
Citation: Wu, K.; Ejegwa, P.A.; Feng,

Y.; Onyeke, I.C.; Johnny, S.E.;

Ahemen, S. Some Enhanced Distance

Measuring Approaches Based on

Pythagorean Fuzzy Information with

Applications in Decision Making.

Symmetry 2022, 14, 2669. https://

doi.org/10.3390/sym14122669

Academic Editors: José Carlos R.

Alcantud and Jian-Qiang Wang

Received: 26 October 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Some Enhanced Distance Measuring Approaches Based on
Pythagorean Fuzzy Information with Applications in
Decision Making
Keke Wu 1, Paul Augustine Ejegwa 2,* , Yuming Feng 3,* , Idoko Charles Onyeke 4,
Samuel Ebimobowei Johnny 5 and Sesugh Ahemen 2

1 Department of General Education, Chongqing Preschool Education College, Chongqing 404047, China
2 Department of Mathematics, University of Agriculture, Makurdi P. M. B. 2373, Nigeria
3 Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges University,

Chongqing 404100, China
4 Department of Computer Science, University of Agriculture, Makurdi P. M. B. 2373, Nigeria
5 Department of Mathematics, Federal University of Technology, Minna P. M. B. 65, Nigeria
* Correspondence: ejegwa.augustine@uam.edu.ng (P.A.E.); ymfeng@sanxiau.edu.cn (Y.F.)

Abstract: The construct of Pythagorean fuzzy distance measure (PFDM) is a competent measuring
tool to curb incomplete information often encountered in decision making. PFDM possesses a
wider scope of applications than distance measure under intuitionistic fuzzy information. Some
Pythagorean fuzzy distance measure approaches (PFDMAs) have been developed and applied in
decision making, albeit with some setbacks in terms of accuracy and precision. In this paper, some
novel PFDMAs are developed with better accuracy and reliability rates compared to the already
developed PFDMAs. In an effort to validate the novel PFDMAs, some of their properties are discussed
in terms of theorems with proofs. In addition, some applications of the novel PFDMAs in problems
of disease diagnosis and pattern recognition are discussed. Furthermore, we present comparative
studies of the novel PFDMAs in conjunction to the existing PFDMAs to buttress the merit of the
novel approaches in terms of consistency and precision. To end with, some new Pythagorean fuzzy
similarity measuring approaches (PFDSAs) based on the novel PFDMAs are presented and applied
to solve the problems of disease diagnosis and pattern recognition as well.

Keywords: Pythagorean fuzzy distance; Pythagorean fuzzy similarity; disease diagnosis;
intuitionistic fuzzy set; pattern recognition; Pythagorean fuzzy set

1. Introduction

The process of decision making, which involves choice making by identifying, infor-
mation gathering, and evaluation of alternative resolution, is a challenging procedure due
to incomplete information. A dependable method for carrying out decision making is by
means of fuzzy set because of incomplete information in the process. Pattern recognition,
decision making, medical diagnosis, and selection process, among others, have been ex-
plored with the instrumentality of fuzzy logic. By definition, a fuzzy set [1] defined in a
set U is categorized by a membership degree symbolized by β, which associates numbers
from an interval, I = [0, 1] to the elements of U. Nonetheless, fuzzy set is inadequate
since it considers only the degree of membership without minding any other deciding
parameters. As a follow-up to this weakness, Atanassov [2] developed a concept called
intuitionistic fuzzy set (IFS), which considers a degree of membership β in addition to a
degree of nonmembership γ such that either 1− β 6= γ or 1− γ 6= β. Several applications
of IFSs has been discussed based on various information measures. Pattern recognition
problems [3,4] and medical diagnosis [5] have been carried out based on intuitionistic
fuzzy similarity measures. Other sundry approaches such as intuitionistic fuzzy distance
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measures, intuitionistic fuzzy relations, and intuitionistic fuzzy correlation measures in
have been used to crack a number of problems in pattern recognition [6,7] and decision
making [8], among others. A method of group decision making by means of intuitionistic
fuzzy aggregation operators has been deliberated [9]. A number of applicable distance
measures under IFSs were considered in [10–12].

The clear drawback of IFS is its restriction that the summation of the degrees of
membership and nonmembership must not be bigger than one. Consequentially to this
inadequacy, the term IFS of second type (IFSST) [8,13] was constructed, which was mostly
called Pythagorean fuzzy sets (PFSs) [14,15]. In PFS, the aggregate of the degrees of member-
ship and nonmembership might be bigger than one. PFS finds numerous significances in the
models of hands-on problems. Sundry operators such as Einstein t-norm, Einstein operator,
and Einstein t-conorm were studied under PFSs and applied in decision making [16,17].
An approach for cracking multiattributes decision making (MADM) was discussed [18] via
interval-valued Pythagorean fuzzy linguistic information. A variant of linguistic PFSs
was discussed in [19] and applied to MADM. More so, in [20], a new extension of the
technique of TOPSIS for multiple criteria decision making (MCDM) based on hesitant PFSs
was discussed. Sundry utilizations of Pythagorean fuzzy information measures in hands-on
decision making have been studied [15,21,22], pattern recognition [23], MCDM [24–26], etc.
Some Pythagorean fuzzy information measures were developed with their applications in
real-world problems [27–29]. In recent times, various uses of PFSs were discussed using
assorted approaches [30–35].

In addition, similarity and distance measures have been studied in linear Diophantine
fuzzy sets, linguistic linear Diophantine fuzzy sets, and interval-valued bipolar q-rung
orthopair fuzzy sets with applications [36–38]. In [39,40], the applications of complex PFSs
and Pythagorean fuzzy soft sets were used for MCDM, TOPSIS, VIKOR, and MADM,
respectively. Methods for data classification have been discussed using distance-based
similarity measures under fuzzy parameterized fuzzy soft matrices [41,42], aggregation
operator of fuzzy parameterized fuzzy soft matrices [43], and fuzzy parameterized soft
k-nearest neighbor classifier [44].

As earlier stated, the applications of PFSs have been possible using several measures.
Distance operator is a tool for computing distance between PFSs drawn from the similar
space. Lots of studies on PFDMAs and practical applications have been conducted. Zhang
and Xu [24] pioneered the research on PFDM by introducing a PFDMA and applied it
to MCDM. Li and Zeng [45] developed a PFDMA with application to the solution of
real-life problems. Assorted PFDMAs were developed and characterized in [46], which
were the extended versions of the fuzzy distance approaches [47] and intuitionistic fuzzy
distances approaches [11], respectively. The PFDMA in [24] was fortified in [48] to enhance
accurate measure. Numerous PFDMAs have been explored and used to decide group
MCDM [49,50]. In recent times, Hussain and Yang [51] developed a dissimilar PFDMA
via Hausdorff metric with fuzzy TOPSIS application, and Xiao and Ding [52] developed
a PFDMA by modifying a PFDMA in [46] and discussed its application in the diagnostic
process. Most recently, Mahanta and Panda [53] developed a novel PFDMA and elaborated
several of its applications.

The PFDMAs in [24,46,48,52] defaulted in the matter of precision, although they take
cognizance of the whole parameters of PFSs unlike the PFDMAs in [51,53]. The PFDMA
in [51] does not consider the whole parameters of PFSs, and it is also based on maximum
extreme value without minding the influence of the other values. The PFDMA in [53] is
defective because the whole parameters of PFSs were not accounted for. By taking all these
shortcomings into consideration, it is then necessary to develop new PFDMAs that resolve
the shortcomings in the hitherto PFDMAs to foster reliability and precision. In a recap,
in this paper, we introduce two PFDMAs and their associated PFSMAs with outstanding
advantage in terms of accuracy and reliability. The main objectives of the article are to

• develop new PFDMAs (and their associating PFSMAs) and show their computational
processes,
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• authenticate the new PFDMAs (and their associated PFSMAs) by describing their
properties in consonant with the axiomatic descriptions of similarity and distance
operators,

• apply the new PFDMAs (and their associated PFSMAs) to the problems of diagnosis
and patterns recognition, and

• give comparative studies of the new PFDMAs with some existing PFDMAs to show-
case the importance of the newfangled PFDMAs.

The article’s outline by sections is as follows: in Section 2, we give some fundamentals
of PFS and definitions of distance and similarity operators on PFSs; in Section 3, we
present the new PFDMAs (and their associated PFSMAs), their computation example,
and applications to the problems of patterns recognition and diseases diagnosis; in Section 4,
we discuss the comparative studies of the new PFDMAs in conjunction with some other
PFDMAs; and in Section 5, we sum up the paper with directions for future studies.

2. Preliminaries

Certain fundamentals of PFSs were presented in [14,15]. Foremost, we describe IFS as
following.

Definition 1 ([2]). An IFS in a set U symbolized by F is defined by

F = {〈u, βF(u), γF(u)〉|u ∈ U}, (1)

where βF, γF : U→ [0, 1] describe the grades of membership and nonmembership of u ∈ U
such that 0 ≤ βF(u) + γF(u) ≤ 1. In IFS F in U, δF(u) = 1− βF(u)− γF(u) is the margin
of hesitation of F.

Definition 2 ([14]). A PFS in U symbolized by k is defined by

k = {〈u, βk(u), γk(u)〉|u ∈ U}, (2)

where βk, γk : U→ [0, 1] describe the grades of membership and nonmembership of u ∈ U
such that 0 ≤ β2

k(u) + γ2
k(u) ≤ 1. If β2

k(u) + γ2
k(u) ≤ 1, then there is a function δk(u) ∈

[0, 1] defined by δk(u) =
√

1− β2
k(u)− γ2

k(u), which is called grade of indeterminacy of
u ∈ U to k.

