
Citation: Jing, Z.; Li, P.; Zhao, J.;

Zhang, Q. A Fast CU Partition

Algorithm Based on Gradient

Structural Similarity and Texture

Features. Symmetry 2022, 14, 2644.

https://doi.org/10.3390/

sym14122644

Academic Editor:

Nicola Mastronardi

Received: 10 November 2022

Accepted: 6 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Fast CU Partition Algorithm Based on Gradient Structural
Similarity and Texture Features
Zhiyong Jing, Peng Li, Jinchao Zhao and Qiuwen Zhang *

College of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China
* Correspondence: 2012032@zzuli.edu.cn; Tel.: +86-371-8660-9559

Abstract: The H.266/Versatile Video Coding (VVC) standard poses a great challenge for encoder
design due to its high computational complexity and long encoding time. In this paper, the fast
partitioning decision of coding blocks is investigated to reduce the computational complexity and
save the coding time of VVC intra-frame predictive coding. A fast partitioning algorithm of VVC intra-
frame coding blocks based on gradient structure similarity and directional features is proposed. First,
the average gradient structure similarity of four sub-coding blocks under the current coding block is
calculated, and two thresholds are set to determine whether the current coding block terminates the
partitioning early or performs quadtree partitioning. Then, for the coding blocks that do not satisfy
the above thresholds, the standard deviation of the vertical and horizontal directions of the current
coding block is calculated to determine the texture direction and skip unnecessary partitioning
to reduce computational complexity. Based on the VTM10.0 platform, this paper evaluates the
performance of the designed fast algorithm for partitioning within the VVC coding unit. Compared
with VTM10.0, the encoding rate is improved by 1.38% on average, and the encoder execution time
is reduced by 49.32%. The overall algorithm achieves a better optimization of the existing VVC
intra-frame coding technique.

Keywords: VVC; fast split; GDSIM; texture features

1. Introduction

With the advent of the information age, people have higher requirements for video
resolution in daily life, which brings great pressure to the transmission of video on the
network. On the one hand, the demand for ultra-high definition (UHD) video is increasing
day by day, and the data volume of video data is also increasing with the improvement
of clarity. On the other hand, due to the high-speed circulation of information, the video
flow on the communication network also grows rapidly. Video coding is not only the key
technology for efficient storage and transmission of multimedia information but also an
important part of modern information technology. At present, one of the development
trends of video technology is to seek a higher resolution and better clarity, to express
natural scenes more realistically and clearly. For example, Japan Broadcasting Corporation
(NHK) has been committed to the compression and transmission technology research of
4K (3840 × 2160) and even 8K (7680 × 4320) UHD video programs [1]. However, ultra-high
resolution leads to a sharp increase in video data, which makes it very difficult to store
and transmit video data [2]. Currently, the relatively perfect international video coding
standard high-efficiency video coding (HEVC) is mainly oriented to HD (720P, 1080I, 1080P)
video coding [3], which is unable to meet the current requirements of emerging video
coding such as ULTRA-high definition, high dynamic range, and 360◦ VR. Therefore, the
research and standard formulation of the next generation ultra-high definition video coding
technology has become very urgent. Similar to the advent of H.265/HEVC, H.266/VVC is
for further optimizing the compression, which can save about 50% of the data traffic and at

Symmetry 2022, 14, 2644. https://doi.org/10.3390/sym14122644 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122644
https://doi.org/10.3390/sym14122644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5617-3953
https://doi.org/10.3390/sym14122644
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122644?type=check_update&version=1


Symmetry 2022, 14, 2644 2 of 18

the same time ensure that the definition of video transmission remains unchanged, so VVC
has obvious advantages.

Many new intra-frame coding techniques have been proposed in VVC, such as the
quadtree nested multi-type tree (QTMT) partition method, 67 intra-prediction modes,
Position Dependent Intra Prediction Combination (PDPC), Linear model intra-prediction
techniques across luma-chroma, Multi-reference line Intra prediction technology, Intra-
frame prediction sub-block partitioning techniques, Matrix-weighted average intra-frame
prediction techniques, etc. [4,5]. Among them, the newly introduced multi-type tree (MTT)
partition process occupies a large amount of intra-frame coding time. Disabling MTT
can save about 90% of the encoding time, and there is a huge space for optimization [6].
In addition, new key technologies in each module bring high computational complexity
to video coding, so more and more researchers began to optimize different modules to
improve video coding speed, laying a solid foundation for the latest multi-function video
coding standard H.266/VVC.

In the coding structure of HEVC, the coding tree unit (CTU) plays an important
role. The CTU is the root node of the quadtree partition in HEVC. At the coding unit
layer, each coding unit block will be divided into prediction units (PUs) and transform
units (TUs) with symmetrical or asymmetrical structures. As with CU partitioning, for
prediction and transformation units PU and TU, the size of PU and TU under each
CU will not exceed the size of the current CU. To better improve the coding efficiency,
it is necessary to determine the optimal CU partition mode through rate-distortion
optimization in the tree coding unit layer (CTU). A key feature of HEVC is that there are
multiple division concepts: CU, PU, and TU. However, these concepts do not exist in
VVC, and CU is used as a uniform representation.

The new QTMT partition method in VVC makes CU partition more flexible, adding
rectangular blocks no longer limited to squares. VVC still adopts the CTU structure in
HEVC. In particular, the CTU will first perform quad-tree partition (QT), and then further
conduct multi-type tree partition. Multi-type tree partition includes four partition methods,
as shown in Figure 1, which are vertical binary tree division (BTV), horizontal binary tree
division (BTH), vertical ternary tree division (TTV), and horizontal ternary tree division
(TTH). In VVC, the maximum size allowed for the root node of the quadtree is 128 × 128
while the minimum size allowed for the child node of the quadtree is 16 × 16. But the
maximum size allowed for the root node of the ternary tree is 64 × 64 and the maximum
size allowed for the child node of the ternary tree is 4 × 4. Moreover, the maximum size
allowed for the root node of the binary tree is 64 × 64 and the minimum size allowed for
the child node of the binary tree is 4 × 4. For a clearer understanding of the coding unit
partition process, Figure 2 shows an example diagram.

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 18 
 

 

H.265/HEVC, H.266/VVC is for further optimizing the compression, which can save about 
50% of the data traffic and at the same time ensure that the definition of video transmission 
remains unchanged, so VVC has obvious advantages. 

Many new intra-frame coding techniques have been proposed in VVC, such as the 
quadtree nested multi-type tree (QTMT) partition method, 67 intra-prediction modes, 
Position Dependent Intra Prediction Combination (PDPC), Linear model intra-prediction 
techniques across luma-chroma, Multi-reference line Intra prediction technology, Intra-
frame prediction sub-block partitioning techniques, Matrix-weighted average intra-frame 
prediction techniques, etc. [4,5]. Among them, the newly introduced multi-type tree 
(MTT) partition process occupies a large amount of intra-frame coding time. Disabling 
MTT can save about 90% of the encoding time, and there is a huge space for optimization 
[6]. In addition, new key technologies in each module bring high computational 
complexity to video coding, so more and more researchers began to optimize different 
modules to improve video coding speed, laying a solid foundation for the latest multi-
function video coding standard H.266/VVC. 

In the coding structure of HEVC, the coding tree unit (CTU) plays an important role. 
The CTU is the root node of the quadtree partition in HEVC. At the coding unit layer, each 
coding unit block will be divided into prediction units (PUs) and transform units (TUs) 
with symmetrical or asymmetrical structures. As with CU partitioning, for prediction and 
transformation units PU and TU, the size of PU and TU under each CU will not exceed 
the size of the current CU. To better improve the coding efficiency, it is necessary to 
determine the optimal CU partition mode through rate-distortion optimization in the tree 
coding unit layer (CTU). A key feature of HEVC is that there are multiple division 
concepts: CU, PU, and TU. However, these concepts do not exist in VVC, and CU is used 
as a uniform representation. 

The new QTMT partition method in VVC makes CU partition more flexible, adding 
rectangular blocks no longer limited to squares. VVC still adopts the CTU structure in 
HEVC. In particular, the CTU will first perform quad-tree partition (QT), and then further 
conduct multi-type tree partition. Multi-type tree partition includes four partition 
methods, as shown in Figure 1, which are vertical binary tree division (BTV), horizontal 
binary tree division (BTH), vertical ternary tree division (TTV), and horizontal ternary tree 
division (TTH). In VVC, the maximum size allowed for the root node of the quadtree is 
128 × 128 while the minimum size allowed for the child node of the quadtree is 16 × 16. 
But the maximum size allowed for the root node of the ternary tree is 64 × 64 and the 
maximum size allowed for the child node of the ternary tree is 4 × 4. Moreover, the 
maximum size allowed for the root node of the binary tree is 64 × 64 and the minimum 
size allowed for the child node of the binary tree is 4 × 4. For a clearer understanding of 
the coding unit partition process, Figure 2 shows an example diagram. 

BTV BTH TTV TTH  
Figure 1. Multi-type tree division. Figure 1. Multi-type tree division.



Symmetry 2022, 14, 2644 3 of 18Symmetry 2022, 14, x FOR PEER REVIEW 3 of 18 
 

 

QT split

BTV split

BTH split

TTV split

TTH split

 
Figure 2. CTU division diagram. 

