen in Figure 8d–e that the SNR can beat the SNL (solid black line) in an extensive
range of internal losses after optimizing G2 (red dashed curve). As long as the parameter
G2 satisfies the optimal condition (blue box), the system can resist the internal loss, and the
sensitivity of the phase increases. However, when the internal loss η = 0.8 is significantly
large, as seen in Figure 8f, this advantaged range gradually diminishes.

It is well known that the noises in the two arms of the SUI are correlated, leading
to the noise cancellation cleanly to the vacuum level at the output of the SUI. However,
the quantum-noise correlation strictly depends on the internal losses. When the internal loss
is introduced, the quantum-noise correlation will be destroyed, and the uncorrelated noise
will appear. After the second PA process, the uncorrelated noise will be amplified, thus
reducing the phase sensitivity. Here, the condition of Equation (31) can almost completely
cancel the correlated noise from the two arms in the output light field; then, the visibility
and the SNR of the output light field will be optimal. When the internal losses become
larger, it will bring more uncorrelated excess noise and quickly reduce the noise cancellation
advantage of the SU(1, 1)-type interferometer. However, Equation (31) can handle it.

Taking HD, Yu et al. also provided an optimal condition for internal loss resistance as
follows:

2
√
(1− l)

√
(1− η)G1G2g1g2 = 2(1− η)g2

1g2
2 + g2

2 + G2
2 . (34)

It differs from the optimization condition (31). When the parameters (G1,2, g1,2, l, η)
match the above optimal conditions, the SUI can resist any internal losses, and then, the
phase sensitivity can be improved.

5.3. SU(2) Nested SU(1,1) Interferometer

In the model of SU(2) nested various SUI, Jiao et al. also studied the effects of losses
on the phase sensitivity via gain unbalance [98]. When the two input ports of the SU(1,1)
interferometer have no injection and under HD at the dark point, the optimal sensitivity in
the absence of losses can be obtained as follows

∆2 ϕHD
opt =

2(G2g1 − G1g2) + 1
4TRG2

2 Nc
, (35)

where R = R1 = R2 (T = T1 = T2) is the reflectivity (transmissivity) of the BSs in SU(2)
interferometer. Nc is the total mean photon number of the input coherent state in the SU(2)
interferometer. From the expression (35), Jiao et al. gave an optimal condition

(g2/G2)opt = 2G1g1/
(

2G2
1 − 1

)
, (36)

for ∆2 ϕHD
opt that can always reach the optimal value. This optimal condition consists in all

possible relations between (G1, g1) and (G2, g2). When G1 is definite, there is an optimal G2
to obtain optimal phase sensitivity. There is a special case when G2/G1 � 2 and the phase
sensitivity always reaches the QCRB.
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Taking into account the internal losses and the external losses, Jiao et al. also gave an
optimal condition: (

g2

G2

)
opt

=
G1g1

√
ηaηb

(
T
√

ηd + R
√

ηc
)

ηaG2
1 + (1− ηa)− 1/2

, (37)

where ηa and ηb are the external transmission rates of the MZI, and ηc and ηd are the
internal transmission rates of the MZI. The above Equation (37) indicates how the gain
ratio to loss mitigation can be adjusted. Figure 10 shows the effect of external losses and
internal losses on the phase sensitivity after optimized G2/G1. The phase sensitivities in
the area of the upper right corner and within the SQL lines in Figure 10 can beat the SQL.
The black solid lines (SQL0) denote the SQL when G2 = G1, and the red dotted lines (SQL1)
denote the SQL with optimized G2. As seen in Figure 10, the area within the SQL1 line
is larger than the area within the SQL0 line, which implies that via optimizing (G2/G1),
one can provide a new window for a system to resist the losses. This is a new change that
cannot be brought from the balanced gain situation.

c d

Figure 10. (Color online) (a) The phase sensitivity as function of external losses and (b) the corre-
sponding relation between (G2/G1)opt and external losses. (c) The phase sensitivity as function of
internal losses and (d) the corresponding relation between (G2/G1)opt and internal losses [98]. The
red dotted lines (SQL1) denote the SQL with optimized G2 and the black solid lines (SQL0) denote the
SQL when G2 = G1. Upper right corner and within the SQL lines indicate that the phase sensitivity
can beat the SQL.

6. Outlook

The SUI has attracted steady and growing interest over several decades because it is
highly sensitive to phase shift measurement and its robustness to losses. Firstly proposed
in 1986, several variations of the seeded SUI emerged, and now, there are various types of
SUI. Such nonlinear active interference devices can contribute to metrology [41,99], and
imaging [134–136], and be embedded in most platforms, for example, the infrared and
THz refractometry [137,138], and the infrared polarimetry [139]. Their robustness to losses
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promotes them as an attractive candidate to quantum-enhanced real-world applications in
the near term. Here, we have summarized the phase sensitivity improvement technology
by adjusting the gain coefficient in the presence of losses. This technology provides a
new image and can be applied to many losses. Following this thought, one can focus on
these general stages: (i) probe generation, such as injecting a suitable field, including the
coherent state and squeezed vacuum state, (ii) probe modification, such as deformation of
SUI, including SU(2)-in-SU(1,1) nested interferometer, (iii) phase information readout, such
as selected HD or ID method, and so on, to improve the phase sensitivity further.
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MZI Mach–Zehnder interferometer
SNL Shot noise limit
SQL Standard quantum limit
HL Heisenberg limit
SUI SU(1,1) interferometer
OPA Optical parametric amplifier
FWM Four-wave mixing
PDC Parametric down-conversion
BS Beam splitter
SMD Spin-mixing dynamics
BEC Bose–Einstein condensate
QND Non-demolition measurement
QCRB Quantum Cramér–Rao bound
QFI Quantum Fisher information
IDS Intensity-difference squeezing
ID Intensity detection
HD Homdyne detection
PLO Photon level operation
SNR Signal-to-noise ration