We can write a PFS k in U as k =

(
βk(u), γk(u), δk(u)

)
for easy expression. Now, we

recall the basic operations on PFSs.

Definition 3 ([15]). If k, k1, and k2 are PFSs in U, then

(i) k1 � k2 iff βk1(u) � βk2(u) and γk1(u) � γk2(u) ∀u ∈ U,
(ii) k1 = k2 iff βk1(u) = βk2(u) and γk1(u) = γk2(u) ∀u ∈ U,
(iii) k1 ⊆ k2 iff βk1(u) ≤ βk2(u) and γk1(u) ≥ γk2(u) ∀u ∈ U,
(iv) k = {〈u, γk(u), βk(u)〉|u ∈ U},
(v) k1 ∩ k2 = {〈u, min{βk1(u), βk2(u)}, max{γk1(u), γk2(u)}〉|u ∈ U},
(vi) k1 ∪ k2 = {〈u, max{βk1(u), βk2(u)}, min{γk1(u), γk2(u)}〉|u ∈ U}.

Now, we present the definition of Pythagorean fuzzy distance operator (PFDO) as in [46].

Definition 4 ([46]). If k, k1 and k2 are PFSs in U, then PFDO between k1 and k2 represented
by D(k1,k2) is a function, D : PFS× PFS→ [0, 1] satisfying the ensuing conditions

(i) D(k1,k2) ∈ [0, 1] (boundedness),
(ii) D(k1,k1) = 0, D(k2,k2) = 0 (reflexivity),
(iii) D(k1,k2) = 0⇔ k1 = k2 (separability),
(iv) D(k1,k2) = D(k2,k1) (symmetry),
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(v) D(k1,k) ≤ D(k1,k2) +D(k2,k) (triangle inequality).

As D(k1,k2) tends to 0, it indicates that k1 and k2 are more associated, and as D(k1,k2)
tends to 1, it shows that k1 and k2 are not associated.

Since distance operator is a dual of similarity operator, we now present the definition
of Pythagorean fuzzy similarity operator (PFSO) as following.

Definition 5 ([46]). Suppose k, k1 and k2 are PFSs in U, then PFSO between k1 and k2 rep-
resented by S(k1,k2) is a function, S : PFS× PFS→ [0, 1] satisfying the ensuing conditions

(i) S(k1,k2) ∈ [0, 1],
(ii) S(k1,k1) = 1, S(k2,k2) = 1,
(iii) S(k1,k2) = 1⇔ k1 = k2,
(iv) S(k1,k2) = S(k2,k1),
(v) S(k1,k) ≤ S(k1,k2) + S(k2,k).

As S(k1,k2) tends to 1, it indicates that k1 and k2 are more associated, and as S(k1,k2)
tends to 0, it shows that k1 and k2 are not associated.

Some Existing PFDMAs/PFSMAs

For arbitrary PFSs k1 and k2 in U = {u1, u2, · · · , uN}, we enumerate some approaches
of distance measures (and associated similarity measures) under PFSs. Before enumerating
the distance/similarity measures, we write the difference of k1 and k2, denoted by k1 − k2
in two forms as follow:

(i) k1 − k2 = (A, B, C), and
(ii) k1 − k2 = (Ã, B̃, C̃),

where

A = βk1(uj)− βk2(uj), B = γk1(uj)− γk2(uj), C = δk1(uj)− δk2(uj),

Ã = β2
k1
(uj)− β2

k2
(uj), B̃ = γ2

k1
(uj)− γ2

k2
(uj), C̃ = δ2

k1
(uj)− δ2

k2
(uj).

The existing distance/similarity measures for PFSs k1 and k2 in U are:

• Approach in [24]

D1(k1,k2) =
1
2

ΣN
j=1
(
|Ã|+ |B̃|+ |C̃|

)
,

S1(k1,k2) = 1− 1
2

ΣN
j=1
(
|Ã|+ |B̃|+ |C̃|

)
.

(3)

The PFDMA D1 is developed based on Hamming distance function.
• Approaches in [46]

D2(k1,k2) =
1
2

ΣN
j=1
(
|A|+ |B|+ |C|

)
,

S2(k1,k2) = 1− 1
2

ΣN
j=1
(
|A|+ |B|+ |C|

)
,

(4)

D3(k1,k2) =

√
1
2

ΣN
j=1

(
A2 + B2 + C2

)
,

S3(k1,k2) = 1−
√

1
2

ΣN
j=1

(
A2 + B2 + C2

)
,

(5)

D4(k1,k2) =
1

2N
ΣN

j=1
(
|A|+ |B|+ |C|

)
,

S4(k1,k2) = 1− 1
2N

ΣN
j=1
(
|A|+ |B|+ |C|

)
,

(6)
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D5(k1,k2) =

√
1

2N
ΣN

j=1

(
A2 + B2 + C2

)
,

S5(k1,k2) = 1−
√

1
2N

ΣN
j=1

(
A2 + B2 + C2

)
.

(7)

The PFDMAs D2 and D4 are developed based on Hamming distance function and
normalized Hamming distance function, respectively. D3 and D5 are developed
based on Euclidean distance function and normalized Euclidean distance function,
respectively.

• Approach in [48]

D6(k1,k2) =
1

2N
ΣN

j=1
(
|Ã|+ |B̃|+ |C̃|

)
,

S6(k1,k2) = 1− 1
2N

ΣN
j=1
(
|Ã|+ |B̃|+ |C̃|

)
.

(8)

The PFDMA D6 is developed based on normalized Hamming distance function.
• Approach in [51]

D7(k1,k2) =
1
N

ΣN
j=1
(

max{|Ã|, |B̃|}
)
,

S7(k1,k2) = 1− 1
N

ΣN
j=1
(

max{|Ã|, |B̃|}
)
.

(9)

The PFDMA D7 is developed based on Hausdorff distance function.
• Approach in [52]

D8(k1,k2) =

√
1

2N
ΣN

j=1

(
Ã2 + B̃2 + C̃2

)
,

S8(k1,k2) = 1− 1
2N

ΣN
j=1
(

Ã2 + B̃2 + C̃2). (10)

The PFDMA D8 is developed based on normalized Euclidean distance function.
• Approach in [53]

D9(k1,k2) =

ΣN
j=1

(
|Ã|+ |B̃|

)
N
(

ΣN
j=1

(
β2
k1
(uj) + γ2

k1
(uj)

)
+ ΣN

j=1

(
β2
k2
(uj) + γ2

k2
(uj)

)) ,

S9(k1,k2) = 1−
ΣN

j=1

(
|Ã|+ |B̃|

)
N
(

ΣN
j=1

(
β2
k1
(uj) + γ2

k1
(uj)

)
+ ΣN

j=1

(
β2
k2
(uj) + γ2

k2
(uj)

)) .

(11)

The PFDMA D9 is developed based on cosine distance function.

3. Enhanced Distance-Similarity Measuring Approaches for PFSs

For PFSs, k1 and k2 in U = {u1, u2, · · · , uN}, the enhanced distance measuring ap-
proaches are

D̂(k1,k2) =
1
N

(
ΣN

j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

))
(12)

and
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D̂∗(k1,k2) =

ΣN
j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
N
(

∑ k2
1 + ∑ k2

2

) , (13)

where

∑ k2
1 = ΣN

j=1

(
β2
k1
(uj) + γ2

k1
(uj) + δ2

k1
(uj)

)
,

∑ k2
2 = ΣN

j=1

(
β2
k2
(uj) + γ2

k2
(uj) + δ2

k2
(uj)

)
,

and Avg stands for average.
Certainly, ∑ k2

1 = N = ∑ k2
2 and hence, (13) can be rewritten as

D̂∗(k1,k2) =
1

2N2 ΣN
j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
.

The associated PFSMAs are given by (14) and (15) as

Ŝ(k1,k2) = 1− 1
N

(
ΣN

j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

))
, (14)

Ŝ∗(k1,k2) = 1−
ΣN

j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
N
(

∑ k2
1 + ∑ k2

2

) . (15)

Now, we apply the new PFDMAs and PFSMAs to find the distance and similarity
between two PFSs.

3.1. Computation Example

The new distance techniques between PFSs are developed to resolve the setbacks
in the approaches in [24,46,48,51–53]. The PFDMA in [24] is unreliable because it is not
normalized, although Ã, B̃, and C̃ are presented in Pythagorean fuzzy setting. The PFDMAs
D2 and D3 in [46] are not normalized, so they cannot yield dependable results. In addition,
A, B, and C in D2, D3, D4, and D5 are not presented in Pythagorean fuzzy setting but
intuitionistic fuzzy setting; thus, their results cannot be trusted.

Although the PFDMA D6 in [48] seems to be well developed, it does not capture the
frequency of |Ã|, |B̃|, and |C̃|, hence its result cannot be trusted. The PFDMA D7 in [51]
cannot produce a reasonable result because it uses only maximum extreme value of |Ã|
and |B̃| and discards the influence of hesitation margin.

Though the PFDMA D8 in [52] seems to be well structured, it does not incorporate
the frequency of Ã2, B̃2, and C̃2, and so the result cannot be reasonable for a reliable
interpretation. The PFDMA D9 in [53] cannot be trusted because it does not consider the
influence of the hesitation margin, which can leads to exclusion error. In the following
example, we show the effect of these setbacks on the outcome by juxtaposing the results
with that of the new PFDMAs.