In the CU partition process of VVC, five partition modes need to be traversed at most 
when using VTM for coding. Under the same depth, CUs are divided in the order of QT, 
BTH, BTV, TTH, and TTV. To obtain the CU optimal partition decision, all possible 
partition structure combinations are iteratively tried to select the partition structure with 
the lowest distortion cost. Although this partitioning method can obtain the globally 
optimal partition structure, it also consumes a lot of time. After adding binary tree (BT) 
and ternary tree (TT) to VVC division, the order of selecting division modes may be 
inconsistent during the traversal process, but the obtained division results are the same. 
To this end, we can first carry out a horizontal binary tree partition, and again carry out a 
horizontal binary tree partition for the two sub-blocks respectively, to obtain four sub-
blocks in the same horizontal direction. The result is the same as that obtained by first 
performing one horizontal ternary tree partition and then dividing the middle block by a 
horizontal binary tree. 

The way and order of CU partitioning are different, and the same partition structure 
may be obtained, this situation is called partition redundancy. Partitioning redundancy 
increases the computational complexity of coding by repeatedly computing the rate-
distortion generation values of the same partitioning structure. To avoid similar 
situations, VVC imposes some restrictions on the multi-fork tree partitioning process. In 
the above case, VVC prohibits the middle part of the ternary tree from performing the 
partition with the binary tree in the same direction as last time. In addition, partition 
restrictions also occur in the following cases. As shown in Figure 3, after the square block 
is divided into a vertical binary tree, the horizontal binary tree division is performed on 
both the left and right sub-blocks. The result will be consistent with the direct quad-tree 
division of the parent block, and four identical square sub-blocks are obtained. Since the 
right sub-block is partitioned first, the horizontal binary tree splitting of the left sub-block 
should be prohibited. And if the parent block first performs horizontal binary tree 
splitting, and the sub-block does vertical binary tree splitting, the same result will be 
obtained. Therefore, the lower sub-block should be partitioned, and the vertical binary 
tree splitting of the upper sub-block should be prohibited. 

 
Figure 3. Limitations of VVC on the partitioning process. 

Figure 2. CTU division diagram.

In the CU partition process of VVC, five partition modes need to be traversed at
most when using VTM for coding. Under the same depth, CUs are divided in the order
of QT, BTH, BTV, TTH, and TTV. To obtain the CU optimal partition decision, all possible
partition structure combinations are iteratively tried to select the partition structure with
the lowest distortion cost. Although this partitioning method can obtain the globally
optimal partition structure, it also consumes a lot of time. After adding binary tree (BT)
and ternary tree (TT) to VVC division, the order of selecting division modes may be
inconsistent during the traversal process, but the obtained division results are the same.
To this end, we can first carry out a horizontal binary tree partition, and again carry
out a horizontal binary tree partition for the two sub-blocks respectively, to obtain four
sub-blocks in the same horizontal direction. The result is the same as that obtained by
first performing one horizontal ternary tree partition and then dividing the middle block
by a horizontal binary tree.

The way and order of CU partitioning are different, and the same partition structure
may be obtained, this situation is called partition redundancy. Partitioning redundancy in-
creases the computational complexity of coding by repeatedly computing the rate-distortion
generation values of the same partitioning structure. To avoid similar situations, VVC
imposes some restrictions on the multi-fork tree partitioning process. In the above case,
VVC prohibits the middle part of the ternary tree from performing the partition with the
binary tree in the same direction as last time. In addition, partition restrictions also occur in
the following cases. As shown in Figure 3, after the square block is divided into a vertical
binary tree, the horizontal binary tree division is performed on both the left and right
sub-blocks. The result will be consistent with the direct quad-tree division of the parent
block, and four identical square sub-blocks are obtained. Since the right sub-block is parti-
tioned first, the horizontal binary tree splitting of the left sub-block should be prohibited.
And if the parent block first performs horizontal binary tree splitting, and the sub-block
does vertical binary tree splitting, the same result will be obtained. Therefore, the lower
sub-block should be partitioned, and the vertical binary tree splitting of the upper sub-block
should be prohibited.

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 18 
 

 

QT split

BTV split

BTH split

TTV split

TTH split

 
Figure 2. CTU division diagram. 

In the CU partition process of VVC, five partition modes need to be traversed at most 
when using VTM for coding. Under the same depth, CUs are divided in the order of QT, 
BTH, BTV, TTH, and TTV. To obtain the CU optimal partition decision, all possible 
partition structure combinations are iteratively tried to select the partition structure with 
the lowest distortion cost. Although this partitioning method can obtain the globally 
optimal partition structure, it also consumes a lot of time. After adding binary tree (BT) 
and ternary tree (TT) to VVC division, the order of selecting division modes may be 
inconsistent during the traversal process, but the obtained division results are the same. 
To this end, we can first carry out a horizontal binary tree partition, and again carry out a 
horizontal binary tree partition for the two sub-blocks respectively, to obtain four sub-
blocks in the same horizontal direction. The result is the same as that obtained by first 
performing one horizontal ternary tree partition and then dividing the middle block by a 
horizontal binary tree. 

The way and order of CU partitioning are different, and the same partition structure 
may be obtained, this situation is called partition redundancy. Partitioning redundancy 
increases the computational complexity of coding by repeatedly computing the rate-
distortion generation values of the same partitioning structure. To avoid similar 
situations, VVC imposes some restrictions on the multi-fork tree partitioning process. In 
the above case, VVC prohibits the middle part of the ternary tree from performing the 
partition with the binary tree in the same direction as last time. In addition, partition 
restrictions also occur in the following cases. As shown in Figure 3, after the square block 
is divided into a vertical binary tree, the horizontal binary tree division is performed on 
both the left and right sub-blocks. The result will be consistent with the direct quad-tree 
division of the parent block, and four identical square sub-blocks are obtained. Since the 
right sub-block is partitioned first, the horizontal binary tree splitting of the left sub-block 
should be prohibited. And if the parent block first performs horizontal binary tree 
splitting, and the sub-block does vertical binary tree splitting, the same result will be 
obtained. Therefore, the lower sub-block should be partitioned, and the vertical binary 
tree splitting of the upper sub-block should be prohibited. 

 
Figure 3. Limitations of VVC on the partitioning process. Figure 3. Limitations of VVC on the partitioning process.



Symmetry 2022, 14, 2644 4 of 18

The new multi-type tree partition methods in VVC bring a heavy amount of calculation,
followed by a high computational burden of intra-frame coding. The standard encoder
traverses all partitioning possibilities to find the optimal partitioning method when making
multi-type tree partitioning decisions. Figure 4 shows the result of the reduction of the
coding time by the binary tree and ternary tree partition [6]. From this, it can be seen
that the structure of the quadtree nested multi-type tree added by VVC affects the coding
time. When the VTM encoder forbids binary tree partitioning, the average coding time
of each video sequence is saved by 75%, while when the coding blocks are prohibited
from ternary tree partition, the average coding time of each video sequence is saved by
48%. Furthermore, when both BT and TT splits are disabled, the average encoding time
is reduced by about 92%. Analysis shows that multi-type tree partitioning takes up a
lot of coding time. Therefore, research that focuses on reducing BT/TT partitioning can
achieve significant coding complexity reduction, which is more conducive to the real-time
application of encoders.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

The new multi-type tree partition methods in VVC bring a heavy amount of 
calculation, followed by a high computational burden of intra-frame coding. The standard 
encoder traverses all partitioning possibilities to find the optimal partitioning method 
when making multi-type tree partitioning decisions. Figure 4 shows the result of the 
reduction of the coding time by the binary tree and ternary tree partition [6]. From this, it 
can be seen that the structure of the quadtree nested multi-type tree added by VVC affects 
the coding time. When the VTM encoder forbids binary tree partitioning, the average 
coding time of each video sequence is saved by 75%, while when the coding blocks are 
prohibited from ternary tree partition, the average coding time of each video sequence is 
saved by 48%. Furthermore, when both BT and TT splits are disabled, the average 
encoding time is reduced by about 92%. Analysis shows that multi-type tree partitioning 
takes up a lot of coding time. Therefore, research that focuses on reducing BT/TT 
partitioning can achieve significant coding complexity reduction, which is more 
conducive to the real-time application of encoders. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

A1 A2 B C D E Average

Saved coding time

Disable BT Disable TT Disable MTT

 
Figure 4. Encoding time is saved under different conditions in reference [6]. 

Our main contributions in this paper are: A fast CU partition in the algorithm for 
VVC is proposed. In the quadtree partition stage, the image edge information can be 
extracted well according to the similarity of gradient structure, and the average gradient 
structure similarity of coding units can be predicted in the early stage of intra-frame 
prediction to terminate the partition in advance or carry out the quadtree partition. In the 
multi-type tree partition stage, the texture direction of CU is determined according to the 
standard deviation of different directions, and unnecessary intra-frame partition methods 
are skipped to reduce the complexity of intra-frame coding. The experimental results 
show that the proposed algorithm focuses on the rapid partition of coding units. By 
terminating the division of coding blocks in advance, the process of rate-distortion 
optimization is reduced, which improves the coding efficiency and saves coding time. 

The remaining of this paper is organized as follows. Section 2 reviews the related 
work for HEVC and VVC. Section 3 presents the fast partitioning algorithm for VVC intra-
frame coding block. Section 4 shows the experimental results to verify the effectiveness of 
our proposed approach. Section 5 concludes the paper. 

