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Abstract: Total internal reflection occurs at the interface between two media with different refractive
indices during propagation of light rays from a medium with a higher refractive index to a medium
with a lower refractive index. If the thickness of the second medium is comparable to a specific light
wavelength, then total internal reflection is violated partially or completely. Based on the frustrated
total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an
array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a
narrow gap between them. An array of prism resonators allows topologically stable edge solutions
(eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at
different angles of incidence of light. This makes it possible to obtain a set of fundamentally new
edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it
penetrates relatively deep into the photonic topological insulator and excites several layers of prisms
positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased,
and therefore new solutions exhibit lower symmetry than the resonator array symmetry.

Keywords: geometric optics; topological insulator; frustrated total internal reflection

1. Introduction

A photonic topological insulator is a periodic photonic structure that isolates light
waves in bulk, but conducts them along the surface (edge) [1,2]. The term topological refers
to a special type of stability whereby an arbitrary change of the photonic structure edge does
not violate the conduction of light. The role of topology became clear after the discovery of
the quantum Hall effect in 1980 in condensed matter physics [3]. The papers [4,5] present
theoretical studies of the topology of graphene-like materials. Mathematical aspects of
the theory of topological insulators are detailed in [6]. The presence of edge-conducting
states is explained using topological invariants in the dispersion diagram of a periodic
structure. The formation of band gaps in the frequency spectrum makes the structure an
insulator. If the topological invariants on opposite sides of the band gap have different
values, then, according to the bulk–edge correspondence, the band gap is closed by means
of the states that do not penetrate deep into the structure and are localized at its edge.
In gapless insulators, the states in the bulk exist, but do not propagate due to the zero
group velocity. This also leads to localization of the conducting states near the structure
edge. Perhaps the simplest model of a gapless topological insulator is the Rudner’s game.
This two-dimensional model was described in [7] in the second quantization language.
Owing to its simplicity, this model can also be described in the language of quantum
cellular automata [8,9] and is possible in the language of billiards [10]. The model was
implemented in arrays of coupled waveguides [11] and ring resonators [12]. Subsequently,
an extended theory for ring resonators was developed [13,14].

In this work, we demonstrate the possibility of implementing Rudner’s model using
the frustrated total internal reflection (FTIR) phenomenon [15,16] (Figure 1a,b) in an array
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of coupled prism resonators (Figure 1c). It is remarkable that, in ring and prism resonators,
the language of light rays in geometrical optics is sufficient to describe the phenomena
that are inherently wave-based [12]. Prism resonators, in contrast to ring ones, allow light
to travel along the polygonal chain of zero curvature. This difference provides no more
than the advantage of simplified perception, while maintaining an identical mathematical
structure. Far more important is another difference: total internal reflection occurs at
all angles of light incidence greater than the critical angle. This makes it possible to use
polygonal lines with several angles and to obtain fundamentally new edge solutions, at
which the ray penetrates into deeper edge layers of a photonic topological insulator.

(a) (b) (c)

Figure 1. (a) According to the Snell’s law, we have n1 sin φ1 = n0 sin φ0, where n1 is the refractive
index of a medium, e.g., glass (colored in gray), from which a ray falls at angle φ1, and n0 is the
refractive index of a medium, for example, air (colored in orange), into which the ray colored in blue
falls, refracting at angle φ0. At n0 < n1, for angles of incidence greater than the critical angle, i.e., at
φ > φc = arcsin n0/n1, the total internal reflection (TIR) effect is observed: the ray colored in red is
completely reflected from the interface between the media. (b) At an angle of incidence greater than
the critical angle, the ray, despite total reflection, can almost completely tunnel from a glass prism to
another prism through a thin intermediate layer (air gap). To do this with anti-reflection coating, the
gap thickness should be a multiple of half a light wavelength corrected for the angle of incidence [16].
(c) Noncontinuous array of glass prisms (coupled prism resonators). The ray propagates through the
structure via total internal reflection (FTIR) between the prisms and the TIR at the interfaces with air
wells (colored in orange). Black lines represent air gaps between the prisms. It should be noted that
the ray trajectory remains qualitatively the same when the air gap has zero thickness.