Suppose k1 and k2 are PFSs in U = {u1, u2, u3} defined by

k1 = {〈u1,
5
10

,
5
10
〉, 〈u2,

7
10

,
3

10
〉, 〈u3,

1
10

,
8

10
〉},
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k2 = {〈u1,
4

10
,

4
10
〉, 〈u2,

6
10

,
2

10
〉, 〈u3, 0.0,

8
10
〉}.

The hesitation margins for k1 and k2 are

δk1(u1) = 0.7071, δk1(u2) = 0.6481, δk1(u3) = 0.5916,

δk2(u1) = 0.8246, δk2(u2) = 0.7746, δk2(u3) = 0.6.

From this example, we see that k2 ⊆ k1, and they are closely related. By deploying the
new distance measuring techniques, we get their distance as follows (using Table 1):

Table 1. Computation Procedures.

U
|β2

k1
(uj)−

β2
k2
(uj)|

|γ2
k1
(uj)−

γ2
k2
(uj)|

|δ2
k1
(uj)−

δ2
k2
(uj)|

k2
1 k2

2

u1 0.09 0.09 0.18 1 1
u2 0.13 0.05 0.18 1 1
u3 0.01 0 0.01 1 1

Thus, we have

3

∑
j=1
|β2

k1
(uj)− β2

k2
(uj)| = 0.23,

3

∑
j=1
|γ2

k1
(uj)− γ2

k2
(uj)| = 0.14,

3

∑
j=1
|δ2
k1
(uj)− δ2

k2
(uj)| = 0.37, ∑ k2

1 = 3, and ∑ k2
2 = 3.

Using (12) and (13) for N = 3, we have

D̂(k1,k2) = 0.0800, D̂∗(k1,k2) = 0.0600.

For the similarity, we have

Ŝ(k1,k2) = 1− 0.08 = 0.9200, Ŝ∗(k1,k2) = 1− 0.06 = 0.9400.

These results show that k1 and k2 are closely related because their distance is small
(large for the case of similarity measure), in agreement with the initial observation. Using
the existing PFDMAs, we have

D1(k1,k2) = 0.3600,D2(k1,k2) = 0.3220,D3(k1,k2) = 0.1868,

D4(k1,k2) = 0.1073,D5(k1,k2) = 0.1079,D6(k1,k2) = 0.1200,

D7(k1,k2) = 0.0733,D8(k1,k2) = 0.1294,D9(k1,k2) = 0.0667.

Using their corresponding PFSMAs, we have

S1(k1,k2) = 0.64,S2(k1,k2) = 0.6780,S3(k1,k2) = 0.8132,

S4(k1,k2) = 0.8927,S5(k1,k2) = 0.8921,S6(k1,k2) = 0.8800,

S7(k1,k2) = 0.9267,S8(k1,k2) = 0.8706,S9(k1,k2) = 0.9333.

These results show the effects of the setbacks in the existing PFDMAs/PFSMAs. De-
spite the fact that the PFDMAs/PFSMAs, D7/S7 [51] seems to be more precise than D̂/Ŝ,
it cannot be reliable due to the omission of hesitation margin. In addition, the new PFD-
MAs/PFSMAs, D̂∗/Ŝ∗, which is the enhanced version of D9/S9 [53] by the inclusion of the
hesitation margin, gives the more precise and reliable result in consonant with the real rela-
tion between the considered PFSs. With these, we can say that the new PFDMAs/PFSMAs
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are the most reliable approaches because they include all the parametric information of
PFSs and yield the most precise results.

3.2. Some Theoretic Results of the New PFDMAs/PFSMAs

What follows are some of the properties of the novel PFDMAs and PFSMAs to authen-
ticate their consistency.

Proposition 1. If N = 3, then D̂∗(k1,k2) =
D̂(k1,k2)

2
and D̂(k1,k2) = 2D̂∗(k1,k2).

Proof. Suppose N = 3; then, we have ∑ k2
1 = 3 and ∑ k2

2 = 3. Assume

ΣN
j=1
(
|β2

k1
(uj)− β2

k2
(uj)|

)
= α, ΣN

j=1
(
|γ2

k1
(uj)− γ2

k2
(uj)|

)
= θ, and

ΣN
j=1
(
|δ2
k1
(uj)− δ2

k2
(uj)|

)
= σ.

So, we have

D̂(k1,k2) =
1
3

Σ3
j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

)
=

Avg{α, θ, σ}
3

=
α + θ + σ

9
,

and

D̂∗(k1,k2) =

ΣN
j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
N
(

∑ k2
1 + ∑ k2

2

)
=

α + θ + σ

3× 6

=
1
2

(
α + θ + σ

9

)
=

D̂(k1,k2)

2
.

Similarly, it follows that D̂(k1,k2) = 2D̂∗(k1,k2).

Corollary 1. If N = 3, then Ŝ∗(k1,k2) =
Ŝ(k1,k2)

2
and Ŝ(k1,k2) = 2Ŝ∗(k1,k2).

Proof. Similar to the proof of Proposition 1.

Proposition 2. For PFSs k1 and k2 in U, we have

(i) D̂(k1,k2) = D̂(k2,k1),
(ii) D̂∗(k1,k2) = D̂∗(k2,k1),
(iii) D̂(k1,k2) = D̂(k1,k2),
(iv) D̂∗(k1,k2) = D̂∗(k1,k2).
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Proof. We show the proof of (i) thus

D̂(k1,k2) =
1
N

ΣN
j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

)
=

1
N

ΣN
j=1

(
Avg{| −

(
β2
k2
(uj)− β2

k1
(uj)

)
|, | −

(
γ2
k2
(uj)− γ2

k1
(uj)

)
|,

| −
(
δ2
k2
(uj)− δ2

k1
(uj)

)
|}
)

=
1
N

ΣN
j=1

(
Avg{|β2

k2
(uj)− β2

k1
(uj)|, |γ2

k2
(uj)− γ2

k1
(uj)|, |δ2

k2
(uj)− δ2

k1
(uj)|}

)
= D̂(k2,k1).

Similarly, (ii) follows.
The proof of (iii) holds since

D̂(k1,k2) =
1
N

ΣN
j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

)
=

1
N

ΣN
j=1

(
Avg{|γ2

k2
(uj)− γ2

k1
(uj)|, |β2

k2
(uj)− β2

k1
(uj)|, |δ2

k2
(uj)− δ2

k1
(uj)|}

)
= D̂(k1,k2).

Similarly, (iv) holds.

Proposition 3. If k1 and k2 are PFSs in U. Then,

(i) Ŝ(k1,k2) = Ŝ(k2,k1),
(ii) Ŝ∗(k1,k2) = Ŝ∗(k2,k1),
(iii) Ŝ(k1,k2) = Ŝ(k1,k2),
(iv) Ŝ∗(k1,k2) = Ŝ∗(k1,k2).

Proof. Similar to the proof of Proposition 2.

Remark 1. The definitions of intersection and union of PFSs in terms of the new PFDMAs
are as follows:

D̂(k1 ∪ k2,k1 ∩ k2) =
1
N

ΣN
j=1

(
Avg

{
|max{β2

k1
(uj), β2

k2
(uj)} −min{β2

k1
(uj), β2

k2
(uj)}|,

|min{γ2
k1
(uj), γ2

k2
(uj)} −max{γ2

k1
(uj), γ2

k2
(uj)}|, |δ2

k1∪k2
(uj)− δ2

k1∩k2
(uj)|

})
,

(16)

D̂(k1 ∩ k2,k1 ∪ k2) =
1
N

ΣN
j=1

(
Avg

{
|min{β2

k1
(uj), β2

k2
(uj)} −max{β2

k1
(uj), β2

k2
(uj)}|,

|max{γ2
k1
(uj), γ2

k2
(uj)} −min{γ2

k1
(uj), γ2

k2
(uj)}|, |δ2

k1∩k2
(uj)− δ2

k1∪k2
(uj)|

})
,

(17)

D̂∗(k1 ∪ k2,k1 ∩ k2) =
1

N
(

∑ k2
1 + ∑ k2

2

)ΣN
j=1

(
|max{β2

k1
(uj), β2

k2
(uj)} −min{β2

k1
(uj),

β2
k2
(uj)}|+ |min{γ2

k1
(uj), γ2

k2
(uj)} −max{γ2

k1
(uj), γ2

k2
(uj)}|+ |δ2

k1∪k2
(uj)− δ2

k1∩k2
(uj)|

)
,

(18)
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D̂∗(k1 ∩ k2,k1 ∪ k2) =
1

N
(

∑ k2
1 + ∑ k2

2

)ΣN
j=1

(
|min{β2

k1
(uj), β2

k2
(uj)} −max{β2

k1
(uj),

β2
k2
(uj)}|+ |max{γ2

k1
(uj), γ2

k2
(uj)} −min{γ2

k1
(uj), γ2

k2
(uj)}|+ |δ2

k1∩k2
(uj)− δ2

k1∪k2
(uj)|

)
.

(19)

Theorem 1. For PFSs k1 and k2 in U, we have

(i) D̂(k1,k1 ∩ k2) = D̂(k2,k1 ∪ k2),
(ii) D̂(k1,k1 ∪ k2) = D̂(k2,k1 ∩ k2).