2. Related Works 
With the continuous development of video coding standards, the coding 

performance is also improving, but it also causes the explosive growth of visual data and 
greater coding time complexity. The CU partitioning process for intra-frame coding 
occupies most of the coding time. For this reason, most intra-coding fast algorithms focus 
on how to reduce the complexity of CU partitioning. A large number of scholars have 

Figure 4. Encoding time is saved under different conditions in reference [6].

Our main contributions in this paper are: A fast CU partition in the algorithm for
VVC is proposed. In the quadtree partition stage, the image edge information can be
extracted well according to the similarity of gradient structure, and the average gradient
structure similarity of coding units can be predicted in the early stage of intra-frame
prediction to terminate the partition in advance or carry out the quadtree partition. In the
multi-type tree partition stage, the texture direction of CU is determined according to the
standard deviation of different directions, and unnecessary intra-frame partition methods
are skipped to reduce the complexity of intra-frame coding. The experimental results show
that the proposed algorithm focuses on the rapid partition of coding units. By terminating
the division of coding blocks in advance, the process of rate-distortion optimization is
reduced, which improves the coding efficiency and saves coding time.

The remaining of this paper is organized as follows. Section 2 reviews the related work
for HEVC and VVC. Section 3 presents the fast partitioning algorithm for VVC intra-frame
coding block. Section 4 shows the experimental results to verify the effectiveness of our
proposed approach. Section 5 concludes the paper.

2. Related Works

With the continuous development of video coding standards, the coding performance
is also improving, but it also causes the explosive growth of visual data and greater coding
time complexity. The CU partitioning process for intra-frame coding occupies most of the



Symmetry 2022, 14, 2644 5 of 18

coding time. For this reason, most intra-coding fast algorithms focus on how to reduce
the complexity of CU partitioning. A large number of scholars have contributed to the
complexity reduction of coding time while ensuring coding performance. And their main
work is to optimize the relevant algorithms to improve the coding speed.

2.1. Research Status of HEVC Fast Algorithms

Many works have been done to reduce the complexity of CU partition complexity in
HEVC. To realize the fast partitioning algorithm of intra-frame coding, a lot of research
has been carried out by the predecessors. Mu et al. [7] proposed a fast partition algorithm
based on the original pixel gradient texture analysis, which judged the partition method by
comparing the gradient texture of the CU, to terminate unnecessary partitions and reduce
the coding complexity. Lee et al. [8] utilized grayscale histograms to reduce the depth
range of the CU and then compared the sum of the absolute differences of the current
depth CU with the corresponding depth rate-distortion (RD) threshold within the depth
range, to determine whether to terminate the CU partition. Sun et al. [9] proposed to
calculate the Haar wavelet coefficients of the current CU according to the texture features
of the CU and compared it with the threshold, thereby saving the coding time of the CU.
Du et al. [10] used a random forest classifier for offline learning to speed up the CU
partitioning process based on the classification results. Zhang et al. [11] used two features
of entropy and texture contrast from the perspective of micro-texture and macro-texture of
coding blocks, so that block partitioning can be accurately predicted, which in turn saves
time. Zhang et al. [12] proposed a CU partitioning algorithm based on spatial correlation,
which predicts the minimum and maximum values of the current CU depth range by the
depth of adjacent CUs, thus reducing the number of traversals for quadtree partitioning
and saving coding time. Jimenez et al. [13] proposed a CU depth decision algorithm,
which determines the CU depth by performing statistical analysis of the CU depth using
hypothesis testing. Sun et al. [14] proposed a fast CU partitioning algorithm for HEVC
intraframe coding, which first obtains the CU texture complexity from a specific coding
block and then uses the texture complexity of the CU to decide whether a CU should
continue to be partitioned into four sub-CUs. In addition, fast CU partition algorithms
based on machine learning are becoming more and more popular. Xu et al. [15] proposed
a fast CU partition decision algorithm based on convolutional neural network (CNN),
and designed a hierarchical CNN with early termination (ETH-CNN) to learn to predict
CU partition maps. Fan et al. [16] used two convolutional neural networks to decide
the partition mode of CU and prediction unit respectively and used the pixel points and
quantization parameter (QP) information of the encoded image in training the convolutional
neural network. The above algorithms are proposed based on the quadtree division
structure in HEVC, which optimize the coding process without affecting the coding quality
of the encoder, to terminate the CU partition process and rate distortion optimization (RDO)
operation in advance. However, they do not apply to the multi-type tree structure proposed
in the new standard.

2.2. Research Status of VVC Fast Algorithms

The above algorithms are all oriented to the HEVC coding standard using QT partition,
while VVC exploits a more complex quad, ternary, and binary tree coding structure to fur-
ther compress the video. Combined with the newly added intra-frame coding technology,
we find a coding optimization method suitable for VVC. To reduce the coding complexity
in VVC, researchers have put forward a large number of fast partitioning algorithms, which
can be roughly divided into three categories: the traditional method, the second method
based on machine learning, and the third method based on neural networks.

In the traditional method, the CU partition is terminated in advance by acquir-
ing CU characteristics such as CU texture and CU partition depth to save coding time.
Zhang et al. [17] proposed a fast intra-frame coding algorithm based on texture features.
Among them, the algorithm uses texture energy and texture direction for CU delineation



Symmetry 2022, 14, 2644 6 of 18

in advance, thus terminating unnecessary delineation and reducing the coding com-
plexity. Lei et al. [18] calculated and analyzed the distribution of Hadamard cost and
rate-distortion cost, and designed a CU partition early termination strategy based on the
Bayesian decision criterion. Saldanha et al. [19] judged the texture direction according
to the variance and intra-prediction mode of the current CU and skipped unnecessary
partition modes according to the texture direction. Cui et al. [20] determined the proba-
bility of each partition mode according to the gradients in the horizontal and vertical
directions and skipped the division mode with a lower probability.

The second category is machine learning-based methods using decision trees (DT),
support vector machines (SVM), and other methods to speed up CU division. Among
them, SVM is very popular to accelerate CU partition. Zhao et al. [21] proposed a fast CU
division decision algorithm based on SVM, analyzed the ratio of various CU size division
patterns, and trained SVM models to accelerate CU division ratio and edge point ratio.
Zhang et al. [22] proposed an intra-coding complexity reduction technique based on an
improved SVM to classify the CU partition decision. Chen et al. [23] proposed an SVM-
based CU partition early termination algorithm, which selects CU entropy and texture
contrast to represent the characteristics of CU partition direction, and predicts specific CU
partition direction through SVM. Besides support vector machines, there are other machine
learning-based algorithms. Huang et al. [24] used the Resnet neural network to predict the
division depth range of CU to terminate the CU partition in advance. For the CU that does
not meet the termination partition, the classification type is judged according to the random
forest classifier, to save the coding time. Yang et al. [25] designed a decision tree-based CU
partition mode selection algorithm (CSD-SL), but it needed to train different decision tree
models for different quantitative parameters and adopted more characteristic parameters
with high complexity. Zhang et al. [26] proposed an algorithm for fast partitioning of
coding blocks by using a random forest classifier model and fast intra-frame mode selection
based on texture features of video images.

The third category is neural network-based methods. In recent years, deep learning
frameworks have developed rapidly, and some researchers exploit trained neural networks
to predict CU partition patterns. Tang et al. [27] constructed a CNN model with variable
pooling layers, which can flexibly adapt to various CU shapes and determine in advance
whether the CU needs to be divided. Tissier et al. [28] took a 64 × 64 size CU as the input
of the CNN network, and calculated the edge probability on the 4 × 4 block boundary to
determine the partition probability, thereby terminating the CU division process early and
saving a lot of coding time. Li et al. [29] designed a CNN model that can terminate the
division early in each stage, which determined the coding block division process according
to the multi-stage flexible QTMT structure, and designed an adaptive loss function for
training the CNN model. Park et al. [30] proposed a lightweight neural network (LNN)
model that prematurely terminates ternary tree partitioning according to two valid features
(EVF and DVF) related to ternary tree partitioning. Li et al. [31] proposed a hierarchical
grid-based CNN model, which can directly obtain the full division of parent CU and child
CU, reducing the coding time.

Compared with HEVC, the coding structure of VVC is more flexible, and its com-
plexity is several times higher than that of HEVC. The increase in complexity is mainly
the consequence of rate-distortion. Therefore, rate-distortion optimization and fast CU
partition are the focus of the research. The above-mentioned literature reduces the rate-
distortion optimization process through various designed algorithms, and achieves the
effect of saving encoding time, but the intra-frame information has not been fully utilized,
and there is still room for improving encoding efficiency.

3. Method

In recent years, people have made new breakthroughs in the field of image research,
Wang et al. [32,33] proposed a new feature for evaluating image quality: Structural



Symmetry 2022, 14, 2644 7 of 18

Similarity (SSIM). It consists of three parts, namely, brightness, contrast, and structure,
which can be expressed as:

SSIM(i, j) = Lum(i, j)Con(i, j)Str(i, j) (1)

Lum(i, j) =
2αiαj + c1

α2
i + α2

j + c1
(2)

Con(i, j) =
2βiβj + c2

β2
i + β2

j + c2
(3)

Str(i, j) =
βij + c3

βiβj + c3
(4)

where i and j are two image blocks (the proposed algorithm needs to consider the similarity
of CU, which will be referred to as CU in the following text), Lum(i, j), Con(i, j), and
Str(i, j) denote the brightness, contrast, structure, respectively. αi and αj represent the
mean values of the two CUs, βi and βj are the standard deviation values of the two CUs,
and βij is the covariance value of the two CUs. c1, c2, and c3 are set constants. To avoid
formula denominator of 0, c1, c2, and c3 are set as constants. The higher the SSIM of the
two CUs, the more similar the two CUs are.