Appendix A

The expression of ∆ϕI,coh, ∆ϕcoh, ∆φI,coh&Sqz, and ∆φSqz&Sqz in Table 1 are shown as
follows

∆ϕI,coh = [csch4(2ξ)(sec2(ϕ/2)((2Nα + 1) cosh(8ξ)− 1) + 2Nα csc2(ϕ/2))

−8(2Nα + 1)]1/2[2
√

2(Nα + 1)]−1, (A1)
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∆ϕcoh = 4(cosh2(2ξ)− sinh2(2ξ) cos(ϕ))2((cosh2(2ξ)− sinh2(2ξ) cos(ϕ))2

× exp[
4Nαe−2ξ(sinh(2ξ) cos(ϕ) + cosh(2ξ))

cosh2(2ξ)− sinh2(2ξ) cos(ϕ)
]− 1)1/2

×
∣∣∣sinh(4ξ) sin(ϕ)(sinh(4ξ)− 4Nα)− 2 sinh4(2ξ) sin(2ϕ)

∣∣∣−1
, (A2)

∆ϕI,coh&sqz = −[sech4 ξ csc2 ϕ(32(cosh ξ + cosh(3ξ))2 csch2 ξ cos ϕ(4e−2r Nα + cosh(4r)

−1)− 8 coth2 ξ cos(2ϕ)(4 sinh2(2ξ)(4Nα cosh(2r) + cosh(4r)− 1)

−8Nα(cosh(4ξ) + 3) sinh(2r))− 64Nα(3 cosh(4ξ) + 5) coth2 ξ cosh(2r)

+64Nα(3 cosh(4ξ) + 1) coth2 ξ sinh(2r)− 2(4 cosh(4ξ) + 3 cosh(8ξ) + 9)

× csch4 ξ sinh2(2r))]1/2[16(2Nα + cosh(2r))]−1, (A3)

∆ϕSqz&Sqz = (1/2
√

2) csch(2ξ) sech(2r)(csch2(2ξ)(sec2(ϕ/2)(cosh(8ξ) cosh(4r)− 1)

+2 sinh2(2r) csc2(ϕ/2))− 4 cosh(4ξ) cosh(4r) + 4)1/2. (A4)

References
1. Thompson, A.R.; Morgan, J.M.; Swenson, G.W. Interferometry and Synthesis in Radio Astronomy; Wiley: New York, NY, USA, 2017.
2. Michelson, A.A.; Morley, E.W. On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 1887, 6, 306. [CrossRef]
3. Advanced LIGO. 2012. Available online: http://www.advancedligo.mit.edu (accessed on 31 July 2022).
4. VIRGO. Available online: http://www.virgo.infn.it/ (accessed on 31 July 2022).
5. GEO600. Available online: http://www.geo600.de/ (accessed on 31 July 2022).
6. Zehnder, L. Ein neuer interferenzrefraktor. Z. Instrumk. 1891, 11, 275.
7. Mach, L. Ueber einen interferenzrefraktor. Z. Instrumk. 1892, 12, 89.
8. Born, M.; Wolf, E. Principles of Optics; Pergamon: Oxford, UK, 1975.
9. Braunstein, S.L. Quantum limits on precision measurements of phase. Phys. Rev. Lett. 1992, 69, 3598. [CrossRef]
10. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum metrology. Phys. Rev. Lett. 2006, 96, 010401. [CrossRef] [PubMed]
11. Chua, S.S.Y.; Stefszky, M.S.; Mow-Lowry, C.M.; Buchler, B.C.; Dwyer, S.; Shaddock, D.A.; Lam, P.K.; McClelland, D.E. Backscatter

tolerant squeezed light source for advanced gravitational-wave detectors. Opt. Lett. 2011, 36, 4680. [CrossRef] [PubMed]
12. Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1703. [CrossRef]
13. Xiao, M.; Wu, L.A.; Kimble, H.J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 1987, 59, 278. [CrossRef]
14. Grangier, P.; Slusher, R.E.; Yurke, B.; LaPorta, A. Squeezed-light–enhanced polarization interferometer. Phys. Rev. Lett. 1987, 59,