Proof. The results are established by assuming that δk1∪k2(uj) = δk2 and δk1∩k2(uj) = δk1 .
Then |δ2

k1∪k2
(uj)− δ2

k1
(uj)| = 0 = |δ2

k1∩k2
(uj)− δ2

k2
(uj)|. By using (16) and (17), we have

D̂(k1,k1 ∩ k2) =
1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)−min{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k1
(uj)−max{γ2

k1
(uj), γ2

k2
(uj)}|

})
=

1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)−

(
β2
k1
(uj) + β2

k2
(uj)−max{β2

k1
(uj), β2

k2
(uj)}|

)
,

|γ2
k1
(uj)−

(
γ2
k1
(uj) + γ2

k2
(uj)−min{γ2

k1
(uj), γ2

k2
(uj)}|

)})
=

1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)− β2

k1
(uj)− β2

k2
(uj) + max{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k1
(uj)− γ2

k1
(uj)− γ2

k2
(uj) + min{γ2

k1
(uj), γ2

k2
(uj)}|

})
=

1
N

ΣN
j=1

(
Avg

{
| −
(

β2
k2
(uj)−max{β2

k1
(uj), β2

k2
(uj)}

)
|,

| −
(

γ2
k2
(uj)−min{γ2

k1
(uj), γ2

k2
(uj)}

)
|
})

=
1
N

ΣN
j=1

(
Avg

{
|β2

k2
(uj)−max{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k2
(uj)−min{γ2

k1
(uj), γ2

k2
(uj)}|

})
= D̂(k2,k1 ∪ k2),

which shows (i).
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Next, for the proof of (ii), we have

D̂(k1,k1 ∪ k2) =
1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)−max{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k1
(uj)−min{γ2

k1
(uj), γ2

k2
(uj)}|

})
=

1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)−

(
β2
k1
(uj) + β2

k2
(uj)−min{β2

k1
(uj), β2

k2
(uj)}|

)
,

|γ2
k1
(uj)−

(
γ2
k1
(uj) + γ2

k2
(uj)−max{γ2

k1
(uj), γ2

k2
(uj)}|

)})
=

1
N

ΣN
j=1

(
Avg

{
|β2

k1
(uj)− β2

k1
(uj)− β2

k2
(uj) + min{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k1
(uj)− γ2

k1
(uj)− γ2

k2
(uj) + max{γ2

k1
(uj), γ2

k2
(uj)}|

})
=

1
N

ΣN
j=1

(
Avg

{
| −
(

β2
k2
(uj)−min{β2

k1
(uj), β2

k2
(uj)}

)
|,

| −
(

γ2
k2
(uj)−max{γ2

k1
(uj), γ2

k2
(uj)}

)
|
})

=
1
N

ΣN
j=1

(
Avg

{
|β2

k2
(uj)−min{β2

k1
(uj), β2

k2
(uj)}|,

|γ2
k2
(uj)−max{γ2

k1
(uj), γ2

k2
(uj)}|

})
= D̂(k2,k1 ∩ k2).

Theorem 2. Assume that k1 and k2 are PFSs in U and δk1∩k2(uj) = δk1∪k2(uj); then, we have
D̂(k1 ∩ k2,k1 ∪ k2) = D̂(k1 ∪ k2,k1 ∩ k2).

Proof. It follows that |δ2
k1∪k2

(uj)− δ2
k1∩k2

(uj)| = 0 since δk1∩k2(uj) = δk1∪k2(uj). Synthe-
sizing (16) and (17), we get

D̂(k1 ∩ k2,k1 ∪ k2) =
1
N

ΣN
j=1

(
Avg

{
|min

(
βk1(uj), βk2(uj)

)
−max

(
βk1(uj), βk2(si)

)
|

+ |max
(
γk1(uj), γk2(uj)

)
−min

(
γk1(uj), γk2(uj)

)
|
})

=
1
N

ΣN
j=1

(
Avg

{
|
[
βk1(uj) + βk2(uj)−max

(
βk1(uj), βk2(uj)

)]
−
[
βk1(uj) + βk2(uj)−min

(
βk1(uj), βk2(uj)

]
|

+ |
[
γk1(uj) + γk2(uj)−min

(
γk1(uj), γk2(uj)

)]
−
[
γk1(uj) + γk2(uj)−max

(
γk1(uj), γk2(uj)

)]
|
})

=
1
N

ΣN
j=1

(
Avg

{
|max

(
βk1(uj), βk2(uj)

)
−min

(
βk1(uj), βk2(uj)

)
|

+ |min
(
γk1(uj), γk2(uj)

)
−max

(
γk1(uj), γk2(uj)

)
|
})

= D̂(k1 ∪ k2,k1 ∩ k2).
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Corollary 2. For PFSs k1 and k2 in U, we have

(i) Ŝ(k1,k1 ∩ k2) = Ŝ(k2,k1 ∪ k2),
(ii) Ŝ(k1,k1 ∪ k2) = Ŝ(k2,k1 ∩ k2),
(iii) Ŝ(k1 ∩ k2,k1 ∪ k2) = Ŝ(k1 ∪ k2,k1 ∩ k2).

Proof. Similar to the proof of Theorems 1 and 2.

Proposition 4. For any two PFSs k1 and k2 in U, we have

(i) D̂∗(k1,k1 ∩ k2) = D̂∗(k2,k1 ∪ k2),
(ii) D̂∗(k1,k1 ∪ k2) = D̂∗(k2,k1 ∩ k2),
(iii) D̂∗(k1 ∩ k2,k1 ∪ k2) = D̂∗(k1 ∪ k2,k1 ∩ k2).

Proof. Using (18) and (19), and the logic in Theorems 1 and 2, the proof follows.

Corollary 3. For any two PFSs k1 and k2 in U, we have

(i) Ŝ∗(k1,k1 ∩ k2) = Ŝ∗(k2,k1 ∪ k2),
(ii) Ŝ∗(k1,k1 ∪ k2) = Ŝ∗(k2,k1 ∩ k2),
(iii) Ŝ∗(k1 ∩ k2,k1 ∪ k2) = Ŝ∗(k1 ∪ k2,k1 ∩ k2).

Proof. Similar to the proof of Proposition 4.

Proposition 5. If k1 and k2 are PFSs in U, then D̂(k1,k2) = 0 and D̂∗(k1,k2) = 0 if and only if
k1 = k2.

Proof. First, assume D̂(k1,k2) = 0. Then,

|β2
k1
(uj)− β2

k2
(uj)| = 0, |γ2

k1
(uj)− γ2

k2
(uj)| = 0,

and
|δ2
k1
(uj)− δ2

k2
(uj)| = 0.

Hence,
βk1(uj) = βk2(uj), γk1(uj) = γk2(uj)

and
δk1(uj) = δk2(uj),

and so k1 = k2.
Second, if k1 = k2, then

D̂(k1,k2) =

ΣN
j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

)
N

= 0,

which completes the proof.
The proof of the second part is similar.

Proposition 6. If k1 and k2 are PFSs in U, then Ŝ(k1,k2) = 1 and Ŝ∗(k1,k2) = 1 if and only if
k1 = k2.

Proof. Similar to the proof of Proposition 5.

Theorem 3. Suppose k1 and k2 are PFSs in U; then, D̂(k1,k2), D̂∗(k1,k2) ∈ [0, 1].

Proof. To establish D̂(k1,k2) ∈ [0, 1], we show that
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(i) D̂(k1,k2), D̂∗(k1,k2) ≥ 0,
(ii) D̂(k1,k2), D̂∗(k1,k2) ≤ 1.

The proof of (i) follows since

|β2
k1
(uj)− β2

k2
(uj)| ≥ 0, |γ2

k1
(uj)− γ2

k2
(uj)| ≥ 0 and |δ2

k1
(uj)− δ2

k2
(uj)| ≥ 0.

Next, we proof (ii) as thus. Assume that

ΣN
j=1
(
|β2

k1
(uj)− β2

k2
(uj)|

)
= α, ΣN

j=1
(
|γ2

k1
(uj)− γ2

k2
(uj)|

)
= θ, and

ΣN
j=1
(
|δ2
k1
(uj)− δ2

k2
(uj)|

)
= σ.

Hence

D̂(k1,k2) =
ΣN

j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

)
N

≤
Avg{ΣN

j=1|β2
k1
(uj)− β2

k2
(uj)|, ΣN

j=1|γ2
k1
(uj)− γ2

k2
(uj)|, ΣN

j=1|δ2
k1
(uj)− δ2

k2
(uj)|}

N

=
Avg{α, θ, σ}

N

=
α + θ + σ

3N
.

Then

D̂(k1,k2)− 1 =
α + θ + σ

3N
− 1

=
α + θ + σ− 3N

3N

= − (3N − α− θ − σ)

3N
≤ 0.

Thus, D̂(k1,k2)− 1 ≤ 0 implies D̂(k1,k2) ≤ 1.
Similarly,

D̂∗(k1,k2) =

ΣN
j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
N
(

∑ k2
1 + ∑ k2

2

)

≤

(
ΣN

j=1|β2
k1
(uj)− β2

k2
(uj)|+ ΣN

j=1|γ2
k1
(uj)− γ2

k2
(uj)|+ ΣN

j=1|δ2
k1
(uj)− δ2

k2
(uj)|

)
N
(

∑ k2
1 + ∑ k2

2

)
=

(
α + θ + σ

)
N
(

∑ k2
1 + ∑ k2

2

) .
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Then,

D̂∗(k1,k2)− 1 =

(
α + θ + σ

)
N
(

∑ k2
1 + ∑ k2

2

) − 1

=

(
α + θ + σ

)
− N

(
∑ k2

1 + ∑ k2
2

)
N
(

∑ k2
1 + ∑ k2

2

)

= −

(
N
(

∑ k2
1 + ∑ k2

2
)
− (α + θ + σ)

)
N
(

∑ k2
1 + ∑ k2

2
)

≤ 0,

which implies that D̂∗(k1,k2) ≤ 1. Hence D̂(k1,k2), D̂∗(k1,k2) ∈ [0, 1].