Although the structural similarity model of the two CUs is relatively simple and has
certain advantages compared to the peak signal-to-noise ratio (PSNR) or mean square
error (MSE) model, there are also some shortcomings. For severely blurred and distorted
images, their texture properties are seriously damaged, and the structural aspect Str(i, j)
in SSIM does not reflect this change well. Since the gradient is sensitive to the texture
features and small detail contrast of the image, it can be a good evaluation of image
clarity. We further propose to determine the 32 × 32 or 16 × 16 size partition based on
the similarity of the gradient structure.

3.1. The Proposed Fast Cu Partitioning Algorithm

Compared with the Canny operator and the prewitt operator, the calculation of the
Sobel operator algorithm is relatively simple and the speed is relatively fast. To simplify the
calculation, the gradient calculation of the current CU adopts the simplest Sobel operator in
the 3 × 3 template gradient filter, including the vertical edge operator V and the horizontal
edge operator H, as shown in Figure 5:

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

−1 0 +1

−2 0 +2

−1 0 +1

+1 +2 +1

0 0 0

−1 −2 −1
Vertical edge operator V Horizontal edge operator H

 

Figure 5. Sobel operator. 

The Sobel operator consists of two groups of 3 × 3 matrices, which are in the vertical 
and horizontal positions, respectively, and are convolved with the image plane to obtain 
the approximation of the vertical and horizontal brightness differences respectively. 

1 0 +1
2 0 +2 *
1 0 +1

Gx A
 
 =  
 

−


−
−

 (5) 

1 2 1
 0   0   0 *

1 2 1
Gy A

+ + + 
 = 
−


  − −

 (6) 

2 2(i,j) = G Gx Gy+  (7) 

Among them, A is the original image, Gx is the vertical gradient value of the CU 
along the ( ),  i j

 
position, Gy  is the lateral gradient value of the CU along the ( ),  i j  

position, ( ),  G i j  is the CU at ( ),  i j  position of the gradient magnitude. 
Liu et al. [34] proposed a new feature to measure the changes in image contrast and 

structure: gradient similarity (GSIM). The gradient similarity between sub-block a and 
sub-block b at the coding block position ( ),  i j  and its calculation formula are shown in 
Equation (8): 

[ ] [ ]
i

2 2

2 ( , ) ( , )
( , )

( , ) ( , )

a b
j

a b
i j i j

G i j G i j C
GSIM i j

G i j G i j C

+
=

+ +



 
 (8) 

where ( , )aG i j  and ( , )bG i j  are the gradient amplitudes of coding blocks a and b at 

positions ( ),  i j , respectively, and C is a constant. 
Then, we replace the structure-function ( ),Str i j  in the structural similarity (SSIM) 

with the gradient similarity ( , )GSIM i j  to gain the gradient-based structural similarity 
GSIM, as shown in Equation (9). The gradient-based structural similarity is applied to the 

Figure 5. Sobel operator.



Symmetry 2022, 14, 2644 8 of 18

The Sobel operator consists of two groups of 3 × 3 matrices, which are in the vertical
and horizontal positions, respectively, and are convolved with the image plane to obtain
the approximation of the vertical and horizontal brightness differences respectively.

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 ∗ A (5)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ A (6)

G(i, j) =
√

Gx2 + Gy2 (7)

Among them, A is the original image, Gx is the vertical gradient value of the CU along
the (i, j) position, Gy is the lateral gradient value of the CU along the (i, j) position, G(i, j)
is the CU at (i, j) position of the gradient magnitude.

Liu et al. [34] proposed a new feature to measure the changes in image contrast
and structure: gradient similarity (GSIM). The gradient similarity between sub-block a
and sub-block b at the coding block position (i, j) and its calculation formula are shown
in Equation (8):

GSIM(i, j) =

2∑
i

∑
j

Ga(i, j)Gb(i, j) + C

∑
i

∑
j
[Ga(i, j)]2 + ∑

i
∑
j
[Gb(i, j)]2 + C

(8)

where Ga(i, j) and Gb(i, j) are the gradient amplitudes of coding blocks a and b at
positions (i, j), respectively, and C is a constant.

Then, we replace the structure-function Str(i, j) in the structural similarity (SSIM) with
the gradient similarity GSIM(i, j) to gain the gradient-based structural similarity GSIM, as
shown in Equation (9). The gradient-based structural similarity is applied to the judgment
of CU division, and the average gradient structural similarity (MGSSIM) of CU is defined.
It is calculated by Equation (10), in which x is the number of similarity values.

GSSIM(i, j) = L(i, j)C(i, j)GSIM(i, j) (9)

MGSSIM =
1
n

n

∑
x=1

GSSIM(i, j) (10)

Considering the similarity of the 4 sub-CUs (CU1, CU2, CU3, CU4) after the current
coding block is divided by QT (as shown in Figure 6), GSIM is calculated in pairs to
obtain six similarity values, namely GSSIM12, GSSIM13, GSSIM14, GSSIM23, GSSIM24,
GSSIM34, respectively. And the mean value of these six values is utilized to obtain the
current average gradient structure similarity of CU MGSSIM.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

judgment of CU division, and the average gradient structural similarity (MGSSIM) of CU 
is defined. It is calculated by Equation (10), in which x is the number of similarity values. 

, ( , ) ( , ) ( , )GSSIM i j L i j C i j GSIM i j=（ ）
 

(9) 

1

1 ,
n

x
MGSSIM GSSIM i j

n =

=  （ ） (10) 

Considering the similarity of the 4 sub-CUs ( 1CU , 2CU , 3CU , 4CU ) after the current 
coding block is divided by QT (as shown in Figure 6), GSIM is calculated in pairs to obtain 
six similarity values, namely 12GSSIM , 13GSSIM , 14GSSIM , 23GSSIM , 24GSSIM , 34GSSIM , 
respectively. And the mean value of these six values is utilized to obtain the current 
average gradient structure similarity of CU MGSSIM. 

Calculate 
MGSSIM, and 
determine CU 

division 
according to 

MGSSIM

CU1 CU2

CU3 CU4

CU CUi:sub-CUs
 

Figure 6. The process of computing MGSSIM. 

Since MGSSIM represents the average similarity of the four sub-CUs of the current 
CU, it can be considered that when the similarity value is less than a certain threshold 
(set as TH1), that is, the difference between the four sub-CUs is relatively large, it will be 
more appropriate to divide them into a quadtree. When the similarity value is greater 
than a certain threshold (set as TH2), the four sub-CUs are extremely similar. If they are 
coded without partitioning, the residual error and the number of bits used will be 
smaller and the coding effect will be better. 

Threshold Selection 
In the proposed CU intra-frame, fast partitioning algorithm based on average 

gradient structure similarity, we use two thresholds, including TH1 and TH2. Statistical 
analysis of the characteristics of these two thresholds shows that both TH1 and TH2 are 
related to the quantization parameter (QP). The threshold Formulas (11) and (12) are 
defined as follows: 

1  TH QP= α ×  (11) 

2TH QP= β×  (12) 

where α  and β  are adjustable parameters. 
To verify the feasibility of the algorithm, the division characteristics of video 

sequences with various resolutions are statistically analyzed. The statistical results are 
shown in Figure 7. The blue mark is the proportion of quadtree division, the orange mark 
is the proportion of multi-type tree division, and the gray mark is the proportion of no 
division. To make the algorithm achieve a good balance between encoding time saving 
and bit rate loss, we finally set α to 0.005, and β to 0.0084, respectively. This section is not 
mandatory but can be added to the manuscript if the discussion is unusually long or 
complex. 

Figure 6. The process of computing MGSSIM.



Symmetry 2022, 14, 2644 9 of 18

Since MGSSIM represents the average similarity of the four sub-CUs of the current
CU, it can be considered that when the similarity value is less than a certain threshold (set
as TH1), that is, the difference between the four sub-CUs is relatively large, it will be more
appropriate to divide them into a quadtree. When the similarity value is greater than a
certain threshold (set as TH2), the four sub-CUs are extremely similar. If they are coded
without partitioning, the residual error and the number of bits used will be smaller and the
coding effect will be better.

Threshold Selection

In the proposed CU intra-frame, fast partitioning algorithm based on average gradient
structure similarity, we use two thresholds, including TH1 and TH2. Statistical analysis of
the characteristics of these two thresholds shows that both TH1 and TH2 are related to the
quantization parameter (QP). The threshold Formulas (11) and (12) are defined as follows:

TH1 = α× QP (11)

TH2 = β× QP (12)

where α and β are adjustable parameters.
To verify the feasibility of the algorithm, the division characteristics of video sequences

with various resolutions are statistically analyzed. The statistical results are shown in
Figure 7. The blue mark is the proportion of quadtree division, the orange mark is the
proportion of multi-type tree division, and the gray mark is the proportion of no division.
To make the algorithm achieve a good balance between encoding time saving and bit rate
loss, we finally set α to 0.005, and β to 0.0084, respectively. This section is not mandatory
but can be added to the manuscript if the discussion is unusually long or complex.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

0
10
20
30
40
50
60
70
80
90

100

Kimono

ParkScene

BasketballD
rive

FourPeople
Johnny

Krist
enAndSara

BQMall

Party
Scene

RaceHorse
sC

BQSquare

BlowingBubbles

RaceHorse
s

Average

Partitioning Feature Statistics

QT division ratio（%） MT division ratio（%） not divided radio（%）
 

Figure 7. Statistics of the division characteristics of each video sequence. 