2153. [CrossRef]
15. Luis, A. Squeezed coherent states as feasible approximations to phase-optimized states. Phys. Lett. A 2006, 354, 71–78. [CrossRef]
16. Kolkiran, A.; Agarwal, G.S. Heisenberg limited Sagnac interferometry. Opt. Express 2007, 15, 6798. [CrossRef] [PubMed]
17. Sciarrino, F.; Vitelli, C.; Martini, F.D.; Glasser, R.; Cable, H.; Dowling, J.P. Experimental sub-Rayleigh resolution by an unseeded

high-gain optical parametric amplifier for quantum lithography. Phys. Rev. A 2008, 77, 012324. [CrossRef]
18. Kok, P.; Lee, H.; Dowling, J.P. Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A

2002, 65, 052104. [CrossRef]
19. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 2004, 306,

1330–1336. [CrossRef] [PubMed]
20. Boto, A.N.; Kok, P.; Abrams, D.S.; Braunstein, S.L.; Williams, C.P.; Dowling, J.P. Quantum interferometric optical lithography:

Exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 2000, 85, 2733. [CrossRef]
21. Agarwal, G.S.; Boyd, R.W.; Nagasako, E.M.; Bentley, S.J. Comment on quantum interferometric optical lithography: Exploiting

entanglement to beat the diffraction limit. Phys. Rev. Lett. 2001, 86, 1389. [CrossRef]
22. Walther, P.; Pan, J.W.; Aspelmeyer, M.; Ursin, R.; Gasparoni, S.; Zeilinger, A. De Broglie wavelength of a non-local four-photon

state. Nature 2004, 429, 158. [CrossRef]
23. Mitchell, M.W.; Lundeen, J.S.; Steinberg, A.M. Super-resolving phase measurements with a multiphoton entangled state. Nature

2004, 429, 161. [CrossRef]
24. Nagata, T.; Okamoto, R.; O’Brien, J.L.; Sasaki, K.; Takeuchi, S. Beating the standard quantum limit with four-entangled photons.

Science 2007, 316, 726. [CrossRef]
25. Hofmann, H.F.; Ono, T. High-photon-number path entanglement in the interference of spontaneously down-converted photon

pairs with coherent laser light. Phys. Rev. A 2007, 76, 031806. [CrossRef]
26. Resch, K.J.; Pregnell, K.L.; Prevedel, R.; Gilchrist, A.; Pryde, G.J.; O’Brien, J.L.; White, A.G. Time-reversal and super-resolving

phase measurements. Phys. Rev. Lett. 2007, 98, 223601. [CrossRef] [PubMed]
27. Dowling, J.P. Quantum optical metrology–the lowdown on high-N00N states. Contemp. Phys. 2008, 49, 125. [CrossRef]

http://doi.org/10.2475/ajs.s3-34.203.333
http://www.advancedligo.mit.edu
http://www.virgo.infn.it/
http://www.geo600.de/
http://dx.doi.org/10.1103/PhysRevLett.69.3598
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://www.ncbi.nlm.nih.gov/pubmed/16486424
http://dx.doi.org/10.1364/OL.36.004680
http://www.ncbi.nlm.nih.gov/pubmed/22139282
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevLett.59.278
http://dx.doi.org/10.1103/PhysRevLett.59.2153
http://dx.doi.org/10.1016/j.physleta.2006.01.040
http://dx.doi.org/10.1364/OE.15.006798
http://www.ncbi.nlm.nih.gov/pubmed/19546991
http://dx.doi.org/10.1103/PhysRevA.77.012324
http://dx.doi.org/10.1103/PhysRevA.65.052104
http://dx.doi.org/10.1126/science.1104149
http://www.ncbi.nlm.nih.gov/pubmed/15550661
http://dx.doi.org/10.1103/PhysRevLett.85.2733
http://dx.doi.org/10.1103/PhysRevLett.86.1389
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1126/science.1138007
http://dx.doi.org/10.1103/PhysRevA.76.031806
http://dx.doi.org/10.1103/PhysRevLett.98.223601
http://www.ncbi.nlm.nih.gov/pubmed/17677842
http://dx.doi.org/10.1080/00107510802091298


Symmetry 2022, 14, 2684 23 of 26

28. Gao, Y.; Lee, H. Sub-shot-noise quantum optical interferometry: A comparison of entangled state performance within a unified
measurement scheme. J. Mod. Opt. 2008, 55, 3319. [CrossRef]

29. Huver, S.D.; Wildfeuer, C.F.; Dowling, J.P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing.
Phys. Rev. A 2008, 78, 063828. [CrossRef]

30. Glasser, R.T.; Cable, H.; Dowling, J.P.; Martini, F.D.; Sciarrino, F.; Vitelli, C. Entanglement-seeded, dual, optical parametric
amplification: Applications to quantum imaging and metrology. Phys. Rev. A 2008, 78, 012339. [CrossRef]

31. Vitelli, C.; Spagnolo, N.; Sciarrino, F.; Martini, F.D. Amplification of polarization NOON states. J. Opt. Soc. Am. B 2009, 26, 892.
[CrossRef]

32. Boixo, S.; Datta, A.; Flammia, S.T.; Shaji, A.; Bagan, E.; Caves, C.M. Quantum-limited metrology with product states. Phys. Rev. A
2008, 77, 012317. [CrossRef]
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