Corollary 4. Suppose k1 and k2 are PFSs in U; then, Ŝ(k1,k2), Ŝ∗(k1,k2) ∈ [0, 1].

Proof. Similar to the proof of Theorem 3.

Theorem 4. Suppose k1, k2, and k are PFSs in U; then, the triangle inequality exists for D̂ and
D̂∗, respectively.

Proof. We can rewrite D̂(k1,k2) as

D̂(k1,k2) =
1
N

(
ΣN

j=1

(
Avg{|β2

k1
(uj)− β2

k2
(uj)|, |γ2

k1
(uj)− γ2

k2
(uj)|, |δ2

k1
(uj)− δ2

k2
(uj)|}

))

=
1

3N

(
ΣN

j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

))
.

We need to prove that D̂(k1,k) ≤ D̂(k1,k2) + D̂(k2,k) and D̂∗(k1,k) ≤ D̂∗(k1,k2) +
D̂∗(k2,k), respectively.

Suppose

D̂(k1,k) = max
1≤j≤N

{
1

3N

(
|β2

k1
(uj)− β2

k(uj)|+ |γ2
k1
(uj)− γ2

k(uj)|+ |δ2
k1
(uj)− δ2

k(uj)|
)}

=
1

3N

(
|β2

k1
(ul)− β2

k(ul)|+ |γ2
k1
(ul)− γ2

k(ul)|+ |δ2
k1
(ul)− δ2

k(ul)|
)

,

for some fixed l ∈ j = 1, 2, · · · , l, · · · , N. Then

|β2
k1
(ul)− β2

k(ul)| ≤ |β2
k1
(ul)− β2

k2
(ul)|+ |β2

k2
(ul)− β2

k(ul)|,

|γ2
k1
(ul)− γ2

k(ul)| ≤ |γ2
k1
(ul)− γ2

k2
(ul)|+ |γ2

k2
(ul)− γ2

k(ul)|,

|δ2
k1
(ul)− δ2

k(ul)| ≤ |δ2
k1
(ul)− δ2

k2
(ul)|+ |δ2

k2
(ul)− δ2

k(ul)|,

and

D̂(k1,k2) ≤ |β2
k1
(ul)− β2

k2
(ul)|+ |γ2

k1
(ul)− γ2

k2
(ul)|+ |δ2

k1
(ul)− δ2

k2
(ul)|,
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D̂(k2,k) ≤ |β2
k2
(ul)− β2

k(ul)|+ |γ2
k2
(ul)− γ2

k(ul)|+ |δ2
k2
(ul)− δ2

k(ul)|.

Hence, D̂(k1,k) ≤ D̂(k1,k2) + D̂(k2,k).
Since

D̂∗(k1,k2) =

ΣN
j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
N
(

ΣN
j=1

(
β2
k1
(uj) + γ2

k1
(uj) + δ2

k1
(uj)

)
+ ΣN

j=1

(
β2
k2
(uj) + γ2

k2
(uj) + δ2

k2
(uj)

))
=

1
2N2 ΣN

j=1

(
|β2

k1
(uj)− β2

k2
(uj)|+ |γ2

k1
(uj)− γ2

k2
(uj)|+ |δ2

k1
(uj)− δ2

k2
(uj)|

)
,

then the proof of D̂∗(k1,k) ≤ D̂∗(k1,k2) + D̂∗(k2,k) is similar.

Corollary 5. If k1, k2, and k are PFSs in U, then the triangle inequality exists for Ŝ and Ŝ∗,
respectively.

Proof. Similar to the proof of Theorem 4.

Remark 2. We observe that (i) (12) extends (9) and modifies it to avoid information loss,
and (ii) (13) extends (11) by taking account of hesitation margins.

3.3. Decision Making Applications

This section discusses the processes of patterns recognition and ailments diagnosis
based on the new PFDMAs and PFSMAs. The concept of Pythagorean fuzzy distance and
similarity measures are explicated in this article because

• PFS has a wider scope of application equipped to curb incomplete information in
decision making, and

• they have been proved to be efficient soft computing devices appropriate for making
worthwhile decisions.

Now, we present the procedure to aid the utilization of the new PFDMAs and PFSMAs,
respectively. Supposing there are N choices represented as PFSs Aj for j = 1, 2, · · · , N
drawn from the space, U = {u1, u2, · · · , uN}. In addition, if there is an unknown sample
symbolized as PFS B, which is to be connected with Aj, then

D̂(Aj,B) = min
(
D̂(A1,B), D̂(A2,B) · · · , D̂(AN ,B)

)
(20)

or
D̂∗(Aj,B) = min

(
D̂∗(A1,B), D̂∗(A2,B), · · · , D̂∗(AN ,B)

)
, (21)

decides the grouping of Aj and B.
In the same vein,

Ŝ(Aj,B) = max
(
Ŝ(A1,B), Ŝ(A2,B), · · · , Ŝ(AN ,B)

)
(22)

or
Ŝ∗(Aj,B) = max

(
Ŝ∗(A1,B), Ŝ∗(A2,B), · · · , Ŝ∗(AN ,B)

)
, (23)

decides the grouping of Aj and B.
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3.3.1. Pattern Recognition

First and foremost, we discuss pattern recognition based on the new PFDMAs and
PFSMAs due to the uncertainties in classifying patterns. In fact, the approach of pattern
recognition via PFSs is outstanding for a dependable patterns association.

Assuming there are three patterns P1, P2, and P3, exemplified as PFSs in U =
{u1, u2, u3}. If there is an unknown pattern Q represented as PFS in U. We look for-
ward to categorize Q into any of P1, P2, and P3, by deploying the new PFDMA and PFSMA,
respectively. The patterns are given by Table 2.

Table 2. Patterns under PFSs.

Patterns vs. Sample
Space u1 u2 u3

P1 ( 1
10 , 1

10 ) ( 5
10 , 1

10 ) ( 1
10 , 9

10 )
P2 ( 5

10 , 5
10 ) ( 7

10 , 3
10 ) (0, 8

10 )
P3 ( 7

10 , 2
10 ) ( 1

10 , 8
10 ) ( 4

10 , 4
10 )

U ( 4
10 , 4

10 ) ( 6
10 , 2

10 ) (0, 8
10 )

With the new distance and similarity measuring approaches, we obtain the results in
Table 3.

Table 3. Distances and Similarities for the Patterns.

New Methods (P1,Q) (P2,Q) (P3,Q) Rankings

D̂ 0.1378 0.0800 0.3133 D̂(P2,Q) ≺
D̂(P1,Q) ≺ D̂(P3,Q)

D̂∗ 0.0689 0.0400 0.1567
D̂∗(P2,Q) ≺
D̂∗(P1,Q) ≺
D̂∗(P3,Q)

Ŝ 0.8622 0.9200 0.6867 Ŝ(P2,Q) �
Ŝ(P1,Q) � Ŝ(P3,Q)

Ŝ∗ 0.9311 0.9600 0.8433
Ŝ∗(P2,Q) �
Ŝ∗(P1,Q) �
Ŝ∗(P3,Q)

By letting M = (P1,Q), N = (P2,Q), and O = (P3,Q), we obtain Figure 1.
From the information in Table 3 and Figure 1, we can say that the unknown pattern Q

is associated with pattern P2 since the distance of (P2,Q) is the smallest (and greatest for
similarity). In this example, the uncategorized pattern is associated by using the smallest
distance, and the greatest similarity is devoid of any uncertainty. Owing to the presence of
imprecision in the process of pattern recognition, the approaches of PFDMA and PFSMA
are of massive important in the process of pattern recognition.
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0
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0.8
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PF
D

M
A

s/
PF
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A

s

D̂ D̂∗ Ŝ Ŝ∗

Figure 1. Plot of Table 3.

3.3.2. Diagnostic Analysis

Disease diagnosis is a process that needs diligence to forestall erroneous medical
analysis with its attendant consequences on patient’s health status. PFDMA and PFSMA
are effective in making medical diagnosis because PFSs is endowed to curb the uncertainties
and imprecision in the diagnostic process. The diagnostic process is carried out using
simulated medical data.

Take D = {D1,D2,D3,D4,D5} as a set of maladies signified by PFSs, where D1 stands
for viral fever, D2 stands for malaria, D3 stands for typhoid fever, D4 stands for stomach
pain and D5 stands for chest pain, respectively. Similarly, take U = {u1, u2, u3, u4, u5} as a
set of symptoms where u1 represents temperature, u2 represents headache, u3 represents
stomach pain, u4 represents cough, and u5 represents chest pain, respectively.

Again, suppose that a patient represented by a PFS P went for a medical consulta-
tion/test to ascertain his medical status, and after the medical consultation/test, the patient
P expresses symptoms U. The symptoms and the diseases/patient are associated by
∆ : U → D/P. The Pythagorean fuzzy medical information of D and P under U is given
by Table 4.

Table 4. Pythagorean Fuzzy Medical Information.