From the analysis of the table, it can be known that when the MGSSIM value of the 
current CU is greater than TH2, an average of 75.4% of the CUs will terminate the division 
process early and skip all division methods. When the MGSSIM value of the current CU 
is less than TH1, an average of 83.8% of the CUs are quad-tree divided into smaller CUs. 
When the MGSSIM value of the current CU is between the thresholds TH1 and TH2, an 
average of 84.5% of the CUs choose to perform binary tree partition or ternary tree 
partition. From the data in the figure, it can be seen that the gradient structure similarity 
has a good performance in the extraction of image details, which also proves the 
superiority of our designed algorithm. 

3.2. Skip Non-Optimal Partition Patterns Based on Standard Deviation 
In the above algorithm, we calculated the average gradient structure similarity 

between CUs, and analyzed their relationship by comparing them with the threshold. To 
further optimize our algorithm, the standard deviation of the vertical and horizontal 
directions can be used to further reduce the division mode and achieve the purpose of 
reducing the encoding time. 

When the similarity value is between TH1 and TH2, there are still multiple division 
candidate modes for the coding block. To make multi-type tree division decisions, we 
need to judge according to the texture direction of the coding block and skip the 
impossible division directions. For a vertically textured CU, the luminance difference in 
the horizontal direction is larger than the luminance difference in the vertical direction. 
For CUs with horizontal textures, the opposite is true. The standard deviation SDV and 
SDH of its vertical and horizontal features are calculated as:  

2height width width
2

1 1 1

1 1 1( , ) ( , )
height width width= = =

 
= −  

 
  V
i j j

SD pixel i j pixel i j  (13)

2height height
2

1 1 1

1 1 1( , ) ( , )
width height height= = =

 = −  
 

  
W

H
j i i

SD pixel i j pixel i j  (14)

 

(13)

(14)

where height and width are the height and width of the CU, respectively, and pixel(i, j) is 
the pixel value of the current position. 

In H.266/VVC, there is a strong correlation between the CU division and the texture 
information of the image, and the texture direction is related to the change of CU in 
different directions, so we use the standard deviation of both vertical and horizontal 

Figure 7. Statistics of the division characteristics of each video sequence.

From the analysis of the table, it can be known that when the MGSSIM value of
the current CU is greater than TH2, an average of 75.4% of the CUs will terminate the
division process early and skip all division methods. When the MGSSIM value of the
current CU is less than TH1, an average of 83.8% of the CUs are quad-tree divided into
smaller CUs. When the MGSSIM value of the current CU is between the thresholds
TH1 and TH2, an average of 84.5% of the CUs choose to perform binary tree partition
or ternary tree partition. From the data in the figure, it can be seen that the gradient



Symmetry 2022, 14, 2644 10 of 18

structure similarity has a good performance in the extraction of image details, which
also proves the superiority of our designed algorithm.

3.2. Skip Non-Optimal Partition Patterns Based on Standard Deviation

In the above algorithm, we calculated the average gradient structure similarity
between CUs, and analyzed their relationship by comparing them with the threshold.
To further optimize our algorithm, the standard deviation of the vertical and horizontal
directions can be used to further reduce the division mode and achieve the purpose of
reducing the encoding time.

When the similarity value is between TH1 and TH2, there are still multiple division
candidate modes for the coding block. To make multi-type tree division decisions, we need
to judge according to the texture direction of the coding block and skip the impossible
division directions. For a vertically textured CU, the luminance difference in the horizontal
direction is larger than the luminance difference in the vertical direction. For CUs with
horizontal textures, the opposite is true. The standard deviation SDV and SDH of its vertical
and horizontal features are calculated as:

SDV =
1

height

height

∑
i=1

√√√√ 1
width

width

∑
j=1

pixel(i, j)2 −
[

1
width

width

∑
j=1

pixel(i, j)

]2

(13)

SDH =
1

width

W

∑
j=1

√√√√ 1
height

height

∑
i=1

pixel(i, j)2 −
[

1
height

height

∑
i=1

pixel(i, j)

]2

(14)

where height and width are the height and width of the CU, respectively, and pixel(i, j) is
the pixel value of the current position.

In H.266/VVC, there is a strong correlation between the CU division and the texture
information of the image, and the texture direction is related to the change of CU in
different directions, so we use the standard deviation of both vertical and horizontal
directions compared with the threshold TH3 to determine the texture direction of CU. The
calculation expression of Sver/hor is:

Sver/hor =
SDV
SDH

(15)

The specific expression for texture orientation determination is:

Sver/hor ≥ TH3 (16)

Given that we adopt a fast division of 32 × 32 and 16 × 16 CU, the multi-type tree
decision can only be applied to square cells, not non-square cells. If SDH in a CU is
greater than SDV , then BTH and TTH will be skipped, i.e., for a vertically textured CU, the
horizontal partitioning mode will be skipped. If SDV in a CU is greater than SDH , then
BTV and TTV will be skipped, i.e., for a horizontally textured CU, vertical partitioning
mode will be skipped.

Threshold Selection

To distinguish the relationship between the CU partition mode and SD, we selected
the VVC standard to specify six video sequences in six types of video test sequences to
conduct experiments, including “FoodMarket”, “ParkRunning3”, “Cactus”, “BQMall”,
“BasketballPass” and “FourPeople”. The first five frames of each sequence were encoded in
all internal (AI) configurations with QP = 27. We collected the statistical results of Sver/hor
and the corresponding vertical and horizontal MT partition patterns, overall results as
shown in Tables 1 and 2.



Symmetry 2022, 14, 2644 11 of 18

Table 1. Statistics of CU partition vertical and horizontal modes when Sver/hor < 1.

Sver/hor < 1 Vertical Partition Modes (%) Horizontal Partition Modes (%)

FoodMarket 72 28
ParkRunning3 63 37

Cactus 66 34
BQMall 74 26

BasketballPass 70 30
FourPeople 77 23

Table 2. Statistics of CU partition vertical and horizontal modes when Sver/hor > 1.

Sver/hor > 1 Vertical Partition Modes (%) Horizontal Partition Modes (%)

FoodMarket 26 74
ParkRunning3 25 75

Cactus 29 71
BQMall 35 65

BasketballPass 23 77
FourPeople 38 62

The proportions of vertical and horizontal partition patterns in different sequences
are shown in the table above. As can be seen from Table 1, when the Sver/hor value is less
than 1, the percentage of vertical partitioning mode is 72%, 63%, 66%, 74%, 70%, and 77%,
respectively, and the percentage of vertical partitioning mode codes is more than twice that
of horizontal partitioning. If the Sver/hor value is greater than the higher threshold TH3, it
means that the complexity in the horizontal direction is greater than that in the vertical
direction, and the current CU is more likely to have horizontal textures. As can be seen
from Table 2, when the Sver/hor value is greater than 1, the average probability of horizontal
partitions being encoded is more than twice that of vertical partitions. If the Sver/hor value is
less than the lower threshold TH3, it indicates that the current CU is more likely to have
vertical textures, so we skip the horizontal partition mode.

The choice of threshold is related to QP. If the TH3 value is too small, the algorithm
will get better complexity reduction because more partition patterns are predetermined. If
the TH3 value is too large, the encoding performance will be better, but the computational
complexity will increase. In the case of QP = 27 and QP = 37, two video sequences “Bas-
ketballDrive” and “BQMall” were selected to test the prediction accuracy. We conducted
experiments for this purpose, and the relationship between threshold and accuracy is
shown in Figure 8. In our method, the overall accuracy of the proposed method is between
80% and 90%. When the QP value is greater than 28, we set the threshold TH3 to 1.7;
otherwise, we set the threshold TH3 to 1.2.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

less than the lower threshold TH3, it indicates that the current CU is more likely to have 
vertical textures, so we skip the horizontal partition mode. 

The choice of threshold is related to QP. If the TH3 value is too small, the algorithm 
will get better complexity reduction because more partition patterns are predetermined. 
If the TH3 value is too large, the encoding performance will be better, but the 
computational complexity will increase. In the case of QP = 27 and QP = 37, two video 
sequences “BasketballDrive” and “BQMall” were selected to test the prediction accuracy. 
We conducted experiments for this purpose, and the relationship between threshold and 
accuracy is shown in Figure 8. In our method, the overall accuracy of the proposed method 
is between 80% and 90%. When the QP value is greater than 28, we set the threshold TH3 
to 1.7; otherwise, we set the threshold TH3 to 1.2. 

 
Figure 8. Prediction accuracy at different thresholds. 

3.3. The Overall Algorithm 
The flowchart is shown in Figure 9, and the specific steps are as follows: 
Step 1: Calculate the gradient structure similarity of every 2 CUs in the 4 sub-CUs 

under the current CU node according to formula (10) to get 6 GSIM values, and then take 
the mean value to obtain the average gradient structure similarity MGSSIM of the current 
CU. 