2. Formulation of the Problem

An FTIR array is a two-dimensional structure of coupled prism resonators with a
portion of the prisms removed in a specific and regular (periodic) manner (Figure 1c).

Inside the structure, the light path can be regular or irregular depending on the angle
at which the ray penetrates into the FTIR array. For example, Figure 2 shows typical
regular polygonal chain paths of the light incident at angles of π/6, π/4, and π/3 in the
FTIR insulators with the third-, fourth-, and sixth-order symmetries, respectively. The
aforementioned can be formulated in the language of mathematical billiards [10,17,18].

An infinite periodic structure is hereinafter referred to as regular. Let us consider two
ways of violating the regularity:

1. Introducing a defect into an infinite FTIR array (creating a hole), Figure 2d.
2. Creating a finite FTIR array by discarding the neighborhood of an infinitely distant

point from the structure.

Both methods lead to the appearance of singularities (structure boundaries), on which
the topologically stable solutions are sought (Figures 1c and 3a). Let us consider the square
FTIR insulators, which, at a reflection angle of π/4, are equivalent to the Rudner’s toy [7].
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(a) (b) (c)

(d) (e) (f)

Figure 2. (a–c) Internal and edge modes on the photonic topological insulators assembled from
triangular, quadrangular, and hexagonal glass prisms. (d–f) Edge modes.

(a) (b)

Figure 3. (a) Choosing an angle expressed through the rational fraction p/q. Denominator q is plotted
on the x-axis and numerator p is plotted on the y-axis from the initial (4.5, 3) position. Red rays
correspond to fractions 3/2, 1, 1/2 and 1/4. (b) Loops (closed light paths) in an infinite resonator
array at tangents of angles of incidence of 1, 1/3, 3/5 and 5/6. Blue circles correspond to glass
prisms and empty white squares correspond to gaps. The symmetry of the loops is described by the
second-order dihedral group (D2), although the array symmetry bears the higher (fourth) order (D4).

3. Methodology and Limitations

The polygonal chain trajectories of rays in an FTIR insulator are calculated using the
MATLAB package. The state of a ray is described by two coordinates of a point at the prism
surface and an angle of ray propagation. These three values allow us to calculate the ray
state for a point at the next prism surface.
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When choosing the initial state we restrict ourselves by rational tangents tan φ = p/q,
where p and q are mutually simple numbers. For rational tangents there are two oppor-
tunities. First, the chain is a loop. Second, the chain pattern repeats in the neighboring
prism, and the chain is unbounded and periodic. For each initial state, the polygonal chain
calculation stops when the state returns to initial (the first case) or translationally the same
state (the second case). In both cases, the chain length is of the order of p + q. This is why
the chain-link calculation process is terminated in finite number of iterations depending on
the initial state.

For the ray angle equal to π/4, the existence of a loop does not depend on the initial
position of a point at the prism surface. For some other angles, we have to calculate chains
for half of the initial positions along the boundary of the elementary cell.

The suggested model can be realized in the array of precisely positioned prisms. The
usage of prisms is limited by surface flatness and high refractive index. Otherwise, the ray
scatters on inhomogeneity of the surface and for small angles of incidence the total internal
reflection is lost. Both limitations lead to decreased ray brightness for long trajectories.
Furthermore, we assume the laser beam has negligible diffraction or it has to be additionally
focused inside the resonator array.

4. Results and Discussion

Figure 3a shows several initial links of the polygonal chain trajectories starting in the
central point of prism face. The links also finish in the central points. In the theory of
mathematical billiards, it can be proved that the polygonal chain trajectories turn out to be
repeated not only at tan φ = 1, but also at all rational tangents [17].

Figure 3b shows sample MATLAB-generated cyclic trajectories with a reflection angle
expressed through the rational fraction p/q = tan φ, where p and q are the arbitrary
natural numbers.