Clinical Expressions

∆ u1 u2 u3 u4 u5

D1 ( 4
10 , 0) ( 3

10 , 5
10 ) ( 1

10 , 7
10 ) ( 4

10 , 3
10 ) ( 1

10 , 7
10 )

D2 ( 7
10 , 0) ( 2

10 , 6
10 ) (0, 9

10 ) ( 7
10 , 0) ( 1

10 , 8
10 )

D3 ( 3
10 , 3

10 ) ( 6
10 , 1

10 ) ( 2
10 , 7

10 ) ( 2
10 , 6

10 ) ( 1
10 , 9

10 )
D4 ( 1

10 , 7
10 ) ( 2

10 , 4
10 ) ( 8

10 , 0) ( 2
10 , 7

10 ) ( 2
10 , 7

10 )
D5 ( 1

10 , 8
10 ) (0, 8

10 ) ( 2
10 , 8

10 ) ( 2
10 , 8

10 ) ( 8
10 , 1

10 )
P ( 6

10 , 1
10 ) ( 5

10 , 4
10 ) ( 3

10 , 4
10 ) ( 7

10 , 2
10 ) ( 3

10 , 4
10 )

The diagnosis is decided by calculating the distance/similarity of D and P using the
new PFDMAs and PFSMAs, respectively. Table 5 presents the results via the new ap-
proaches.



Symmetry 2022, 14, 2669 18 of 25

Table 5. Distances-Similarities.

New
Methods (D1,P) (D2,P) (D3,P) (D4,P) (D5,P)

D̂ 0.1813 0.2040 0.2467 0.2693 0.3653
D̂∗ 0.0538 0.0610 0.0740 0.0808 0.1096
Ŝ 0.8187 0.7960 0.7533 0.7307 0.6347
Ŝ∗ 0.9462 0.9390 0.9260 0.9192 0.8904

By taking M = (D1,P), N = (D2,P), 0 = (D3,P), P = (D4,P), and Q = (D5,P), we
have Figure 2.

M N O P Q

0

0.2

0.4

0.6

0.8

1

Diseases/Patient

PF
D

M
A

s/
PF

SM
A

s

D̂ D̂∗ Ŝ Ŝ∗

Figure 2. Plot of Table 5.

From the information in Table 5 and Figure 2, we can say that P is mainly suffering
from viral fever since the distance for (D1,P) is the smallest, and greatest for the case of
similarity. In addition, the patient should be examined for malaria fever and typhoid fever
for an effective treatment since the patient has some considerable symptoms of malaria
fever and typhoid fever as well.

Furthermore, disease diagnosis using the idea of PFDMA and PFSMA is essential for
the reason that PFSs are built with the capacity to handle incomplete information. Medical
decision making could be much better if the process of medical diagnostic is enhanced
with PFDMA and PFSMA via identifying the least disease-patient distance and the greatest
disease–patient similarity.

4. Comparative Studies

This section presents the comparative analysis of the new PFDMAs and the existing
PFDMAs with regards to the application examples.

4.1. Comparative Analysis (Pattern Recognition)

Using the information in Remark 2, we apply the approaches in [51,53] to the data in
Table 2 to compare with the results of (12) and with the results of (13), respectively. Table 6
contains the outputs. By letting M stands for (P1,Q), N stands for (P2,Q), and O stands
for (P3,Q), we plot the graph of Table 6.
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Table 6. New Approaches vs. Approaches in [51,53].

Pattern Pairs PFDMA [51] D̂ PFDMA [53] D̂∗
(P1,Q) 0.1433 0.1378 0.0840 0.0689
(P2,Q) 0.0733 0.0800 0.0390 0.0400
(P3,Q) 0.4700 0.3133 0.2378 0.1567

Using the information in Table 6 and Figure 3, we observe that the PFDMAs give
the same pattern recognition, and the new approaches give better results compare to the
approaches they were modified from (i.e., D̂ is better compared to the method in [51] and
D̂∗ is better compare to the method in [53]). Although the approaches in [51,53] seem to be
better compare to the new approaches at (P2,Q), they cannot be dependable because they
do not include the hesitation margin.

M N O
0

0.1

0.2

0.3

0.4

0.5

Pattern Classifications

PF
D

M
A

s

PFDMA [51] D̂ PFDMA [53] D̂∗

Figure 3. Plot of Table 6.

Now, the comparison of the new PFDMAs with the existing PFDMAs [24,46,48,51–53]
with their associated similarities is shown in Tables 7 and 8 to showcase the edge of the
new methods.

Table 7. Comparative Results for PFDMAs.

Methods (P1,Q) (P2,Q) (P3,Q) Rankings

D1 [24] 0.6199 0.3600 1.4099 D1(P2,Q) ≺ D1(P1,Q) ≺
D1(P3,Q)

D2 [46] 0.2066 0.1200 0.4700 D2(P2,Q) ≺ D2(P1,Q) ≺
D2(P3,Q)

D3 [46] 0.7133 0.3220 1.4733 D3(P2,Q) ≺ D3(P1,Q) ≺
D3(P3,Q)

D4 [46] 0.3778 0.1868 0.7626 D4(P2,Q) ≺ D4(P1,Q) ≺
D4(P3,Q)

D5 [46] 0.2378 0.1073 0.4911 D5(P2,Q) ≺ D5(P1,Q) ≺
D5(P3,Q)
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Table 7. Cont.

Methods (P1,Q) (P2,Q) (P3,Q) Rankings

D6 [48] 0.2181 0.1079 0.4403 D6(P2,Q) ≺ D6(P1,Q) ≺
D6(P3,Q)

D7 [51] 0.1433 0.0733 0.4700 D7(P2,Q) ≺ D7(P1,Q) ≺
D7(P3,Q)

D8 [52] 0.1953 0.1294 0.6856 D8(P2,Q) ≺ D8(P1,Q) ≺
D8(P3,Q)

D9 [53] 0.0840 0.0390 0.2378 D9(P2,Q) ≺ D9(P1,Q) ≺
D9(P3,Q)

D̂ 0.1378 0.0800 0.3133 D̂(P2,Q) ≺ D̂(P1,Q) ≺ D̂(P3,Q)

D̂∗ 0.0689 0.0400 0.1567 D̂∗(P2,Q) ≺ D̂∗(P1,Q) ≺
D̂∗(P3,Q)

Table 8. Comparative Results for PFSMAs.

Methods (P1,Q) (P2,Q) (P3,Q) Rankings

S1 0.3801 0.6400 −0.4099 S1(P2,Q) � S1(P1,Q) �
S1(P3,Q)

S2 0.7934 0.8800 0.5300 S2(P2,Q) � S2(P1,Q) �
S2(P3,Q)

S3 0.2867 0.6780 −0.4733 S3(P2,Q) � S3(P1,Q) �
S3(P3,Q)

S4 0.6222 0.8132 0.2374 S4(P2,Q) � S4(P1,Q) �
S4(P3,Q)

S5 0.7622 0.8927 0.5089 S5(P2,Q) � S5(P1,Q) �
S5(P3,Q)

S6 0.7819 0.8921 0.5597 S6(P2,Q) � S6(P1,Q) �
S6(P3,Q)

S7 0.8567 0.9267 0.5300 S7(P2,Q) � S7(P1,Q) �
S7(P3,Q)

S8 0.8047 0.8706 0.3144 S8(P2,Q) � S8(P1,Q) �
S8(P3,Q)

S9 0.9160 0.9610 0.7622 S9(P2,Q) � S9(P1,Q) �
S9(P3,Q)

Ŝ 0.8622 0.9200 0.6867 Ŝ(P2,Q) � Ŝ(P1,Q) � Ŝ(P3,Q)

Ŝ∗ 0.9311 0.9600 0.8433 Ŝ∗(P2,Q) � Ŝ∗(P1,Q) �
Ŝ∗(P3,Q)

From Table 7, we see the same ranking from all the approaches, and the new ap-
proaches especially, D̂∗ is a more dependable PFDMA since its produces the least distance
measuring values. In addition, D1 and D3 yield unrealitic results.

Similarly, same ranking is observed from all the approaches, and the new approach, Ŝ∗
is a more dependable PFSMA since its produces the greatest similarity measuring values.
It is needful to note that S1 and S3 are not good similarity measures.

4.2. Comparative Analysis (Diagnostic Analysis)

Using the information in Remark 2, we apply the approaches in [51,52] to the Pythagorean
fuzzy medical data (Table 4) to compare with the results of (12) and (13), respectively, as
follows in Table 9.
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Table 9. New Approaches vs Approaches in [51,53].

Diseases/Patient PFDMA [51] D̂ PFDMA [53] D̂∗
(D1,P) 0.2700 0.1813 0.0933 0.0538
(D2,P) 0.3020 0.2040 0.0813 0.0610
(D3,P) 0.3700 0.2693 0.1212 0.0740
(D4,P) 0.4040 0.2693 0.1439 0.0808
(D5,P) 0.5480 0.3653 0.1562 0.1096

By letting M stand for (D1,P), N stand for (D2,P), O stand for (D3,P), P stand for
(D1,P), and Q stand for (D2,P), we plot the graph of Table 9 as Figure 4.

M N O P Q

0.1

0.2

0.3

0.4

0.5

Diseases/Patient

PF
D

M
A

s

PFDMA [51] D̂ PFDMA [53] D̂∗

Figure 4. Plot of Table 9.

We observe that the new approaches give better results compare to the approaches
they were modified from (i.e., D̂ is better compare to the method in [51] and D̂∗ is better
compared to the method in [53]).