Step 2: When the average gradient magnitude similarity is greater than the threshold 
TH2, indicating that the four sub-CUs are extremely similar and no tree partition is 
performed. The intra-prediction modes are directly traversed with the size of the current 
CU. The same is true for coding, and the recursive traversal of the current CU is ended. 

Step 3: If the average gradient structure similarity deviation is less than the threshold 
TH1, it means that the difference between the four sub-CUs is too large, and the quad-tree 
division is performed directly to divide the current CU into four smaller CUs, that is, the 
recursive traversal of the current CU is skipped and the recursive traversal of the four sub-
Cu is directly entered. 

Step 4: if the average gradient structure similarity is greater than the threshold TH1 
and less than the threshold TH2, we make a multi-type tree division decision. The texture 
direction of the CU is determined according to the standard deviation of the current 
coding block in different directions. If the standard deviation VSD  in the vertical 
direction is greater than the standard deviation HSD  in the horizontal direction, which 
indicates that the texture features of the CU are mainly in the horizontal direction. The 
current CU can skip subsequent vertical divisions, including vertical binary trees and 
vertical ternary trees. On the contrary, the current CU can skip the subsequent horizontal 
binary tree and horizontal ternary tree. 

This section is not mandatory but may be added if there are patents resulting from 
the work reported in this manuscript. 

70
75
80
85
90
95

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ac
c(

%
)

TH3

BasketballDrive(QP27) BasketballDrive(QP37)

BQMall(QP27) BQMall(QP37)

Figure 8. Prediction accuracy at different thresholds.



Symmetry 2022, 14, 2644 12 of 18

3.3. The Overall Algorithm

The flowchart is shown in Figure 9, and the specific steps are as follows:
Step 1: Calculate the gradient structure similarity of every 2 CUs in the 4 sub-CUs under

the current CU node according to formula (10) to get 6 GSIM values, and then take the mean
value to obtain the average gradient structure similarity MGSSIM of the current CU.

Step 2: When the average gradient magnitude similarity is greater than the threshold
TH2, indicating that the four sub-CUs are extremely similar and no tree partition is per-
formed. The intra-prediction modes are directly traversed with the size of the current CU.
The same is true for coding, and the recursive traversal of the current CU is ended.

Step 3: If the average gradient structure similarity deviation is less than the threshold
TH1, it means that the difference between the four sub-CUs is too large, and the quad-tree
division is performed directly to divide the current CU into four smaller CUs, that is, the
recursive traversal of the current CU is skipped and the recursive traversal of the four
sub-Cu is directly entered.

Step 4: if the average gradient structure similarity is greater than the threshold TH1
and less than the threshold TH2, we make a multi-type tree division decision. The texture
direction of the CU is determined according to the standard deviation of the current coding
block in different directions. If the standard deviation SDV in the vertical direction is
greater than the standard deviation SDH in the horizontal direction, which indicates that
the texture features of the CU are mainly in the horizontal direction. The current CU
can skip subsequent vertical divisions, including vertical binary trees and vertical ternary
trees. On the contrary, the current CU can skip the subsequent horizontal binary tree and
horizontal ternary tree.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

Calculate the average 
gradient structure similarity 

of the current CU

MGSSIM>TH2

MGSSIM<TH1

Sver/hor>TH3

Sver/hor<TH3

Dafault patition modes of 
vtm

skip horizontal division

skip vertical division

perform quadtree division

early termination of division

Start CU 
encoding

YES

NO

YES

NO

YES

NO

NO

Is the CU size 16x16 or 32x32?

Calculate the standard 
deviation of the current CU 

in the horizontal and 
vertical directions

Ending

YES

YES

NO

Sver/hor=SDV/SDH

 
Figure 9. The general framework of the proposed algorithm. 

4. Experimental Results 
The test conditions and software reference configuration of our proposed algorithm 

comply with the latest VTM configuration standard. Joint Video Experts Team (JEVT) 
specifies six types of video test sequences (A1, A2, B, C, D, E) for the VVC standard to test 
the performance of the algorithm. The video test sequences of various types, different 
resolutions, and frame rates of VTM standard from 416 × 240 to 3840 × 2160 are selected, 
and the VTM10.0 model is used for testing. The experimental environment of the test 
sequence and the configuration parameters of the VTM test model are as follows: 
processor Intel® Core TM i5-10500 G CPU, 2.90 GHz main frequency, RAM 8.0 GB, 
Windows 10 64-bit operating system, and the software development tool is Microsoft 
Visual Studio 2017. When testing the performance of the algorithm, the standard test 
video sequences recommended by JVET are encoded in the All Intra (AI) access mode, 
and the number of encoded frames for each sequence is selected as 100, QP = {22, 27, 32, 
37}. The performance of the algorithm is measured by metrics such as the percentage of 
time saved and the Bjøntegaard incremental bit rate, and the data are averaged under four 
different QP values. To accurately evaluate the coding performance, this algorithm uses 

Figure 9. The general framework of the proposed algorithm.



Symmetry 2022, 14, 2644 13 of 18

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.

4. Experimental Results

The test conditions and software reference configuration of our proposed algorithm
comply with the latest VTM configuration standard. Joint Video Experts Team (JEVT)
specifies six types of video test sequences (A1, A2, B, C, D, E) for the VVC standard to
test the performance of the algorithm. The video test sequences of various types, different
resolutions, and frame rates of VTM standard from 416 × 240 to 3840 × 2160 are selected,
and the VTM10.0 model is used for testing. The experimental environment of the test
sequence and the configuration parameters of the VTM test model are as follows: processor
Intel® Core TM i5-10500 G CPU, 2.90 GHz main frequency, RAM 8.0 GB, Windows 10 64-bit
operating system, and the software development tool is Microsoft Visual Studio 2017. When
testing the performance of the algorithm, the standard test video sequences recommended
by JVET are encoded in the All Intra (AI) access mode, and the number of encoded frames
for each sequence is selected as 100, QP = {22, 27, 32, 37}. The performance of the algorithm is
measured by metrics such as the percentage of time saved and the Bjøntegaard incremental
bit rate, and the data are averaged under four different QP values. To accurately evaluate
the coding performance, this algorithm uses the coding time (∆T) to evaluate the coding
efficiency, and uses the Bjøntegaard incremental bit rate (BDBR) to evaluate the coding
quality. The calculation method (17) is:

∆T =
Tproposed − Tvtm

Tvtm
(17)

Among them, Tvtm is the time required for VTM10.0 standard algorithm coding,
Tproposed is the time required by the improved algorithm, ∆T is the percentage of the differ-
ence between the proposed algorithm and the VTM10.0 intra-frame prediction algorithm
predicted coding time.

4.1. Comparison with the VTM 10.0 Algorithm

Experiments are carried out according to the above settings, and the comparison
results between the algorithm in this paper and the standard algorithm are shown in
Table 3. It can be seen that compared with the VTM10.0 standard algorithm, the VVC
intra-frame CU partition mode fast decision algorithm proposed in this paper has good
coding performance, the average coding time is improved by 49.32%, and the BDBR is
only increased by 1.38%. The sequence that saves the most time is BQMall, which saves
56.84% with a 1.46% BDBR increase. The sequence that saves the least time is Kimono,
which achieves 38.4% encoding time saving, while only 0.41% BDBR increase. At the same
time, the sequence with the largest increase in BDBR is BasketballDrill, and the sequence
with the least increase in BDBR is Kimono, which shows that the proposed algorithm is
stable and can achieve better complexity reduction on different video sequences.

To further analyze the performance of the proposed algorithm, Figure 10 shows the
rate-distortion curves of various sequences using VTM10.0 and the proposed algorithm.
The coding curves of the two are almost identical, indicating that the proposed algorithm
has almost no decrease in coding performance.



Symmetry 2022, 14, 2644 14 of 18

Table 3. Coding performance of the proposed algorithm under VTM10.0.

Sequence Category Video Sequence
The Proposed Algorithm

BDBR (%) ∆T (%)

A1
Tango2 1.06 45.97

FoodMarket 1.21 49.62
Campfire 1.28 51.18

A2
CatRobot1 1.18 46.21

DaylightRoad2 1.27 49.50
ParkRunning3 1.32 52.31

B

BasketballDrive 2.28 55.09
BQTerrace 1.34 52.18

Cactus 1.29 52.32
Kimono 0.41 38.4

ParkScene 0.51 46.31

C

BasketballDrill 2.71 47.36
BQMall 1.46 56.84

PartyScene 1.13 48.78
RaceHorsesC 0.82 48.55

D

BasketballPass 1.42 49.26
BQSquare 1.54 43.21

BlowingBubbles 1.37 48.81
RaceHorses 1.14 44.20

E
FourPeople 1.63 53.36

Johnny 1.98 51.89
KristenAndSara 1.93 53.63

Average 1.38 49.32

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 18 
 

 

KristenAndSara 1.93 53.63 
 Average 1.38 49.32 

BQTerrace RaceHorsersC

BlowingBubbles FourPeople  

Figure 10. RD curves of VTM10.0 and the proposed algorithm in each sequence. 