Table 1 provides a classification of the polygonal chain trajectories with the rational
tangents. The row numbers in the table correspond to the numerator values p, and the
column numbers to the denominator values q. Table 1 is filled using the numerical cal-
culations of the edge trajectory for a square array of 59 × 59 resonators. The array was
classified as a conductor (C) for the light propagation directions in which the trajectory
went into the bulk of the array. A loop conductor (LC) was classified separately if closed
light paths were observed in an infinite array. The array was classified as an insulator (I)
if all volumetric solutions turned out to be loops. In this case, the edge solutions either
retained the propagation direction (TI) or reversed the direction upon scattering by edge
defects (RI). The latter case may be indicative of the existence of higher-order states [19].

Table 2 demonstrates that at q ≤ 13, insulators were observed only at odd p and q
values. Although, loops also appeared at even values. For example, in Figure 3b the loop
trajectory is shown for p = 5 and q = 6.

Figure 4 demonstrates two of the simplest rational trajectories p/q = 1 (a) and
p/q = 1/3 (b) yielding topological insulator behavior. The case p/q = 1/2 does not
produce loops, consequently the trajectory cannot be localized at the edge. The even de-
nominator case p/q = 5/6 has an unstable loop (Figure 3b) that depends on the initial
point. At the edge, the ray reflection transforms the unstable loop into non-loop trajectory
and the ray goes into the bulk without topological insulator behavior.
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Table 1. The FTIR insulators were classified using the following designations: topological insulator TI
(the light propagates along the edge), conductor C (the trajectory extends to infinity), loop conductor
LC (there are trajectories both closed and penetrating deep into the array), and reversible topological
insulator RI, in which the edge-wave propagation direction can be reversed. Symbol # denotes
the reducible rational fractions accounted for earlier (for lower p and q). The classification table is
symmetric with respect to the main diagonal.

p, q 1 2 3 4 5 6 7 8 9 10 11 12 13

1 TI C TI C TI C TI C TI C TI C TI

2 # C # C # C # C # C # C

3 # C TI # TI C # C TI # TI

4 # C # C # C # C # C

5 # LC TI C TI # TI C TI
6 # LC # # # C # C

7 # C TI C TI C TI

8 # C # C # C

9 # C RI # TI

10 # C # C

11 # LC RI

12 # LC

13 #

Table 2. Topological and reversible FTIR insulators are observed only at odd p and q values taken
from Table 1.

p, q 1 3 5 7 9 11 13

1 TI TI TI TI TI TI TI

3 # TI TI # TI TI

5 # TI TI TI TI

7 # TI TI TI

9 # RI TI

11 # RI

13 #
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(a) (b)

Figure 4. Finite array of 18× 18 coupled prism resonators. Blue circles correspond to glass prisms
and empty white squares correspond to gaps. For tangents 1 and 1/3 of the angle of incidence,
the edge trajectories correspond to a photonic topological insulator. (a) Rudner’s case tan φ = 1.
(b) tan φ = 1/3, on the left boundary, the trajectory penetrates deep into the insulator extending
through five resonator layers and the approximation of the rigid coupling with the nearest neighbors
is violated.

5. Conclusions

It was shown that the Rudner’s model can be implemented using the frustrated total
internal reflection phenomenon in an array of coupled prism resonators (Figure 4a). The
inherently wave-like phenomena were described in the language of geometrical optics. The
main findings are as follows:

• Beyond Rudner’s solutions, fundamentally new edge solutions were found. This new
class of solutions is infinite and can be classified by rational numbers, where Rudner’s
solution is a particular case corresponding to the number 1. Most solutions correspond
to ratios with an odd numerator and denominator.

• The ray penetrates into the array crossing several resonator layers. This behavior
differs from Rudner’s solutions which are completely localized inside the surface
layer of resonators. At the same time, the ray cannot penetrate deeper, since only
closed trajectories with zero group velocity can occur in an infinite array (the gapless
insulator case).

• The new class of trajectories breaks the array symmetry. This behavior is also different
to Rudner’s solutions that bear the same symmetry as the resonator array.
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Abbreviations
The following abbreviations are used in this manuscript:

FTIR Frustrated Total Internal Reflection
TI Topological Insulator
RI Reversible Topological Insulator
LC Loop Conductor
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