Now, the comparison of the new PFDMAs with the existing PFDMAs [24,46,48,51–53]
based on the Pythagorean fuzzy medical data are shown in Tables 10 and 11 to showcase
the merits of the new PFDMA and PFSMA, respectively.

Table 10. Distances for diagnostic analysis.

Methods (D1,P) (D2,P) (D3,P) (D4,P) (D5,P)

D1 [24] 1.3599 1.5099 1.8499 2.0199 2.7399
D2 [46] 0.2720 0.3020 0.3700 0.4040 0.5480
D3 [46] 1.3327 1.5596 1.8743 2.1797 2.7824
D4 [46] 0.5292 0.7062 0.7663 0.9583 1.0020
D5 [46] 0.2665 0.3119 0.3749 0.4359 0.5565
D6 [48] 0.2367 0.3158 0.3576 0.4286 0.4481
D7 [51] 0.2700 0.3020 0.3700 0.4040 0.5480
D8 [52] 0.2585 0.3558 0.3764 0.3916 0.4931
D9 [53] 0.0933 0.0813 0.1212 0.1439 0.1562

D̂ 0.1813 0.2040 0.2467 0.2693 0.3653
D̂∗ 0.0538 0.0610 0.0740 0.0808 0.3653
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Table 11. Similarities for diagnostic analysis.

Methods (D1,P) (D2,P) (D3,P) (D4,P) (D5,P)

S1 −0.3599 −0.5099 −0.8499 −1.0199 −1.7399
S2 0.7280 0.6980 0.6300 0.5960 0.4520
S3 −0.3327 −0.5596 −0.8743 −1.1797 −1.7824
S4 0.4708 0.2938 0.2337 0.0417 −0.0020
S5 0.7335 0.6881 0.6251 0.5641 0.4435
S6 0.7633 0.6842 0.6424 0.5714 0.5519
S7 0.7300 0.6980 0.6300 0.5960 0.4520
S8 0.7415 0.6442 0.6236 0.6084 0.5069
S9 0.9067 0.9187 0.8788 0.8561 0.8438
Ŝ 0.8187 0.7960 0.7533 0.7307 0.6347
Ŝ∗ 0.9462 0.9390 0.9260 0.9192 0.6347

From Table 10, we see that of the new methods, D̂∗ is an especially dependable PFDMA
since its yields the smallest distance measuring values. In addition, D1, D3 and D4 yield
results that infringe upon a condition of distance measure. In fact, D1, D3, and D4 are not
dependable PFDMAs.

Using the associated similarity approaches, we obtain the results in Table 11.
Likewise, the new approach, Ŝ∗ is a more dependable compare to the other PFSMAs

because its gives the greatest similarity measuring values. In addition, S1, S3 and S4
produce results that infringe upon a condition of similarity measure. In fact, S1, S3, and S4
are not appropriate PFSMAs.

4.3. Advantages of the New Approaches

The new PFDMAs and PFSMAs are much more effective compared to the existing
PFDMAs and PFSMAs because

• the developed PFDMAs (and associated PFSMAs) satisfied the axiomatic description
of distance (and similarity) measures contrasting some of the PFDMAs (and associated
PFSMAs) in [24,46],

• the proposed PFDMAs (and associated PFSMAs) give precise and reasonable outputs
to enhance real interpretation devoid of exclusion error observed in [51,53], and

• the proposed PFDMAs (and associated PFSMAs) include all the parametric informa-
tion of PFSs (i.e., degrees of membership, nonmembership, and hesitation) contrasting
the approaches in [51,53].

5. Conclusions

In this study, PFDM and PFSM have been explored, and some new PFDMAs (and
associated PFSMAs) were developed to enhance applications in areas of clustering analysis,
pattern recognition, decision making process, machine learning, etc. A computational
example for the developed PFDMAs (and associated PFSMAs) were shown, and properties
of the new PFDMAs (and associated PFSMAs) were discussed to explain their configuration
with the notion of classical distance (and associated similarity) measure. In addition,
the applications of the new PFDMAs (and associated PFSMAs) were discussed in the
solution of pattern recognition problem and disease diagnosis. More so, comparative
studies of the new PFDMAs (and associated PFSMAs) with some existing PFDMAs (and
associated PFSMAs) were presented to validate the merits of the new PFDMAs (and
associated PFSMAs). From the comparative studies, we see that the developed PFDMAs
(and associated PFSMAs); (i) satisfied the axiomatic description of distance (and similarity)
measure contrasting some of the distance (similarity) measuring approaches in [24,46],
(ii) give accurate and reasonable outputs to enhance real interpretation devoid of error
of exclusion in [51,53], and (iii) include the complete parametric information of PFSs
contrasting the PFDMAs in [51,53]. The developed PFDMAs (and their associated PFSMAs)
could be extended to TOPSIS, MCDM, MADM, and VIKOR methods to solve group
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decision making problems. In addition, the developed PFDMAs (and their associated
PFSMAs) can be extended to other uncertain environments like interval-valued PFSs,
Fermatean fuzzy sets, interval-valued Fermatean fuzzy sets, linear Diophantine fuzzy
sets, etc. However, the developed PFDMAs (and their associated PFSMAs) can only be
used in triparametric environments, and as such, they cannot be extended to uncertain
environments such as spherical fuzzy sets, neutrosophic sets, and picture fuzzy sets except
with modification.

Author Contributions: Conceptualization, P.A.E.; Methodology, P.A.E. and S.E.J.; Software, I.C.O.;
Validation, K.W., Y.F. and I.C.O.; Data curation, S.A.; Writing—original draft, S.E.J.; Writing—review
& editing, Y.F. and S.A.; Supervision, K.W. and Y.F.; Funding acquisition, K.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the Science and Technology Research Program of Chongqing
Municipal Education Commission (No. KJZD-M202201204), and the Foundation of Intelligent
Ecotourism Subject Group of Chongqing Three Gorges University (Nos. zhlv20221003, zhlv20221006).

Data Availability Statement: This paper has no associated data.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Set Syst. 1986, 20, 87–96. [CrossRef]
3. Boran, F.E.; Akay, D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf.

Sci. 2014, 255, 45–57. [CrossRef]
4. Chen, S.M.; Chang, C.H. A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on transformation

techniques with applications to pattern recognition. Inf. Sci. 2015, 291, 96–114 [CrossRef]
5. Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy sets in some medical applications. Note IFS 2001, 7, 58–64
6. Wang, W.; Xin, X. Distance measure between intuitionistic fuzzy sets. Pattern Recog. Lett. 2005, 26, 2063–2069 [CrossRef]
7. Hatzimichailidis, A.G.; Papakostas, A.G.; Kaburlasos, V.G. A novel distance measure of intuitionistic fuzzy sets and its application

to pattern recognition problems. Int. J. Intell. Syst. 2012, 27, 396–409. [CrossRef]
8. Atanassov, K.T. Intuitionistic Fuzzy Sets: Theory and Applications; Physica-Verlag: Berlin/Heidelberg, Germany, 1999.
9. Liu, P.; Chen, S.M. Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans.

Cybern. 2017, 47, 2514–2530. [CrossRef]
10. Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Set. Syst. 1996, 78, 305–315.

[CrossRef]
11. Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Set. Syst. 2000, 114, 505–518. [CrossRef]
12. Davvaz, B.; Sadrabadi, E.H. An application of intuitionistic fuzzy sets in medicine. Int. J. Biomath. 2016, 9, 1650037. [CrossRef]
13. Atanassov, K.T. Geometrical Interpretation of the Elements of the Intuitionistic Fuzzy Objects, Mathematical Foundations of

Artificial Intelligence Seminar, Sofia, 1989, Preprint IM-MFAIS-1-89. Repr. Int. J. Bioautom. 2016, 20, S27–S42.
14. Yager, R.R. Pythagorean Membership Grades in Multicriteria Decision Making; Technical Report MII-3301; Machine Intelligence

Institute Iona College: New Rochelle, NY, USA, 2013.
15. Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 2013, 28,

436–452. [CrossRef]
16. Garg, H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision

making. Int. J. Intell. Syst. 2016, 31, 886–920. [CrossRef]
17. Garg, H. Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria

decision making process. Int. J. Intell. Syst. 2017, 32, 597–630. [CrossRef]
18. Du, Y.Q.; Hou, F.; Zafar, W.; Yu, Q.; Zhai, Y. A novel method for multiattribute decision making with interval-valued Pythagorean

fuzzy linguistic information. Int. J. Intell. Syst. 2017, 32, 1085–1112. [CrossRef]
19. Garg, H. Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision making process. Int. J. Intell. Syst. 2018,

33, 1234–1263. [CrossRef]
20. Liang, D.; Xu, Z. The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy fets.