4.2. Comparison with Other Algorithms 
In addition, we also compare the algorithm proposed in this chapter with the existing 

CU fast partitioning decision algorithm. Considering the different test sequences used by 
different algorithms, only the same test sequences are selected for comparison to ensure 
the fairness of the comparison results. In the third algorithm, some experimental results 
are not given, so they are indicated by “-”. Since the human eye is generally not very 
sensitive to the chromaticity component, the focus here is on the contrast of the luminance 
component. In order to visually evaluate the performance of different methods, ΔT and 
BDBR were used as measures in the comparison. The algorithms involved in the 
comparison include Zhang [17], Zhao [21], and Tang [27], and their results are shown in 
Table 4. As can be seen from the table, the performance of our algorithm exceeds that of 
the literature [28] because the time saved by our algorithm far exceeds the performance of 
this algorithm. The performance of the algorithm in this paper and the algorithm in [17] 
are not comparable because time and BDBR are mutually constrained. In addition, we 
compared the proposed algorithm with the existing SVM-based algorithm [21]. With the 
same test sequence, reference [21] can achieve a time saving of 54.30%, but the BDBR 
increases by 1.54%. Although a significant saving in coding time can be achieved, the 
coding performance suffers a significant loss and is not suitable for applications requiring 
high coding quality. 

In this paper, we study the CU fast partitioning decision algorithm based on three 
methods and compare the complexity reduction effect with RD performance, and the 
reduction of coding complexity is the main improvement of our algorithm. As shown in 
Figure 11. Compared with the literature [17], the algorithm proposed in this paper saves 
0.22% in complexity reduction but improves 0.48% in coding loss. Compared with the 

Figure 10. RD curves of VTM10.0 and the proposed algorithm in each sequence.



Symmetry 2022, 14, 2644 15 of 18

4.2. Comparison with Other Algorithms

In addition, we also compare the algorithm proposed in this chapter with the existing
CU fast partitioning decision algorithm. Considering the different test sequences used by
different algorithms, only the same test sequences are selected for comparison to ensure the
fairness of the comparison results. In the third algorithm, some experimental results are not
given, so they are indicated by “-”. Since the human eye is generally not very sensitive to
the chromaticity component, the focus here is on the contrast of the luminance component.
In order to visually evaluate the performance of different methods, ∆T and BDBR were
used as measures in the comparison. The algorithms involved in the comparison include
Zhang [17], Zhao [21], and Tang [27], and their results are shown in Table 4. As can be
seen from the table, the performance of our algorithm exceeds that of the literature [28]
because the time saved by our algorithm far exceeds the performance of this algorithm. The
performance of the algorithm in this paper and the algorithm in [17] are not comparable
because time and BDBR are mutually constrained. In addition, we compared the proposed
algorithm with the existing SVM-based algorithm [21]. With the same test sequence,
reference [21] can achieve a time saving of 54.30%, but the BDBR increases by 1.54%.
Although a significant saving in coding time can be achieved, the coding performance
suffers a significant loss and is not suitable for applications requiring high coding quality.

Table 4. The encoding performance of the proposed algorithm compares with previous works.

Class Video
Sequence

Zhang [17] Zhao [21] Tang [27] Proposed
Algorithm

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

B
Kimono 1.16 48.76 1.31 54.68 0.87 33.32 0.41 38.40

ParkScene 1.34 55.93 1.45 48.73 0.83 35.41 0.51 46.31
BQTerrace 0.88 50.02 1.08 45.30 0.95 34.50 1.34 52.18

C

PartyScene 0.63 49.52 0.87 52.74 0.55 31.10 1.13 48.78
Race

HorsesC 0.71 47.02 1.25 51.07 0.37 23.63 0.82 48.55

Basket
ballDrill 0.96 45.69 1.60 53.92 1.30 33.39 2.71 47.36

D

Blowing
Bubbles 0.61 42.07 1.57 51.33 0.95 33.90 1.37 48.81

Race
Horses 0.68 43.28 1.14 55.79 0.71 31.79 0.82 44.20

BQSquare 0.45 37.14 0.93 54.78 0.68 30.73 1.54 4.21

E

Johnny - - 2.37 54.63 - - 1.98 51.89
Four

People 1.07 54.26 2.19 55.21 1.38 38.01 1.63 53.36

Kristen
AndSara 1.12 52.81 1.88 55.46 1.61 34.84 1.93 53.63

Average 0.87 47.78 1.54 54.30 0.93 32.78 1.35 48.06

In this paper, we study the CU fast partitioning decision algorithm based on three
methods and compare the complexity reduction effect with RD performance, and the
reduction of coding complexity is the main improvement of our algorithm. As shown in
Figure 11. Compared with the literature [17], the algorithm proposed in this paper saves
0.22% in complexity reduction but improves 0.48% in coding loss. Compared with the
literature [21], our algorithm is more stable, and although it does not save more coding time,
it reduces nearly 0.2% in terms of coding efficiency loss. Compared with the literature [27],
the algorithm proposed in this chapter slightly increases the coding efficiency loss but
saves more coding time by about 15.28%. Compared with the algorithms proposed in the
literature [17,21,27], the coding efficiency is significantly improved, the image quality loss



Symmetry 2022, 14, 2644 16 of 18

is smaller, and the overall performance is better. The algorithm in this paper effectively
reduces the intra-frame coding time and improves the coding efficiency, while maintaining
no significant degradation in code rate and PSNR.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 18 
 

 

literature [21], our algorithm is more stable, and although it does not save more coding 
time, it reduces nearly 0.2% in terms of coding efficiency loss. Compared with the 
literature [27], the algorithm proposed in this chapter slightly increases the coding 
efficiency loss but saves more coding time by about 15.28%. Compared with the 
algorithms proposed in the literature [17,21,27], the coding efficiency is significantly 
improved, the image quality loss is smaller, and the overall performance is better. The 
algorithm in this paper effectively reduces the intra-frame coding time and improves the 
coding efficiency, while maintaining no significant degradation in code rate and PSNR. 

Table 4. The encoding performance of the proposed algorithm compares with previous works. 

Class Video 
Sequence 

Zhang [17] Zhao [21] Tang [27] Proposed 
Algorithm 

BDBR 
(%) 

TS 
(%) 

BDBR 
(%) 

TS 
(%) 

BDBR 
(%) 

TS 
(%) 

BDBR 
(%) 

TS 
(%) 

B 
Kimono 1.16 48.76 1.31 54.68 0.87 33.32 0.41 38.40 

ParkScene 1.34 55.93 1.45 48.73 0.83 35.41 0.51 46.31 
BQTerrace 0.88 50.02 1.08 45.30 0.95 34.50 1.34 52.18 

C 

PartyScene 0.63 49.52 0.87 52.74 0.55 31.10 1.13 48.78 
Race 

HorsesC 
0.71 47.02 1.25 51.07 0.37 23.63 0.82 48.55 

Basket 
ballDrill 0.96 45.69 1.60 53.92 1.30 33.39 2.71 47.36 

D 

Blowing 
Bubbles 0.61 42.07 1.57 51.33 0.95 33.90 1.37 48.81 

Race 
Horses 0.68 43.28 1.14 55.79 0.71 31.79 0.82 44.20 

BQSquare 0.45 37.14 0.93 54.78 0.68 30.73 1.54 4.21 

E 

Johnny - - 2.37 54.63 - - 1.98 51.89 
Four 

People 
1.07 54.26 2.19 55.21 1.38 38.01 1.63 53.36 

Kristen 
AndSara 1.12 52.81 1.88 55.46 1.61 34.84 1.93 53.63 

Average 0.87 47.78 1.54 54.30 0.93 32.78 1.35 48.06 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Zhang Zhao Tang Proposed

BDBR/%

0

10

20

30

40

50

60

Zhang Zhao Tang Proposed

△T/%

 

Figure 11. Comparison of experimental results. 

5. Summary 
This paper proposes a fast coding algorithm for VVC intra-frame based on gradient 

structure similarity and directional features. First, a new image quality evaluation 
method—SSIM is introduced in detail, and then the concept of gradient is proposed. The 
main idea of the algorithm is composed of two main parts. In the first part, given the 
feature that gradient structure similarity can well extract edge information of coding 

Figure 11. Comparison of experimental results.

5. Summary

This paper proposes a fast coding algorithm for VVC intra-frame based on gradient
structure similarity and directional features. First, a new image quality evaluation
method—SSIM is introduced in detail, and then the concept of gradient is proposed.
The main idea of the algorithm is composed of two main parts. In the first part, given
the feature that gradient structure similarity can well extract edge information of coding
blocks, the Sobel operator is utilized to extract the gradient features of each sub-CU
after the quadtree division, and calculate the average gradient structure similarity
between sub-CU. And then the average gradient structure similarity is compared with
the threshold value to further judge whether CU terminates partitioning or performs
quadtree partitioning. In the second part, considering that there is a strong correlation
between the texture direction and CU changes in different directions. The texture
direction can be judged by calculating the standard deviation of the current CU vertical
direction and horizontal direction, which avoids the unnecessary intra-frame candidate
division modes and greatly saves the coding time. The experimental results show that
compared with the original platform VTM10.0, the algorithm reduces the encoding time
by 49.32% on average while the BDBR only increases by 1.38%, which outperform the
state-of-the-art methods.