Appl. Soft. Comput. 2017, 60, 167–179. [CrossRef]
21. Ejegwa, P.A.; Wen, S.; Feng, Y.; Zhang, W.; Liu, J. A three-way Pythagorean fuzzy correlation coefficient approach and its

applications in deciding some real-life problems. Appl. Intell. 2022. [CrossRef]
22. Ejegwa, P.A.; Wen, S.; Feng, Y.; Zhang, W.; Chen, J. Some new Pythagorean fuzzy correlation techniques via statistical viewpoint

with applications to decision-making problems. J. Intell. Fuzzy Syst. 2021, 40, 9873–9886. [CrossRef]

http://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/j.ins.2013.08.013
http://dx.doi.org/10.1016/j.ins.2014.07.033
http://dx.doi.org/10.1016/j.patrec.2005.03.018
http://dx.doi.org/10.1002/int.21529
http://dx.doi.org/10.1109/TCYB.2016.2634599
http://dx.doi.org/10.1016/0165-0114(96)84611-2
http://dx.doi.org/10.1016/S0165-0114(98)00244-9
http://dx.doi.org/10.1142/S1793524516500376
http://dx.doi.org/10.1002/int.21584
http://dx.doi.org/10.1002/int.21809
http://dx.doi.org/10.1002/int.21860
http://dx.doi.org/10.1002/int.21881
http://dx.doi.org/10.1002/int.21979
http://dx.doi.org/10.1016/j.asoc.2017.06.034
http://dx.doi.org/10.1007/s10489-022-03415-5
http://dx.doi.org/10.3233/JIFS-202469


Symmetry 2022, 14, 2669 24 of 25

23. Ejegwa, P.A.; Wen, S.; Feng, Y.; Zhang, W. Determination of pattern recognition problems based on a Pythagorean fuzzy correlation
measure from statistical viewpoint. In Proceedings of the 13th International Conference Advanced Computational Intelligence,
Wanzhou, China, 14–16 May 2021; pp. 132–139.

24. Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst.
2014, 29, 1061–1078. [CrossRef]

25. Ejegwa, P.A.; Jana, C.; Pal, M. Medical diagnostic process based on modified composite relation on Pythagorean fuzzy multisets.
Granul. Comput. 2022, 7, 15–23. [CrossRef]

26. Ejegwa, P.A.; Onyeke, I.C. Some new distance and similarity algorithms for Pythagorean fuzzy sets with application in decision-
making problems. In Handbook of Research on Advances and Applications of Fuzzy Sets and Logic; Broumi, S., Ed.; IGI Global: Hershey,
PA, USA, 2022; pp. 192–211.

27. Peng, X.; Yuan, H.; Yang, Y. Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst. 2017, 32, 991–1029.
[CrossRef]

28. Peng, X. New similarity measure and distance measure for Pythagorean fuzzy set. Complex Intell. Syst. 2019, 5, 101–111. [CrossRef]
29. Ejegwa, P.A.; Wen, S.; Feng, Y.; Zhang, W.; Tang, N. Novel Pythagorean fuzzy correlation measures via Pythagorean fuzzy

deviation, variance and covariance with applications to pattern recognition and career placement. IEEE Trans. Fuzzy Syst. 2022,
30, 1660–1668. [CrossRef]

30. Meng, L.; Wei, X. Research on evaluation of sustainable development of new urbanization from the perspective of urban
agglomeration under the Pythagorean fuzzy sets. Discret. Dyn. Nat. Soc 2021. [CrossRef]

31. Wan, Z.; Shi, M.; Yang, F.; Zhu, G. A novel Pythagorean group decision-making method based on evidence theory and interactive
power averaging operator. Complexity 2021. . [CrossRef]

32. Zulqarnain, R.M.; Siddique, I.; Jarad, F.; Hamed, Y.S.; Abualnaja, K.M.; Iampan, A. Einstein aggregation operators for Pythagorean
fuzzy soft sets with their application in multiattribute group decision-making. J. Funct. Spaces 2022. . [CrossRef]

33. Saeed, M.; Ahmad, M.R.; Rahman, A.U. Refined Pythagorean fuzzy sets: Properties, set-theoretic operations and axiomatic
results. J. Comput. Cogn. Eng. 2022. [CrossRef]

34. Akram, M.; Zahid, K.; Alcantud, J.C.R. A new outranking method for multicriteria decision making with complex Pythagorean
fuzzy information. Neural Comput. Appl. 2022, 34, 8069–8102. [CrossRef]

35. Ye, J.; Chen, T.Y. Pythagorean fuzzy sets combined with the PROMETHEE method for the selection of cotton woven fabric. J. Nat.
Fibers 2022. [CrossRef]

36. Kamaci, H.; Marinkovic, D.; Petchimuthu, S.; Riaz, M.; Ashra, S.F. Novel distance-measures-based extended TOPSIS method
under linguistic linear Diophantine fuzzy information. Symmetry 2022, 14, 2140. [CrossRef]

37. Kamaci, H.; Petchimuthu, S. Some similarity measures for interval-valued bipolar q-rung orthopair fuzzy sets and their application
to supplier evaluation and selection in supply chain management. Env. Dev. Sustain. 2022. [CrossRef]

38. Kamaci, H. Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications. Complex Intell. Syst.
2022, 8, 1281–1305. [CrossRef]

39. Naeem, K.; Riaz, M.; Karaaslan, F. A mathematical approach to medical diagnosis via Pythagorean fuzzy soft TOPSIS, VIKOR
and generalized aggregation operators. Complex Intell. Syst. 2021, 7, 2783–2795. [CrossRef]

40. Naeem, K.; Riaz, M. Pythagorean fuzzy soft sets-based MADM. In Pythagorean Fuzzy Sets: Theory and Applications; Garg, H., Ed.;
Springer Nature: Singapore, 2021.

41. Memis, S.; Enginoglu, S.; Erkan, U. Numerical data classification via distance-based similarity measures of fuzzy parameterized
fuzzy soft matrices. IEEE Access 2021, 9, 88583–88601. [CrossRef]

42. Memis, S.; Enginoglu, S.; Erkan, U. A classification method in machine learning based on soft decision-making via fuzzy
parameterized fuzzy soft matrices. Soft. Comput. 2022, 26, 1165–1180. [CrossRef]

43. Memis, S.; Enginoglu, S.; Erkan, U. (2022) A new classification method using soft decision-making based on an aggregation
operator of fuzzy parameterized fuzzy soft matrices. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 871–890. [CrossRef]

44. Memis, S.; Enginoglu, S.; Erkan, U. Fuzzy parameterized fuzzy soft k-nearest neighbor classifier. Neurocomputing 2022, 500,
351–378. [CrossRef]

45. Li, D.Q.; Zeng, W.Y. Distance Measure of Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2018, 33, 348–361. [CrossRef]
46. Ejegwa, P.A. Distance and similarity measures for Pythagorean fuzzy sets. Granul. Comput. 2020, 5, 225–238. [CrossRef]
47. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets Theory and Applications; Word Scientific: Singapore, 1994.
48. Ejegwa, P.A. Modified Zhang and Xu’s Distance measure of Pythagorean fuzzy sets and its application to pattern recognition

problems. Neural Comput. Appl. 2020, 32, 10199–10208. [CrossRef]
49. Zeng, W.; Li, D.; Yin, Q. Distance and Similarity Measures of Pythagorean Fuzzy Sets and their Applications to Multiple Criteria

Group Decision Making. Int. J. Intell. Syst. 2018, 33, 2236–2254. [CrossRef]
50. Ejegwa, P.A.; Awolola, J.A. Novel Distance Measures for Pythagorean Fuzzy Sets with Applications to Pattern Recognition

Problems. Granul. Comput. 2021, 6, 181–189. [CrossRef]
51. Hussain, Z.; Yang, M.S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with

application to fuzzy TOPSIS. Int. J. Intell. Syst. 2019, 34, 2633–2654. [CrossRef]

http://dx.doi.org/10.1002/int.21676
http://dx.doi.org/10.1007/s41066-020-00248-w
http://dx.doi.org/10.1002/int.21880
http://dx.doi.org/10.1007/s40747-018-0084-x
http://dx.doi.org/10.1109/TFUZZ.2021.3063794
http://dx.doi.org/10.1155/2021/2445025
http://dx.doi.org/10.1155/2021/9964422
http://dx.doi.org/10.1155/2022/1358675
http://dx.doi.org/10.47852/bonviewJCCE2023512225
http://dx.doi.org/10.1007/s00521-021-06847-1
http://dx.doi.org/10.1080/15440478.2022.2072993
http://dx.doi.org/10.3390/sym14102140
http://dx.doi.org/10.1007/s10668-022-02130-y
http://dx.doi.org/10.1007/s40747-021-00573-w
http://dx.doi.org/10.1007/s40747-021-00458-y
http://dx.doi.org/10.1109/ACCESS.2021.3089849
http://dx.doi.org/10.1007/s00500-021-06553-z
http://dx.doi.org/10.55730/1300-0632.3816
http://dx.doi.org/10.1016/j.neucom.2022.05.041
http://dx.doi.org/10.1002/int.21934
http://dx.doi.org/10.1007/s41066-018-00149-z
http://dx.doi.org/10.1007/s00521-019-04554-6
http://dx.doi.org/10.1002/int.22027
http://dx.doi.org/10.1007/s41066-019-00176-4
http://dx.doi.org/10.1002/int.22169


Symmetry 2022, 14, 2669 25 of 25

52. Xiao, F.; Ding, W. Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl. Soft Comput.
2019, 79, 254–267. [CrossRef]

53. Mahanta, J.; Panda, S. Distance measure for Pythagorean fuzzy sets with varied applications. Neural Comput. Appl. 2021, 33,
17161–17171. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2019.03.043
http://dx.doi.org/10.1007/s00521-021-06308-9

	Introduction
	Preliminaries
	Enhanced Distance-Similarity Measuring Approaches for PFSs
	Computation Example
	Some Theoretic Results of the New PFDMAs/PFSMAs 
	Decision Making Applications
	Pattern Recognition
	Diagnostic Analysis


	Comparative Studies
	Comparative Analysis (Pattern Recognition)
	Comparative Analysis (Diagnostic Analysis)
	Advantages of the New Approaches

	Conclusions
	References