Author Contributions: Conceptualization, Z.J. and P.L.; methodology, Z.J. and J.Z.; software, P.L.;
validation, Z.J., Q.Z. and P.L.; formal analysis, P.L.; investigation, P.L.; resources, Q.Z. and J.Z.; data
curation, P.L.; writing—original draft, P.L.; writing—review and editing, Z.J. and J.Z.; visualization,
Z.J. and J.Z.; supervision, Q.Z.; project administration, Q.Z.; funding acquisition, Q.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
No. 61771432, and 61302118, the Basic Research Projects of Education Department of Henan
No. 21zx003, and No. 20A880004, the Key Research and Development Program of Henan
No. 222102210156, and the Postgraduate Education Reform and Quality Improvement Project of
Henan Province YJS2021KC12 and YJS2022AL034, the key Scientific and Technological Project of
Henan Province No. 222102210026, and No. 212102210238, and Henan Key Laboratory of Network
Cryptography Technology No. LNCT2021-A15.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2022, 14, 2644 17 of 18

References
1. Ye, Y.; He, Y.; Xiu, X. Manipulating ultra-high definition video traffic. IEEE MultiMedia 2015, 22, 73–81. [CrossRef]
2. Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits

Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]
3. Tan, T.K.; Weerakkody, R.; Mrak, M.; Ramzan, N.; Baroncini, V.; Ohm, J.; Sullivan, G.J. Video quality evaluation methodology and

verification testing of HEVC compression performance. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 76–90. [CrossRef]
4. Filippov, A.; Rufitskiy, V. Recent advances in intra prediction for the emerging h. 266/vvc video coding standard. In Proceedings

of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk,
Russia, 21–27 October 2019; pp. 525–530.

5. Chen, J.; Ye, Y.; Kim, S.H. Algorithm description for Versatile Video Coding and Test Model 8 (VTM 8). In Document JVET-Q1002;
JVET: Brussels, Belgium, 2020.

6. Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Complexity analysis of VVC intra coding. In Proceedings of the 2020 IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 3119–3123.

7. Mu, W.; Liang, Y.; Xu, S.; Zhang, W.; Liu, Y. Fast algorithm for HEVC intra-coding implemented by preprocessing. IET Image
Process. 2019, 13, 1578–1586. [CrossRef]

8. Lee, D.; Jeong, J. Fast intra coding unit decision for high efficiency video coding based on statistical information. Signal Process.
Image Commun. 2017, 55, 121–129. [CrossRef]

9. Sun, X.; Chen, X.; Xu, Y.; Wang, Y.; Yu, D. Fast CU partition strategy for HEVC based on Haar wavelet. IET Image Process.
2017, 11, 717–723. [CrossRef]

10. Du, B.; Siu, W.C.; Yang, X. Fast CU partition strategy for HEVC intra-frame coding using learning approach via random forests.
In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA),
Hong Kong, China, 16–19 December 2015; pp. 1085–1090.

11. Zhang, M.; Lai, D.; Liu, Z.; An, C. A novel adaptive fast partition algorithm based on CU complexity analysis in HEVC. Multimed.
Tools Appl. 2019, 78, 1035–1051. [CrossRef]

12. Zhang, Y.; Li, N.; Kwong, S.; Jiang, G.; Zeng, H. Statistical early termination and early skip models for fast mode decision in
HEVC INTRA coding. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–23. [CrossRef]

13. Jiménez-Moreno, A.; Martínez-Enríquez, E.; Díaz-De-María, F. Bayesian adaptive algorithm for fast coding unit decision in the
High Efficiency Video Coding (HEVC) standard. Signal Process. Image Commun. 2017, 56, 1–11. [CrossRef]

14. Sun, X.; Chen, X.; Xu, Y.; Xiao, Y.; Wang, Y.; Yu, D. Fast CU size and prediction mode decision algorithm for HEVC based on
direction variance. J. Real-Time Image Process. 2019, 16, 1731–1744. [CrossRef]

15. Xu, M.; Li, T.; Wang, Z.; Deng, X.; Yang, R.; Guan, Z. Reducing complexity of HEVC: A deep learning approach. IEEE Trans. Image
Process. 2018, 27, 5044–5059. [CrossRef] [PubMed]

16. Chen, K.; Zeng, X.; Fan, Y. CNN oriented fast CU partition decision and PU mode decision for HEVC intra encoding. In
Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao,
China, 31 October–3 November 2018; pp. 1–3.

17. Zhang, Q.; Zhao, Y.; Jiang, B.; Huang, L.; Wei, T. Fast CU Partition Decision Method Based on Texture Characteristics for
H.266/VVC. IEEE Access 2020, 8, 203516–203524. [CrossRef]

18. Lei, M.; Luo, F.; Zhang, X.; Wang, S.; Ma, S. Look-ahead prediction based coding unit size pruning for VVC intra coding. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4120–4124.

19. Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Fast partitioning decision scheme for versatile video coding intra-frame
prediction. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain,
12–14 October 2020; pp. 1–5.

20. Cui, J.; Zhang, T.; Gu, C.; Zhang, X.; Ma, S. Gradient-Based Early Termination of CU Partition in VVC Intra Coding. In Proceedings
of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; pp. 103–112.

21. Zhao, J.; Wu, A.; Zhang, Q. SVM-Based Fast CU Partition Decision Algorithm for VVC Intra Coding. Electronics
2022, 11, 2147. [CrossRef]

22. Zhang, Q.; Wang, Y.; Huang, L.; Jiang, B.; Wang, X. Fast CU partition decision for H. 266/VVC based on the improved DAG-SVM
classifier model. Multimed. Syst. 2021, 27, 1–14. [CrossRef]

23. Chen, F.; Ren, Y.; Peng, Z.; Jiang, G.; Cui, X. A fast CU size decision algorithm for VVC intra prediction based on support vector
machine. Multimed. Tools Appl. 2020, 79, 27923–27939. [CrossRef]

24. Huang, Y.H.; Chen, J.J.; Tsai, Y.H. Speed Up H. 266/QTMT Intra-Coding Based on Predictions of ResNet and Random Forest
Classifier. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
10–12 January 2021; pp. 1–6.

25. Yang, H.; Shen, L.; Dong, X.; Ding, Q.; An, P.; Jiang, G. Low-complexity CTU partition structure decision and fast intra mode
decision for versatile video coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1668–1682. [CrossRef]

26. Zhang, Q.; Wang, Y.; Huang, L.; Jiang, B. Fast CU Partition and Intra Mode Decision Method for H.266/VVC. IEEE Access
2020, 8, 117539–117550. [CrossRef]

27. Tang, G.; Jing, M.; Zeng, X.; Fan, Y. Adaptive CU split decision with pooling-variable CNN for VVC intra encoding. In Proceedings
of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 1–4 December 2019; pp. 1–4.

http://doi.org/10.1109/MMUL.2015.26
http://doi.org/10.1109/TCSVT.2012.2221191
http://doi.org/10.1109/TCSVT.2015.2477916
http://doi.org/10.1049/iet-ipr.2018.6640
http://doi.org/10.1016/j.image.2017.03.019
http://doi.org/10.1049/iet-ipr.2016.1082
http://doi.org/10.1007/s11042-018-6105-3
http://doi.org/10.1145/3321510
http://doi.org/10.1016/j.image.2017.04.004
http://doi.org/10.1007/s11554-017-0682-7
http://doi.org/10.1109/TIP.2018.2847035
http://www.ncbi.nlm.nih.gov/pubmed/29994256
http://doi.org/10.1109/ACCESS.2020.3036858
http://doi.org/10.3390/electronics11142147
http://doi.org/10.1007/s00530-020-00688-z
http://doi.org/10.1007/s11042-020-09401-8
http://doi.org/10.1109/TCSVT.2019.2904198
http://doi.org/10.1109/ACCESS.2020.3004580


Symmetry 2022, 14, 2644 18 of 18

28. Tissier, A.; Hamidouche, W.; Vanne, J.; Galpin, F.; Menard, D. CNN oriented complexity reduction of VVC intra encoder.
In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates,
25–28 October 2020; pp. 3139–3143.

29. Li, T.; Xu, M.; Tang, R.; Chen, Y.; Xing, Q. DeepQTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode
VVC. IEEE Trans. Image Process. 2021, 30, 5377–5390. [CrossRef]

30. Park, S.; Kang, J.W. Fast multi-type tree partitioning for versatile video coding using a lightweight neural network. IEEE Trans.
Multimed. 2020, 23, 4388–4399. [CrossRef]

31. Li, Y.; Li, L.; Fang, Y.; Peng, H.; Ling, N. Bagged Tree and ResNet-Based Joint End-to-End Fast CTU Partition Decision Algorithm
for Video Intra Coding. Electronics 2022, 11, 1264. [CrossRef]

32. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
33. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity.

IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
34. Liu, A.; Lin, W.; Narwaria, M. Image quality assessment based on gradient similarity. IEEE Trans. Image Process.

2011, 21, 1500–1512. [PubMed]

http://doi.org/10.1109/TIP.2021.3083447
http://doi.org/10.1109/TMM.2020.3042062
http://doi.org/10.3390/electronics11081264
http://doi.org/10.1109/97.995823
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://www.ncbi.nlm.nih.gov/pubmed/22106145

	Introduction 
	Related Works 
	Research Status of HEVC Fast Algorithms 
	Research Status of VVC Fast Algorithms 

	Method 
	The Proposed Fast Cu Partitioning Algorithm 
	Skip Non-Optimal Partition Patterns Based on Standard Deviation 
	The Overall Algorithm 

	Experimental Results 
	Comparison with the VTM 10.0 Algorithm 
	Comparison with Other Algorithms 

	Summary 
	References

