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Abstract: The H.266/Versatile Video Coding (VVC) standard poses a great challenge for encoder
design due to its high computational complexity and long encoding time. In this paper, the fast
partitioning decision of coding blocks is investigated to reduce the computational complexity and
save the coding time of VVC intra-frame predictive coding. A fast partitioning algorithm of VVC intra-
frame coding blocks based on gradient structure similarity and directional features is proposed. First,
the average gradient structure similarity of four sub-coding blocks under the current coding block is
calculated, and two thresholds are set to determine whether the current coding block terminates the
partitioning early or performs quadtree partitioning. Then, for the coding blocks that do not satisfy
the above thresholds, the standard deviation of the vertical and horizontal directions of the current
coding block is calculated to determine the texture direction and skip unnecessary partitioning
to reduce computational complexity. Based on the VTM10.0 platform, this paper evaluates the
performance of the designed fast algorithm for partitioning within the VVC coding unit. Compared
with VTM10.0, the encoding rate is improved by 1.38% on average, and the encoder execution time
is reduced by 49.32%. The overall algorithm achieves a better optimization of the existing VVC
intra-frame coding technique.

Keywords: VVC; fast split; GDSIM; texture features

1. Introduction

With the advent of the information age, people have higher requirements for video
resolution in daily life, which brings great pressure to the transmission of video on the
network. On the one hand, the demand for ultra-high definition (UHD) video is increasing
day by day, and the data volume of video data is also increasing with the improvement
of clarity. On the other hand, due to the high-speed circulation of information, the video
flow on the communication network also grows rapidly. Video coding is not only the key
technology for efficient storage and transmission of multimedia information but also an
important part of modern information technology. At present, one of the development
trends of video technology is to seek a higher resolution and better clarity, to express
natural scenes more realistically and clearly. For example, Japan Broadcasting Corporation
(NHK) has been committed to the compression and transmission technology research of
4K (3840 × 2160) and even 8K (7680 × 4320) UHD video programs [1]. However, ultra-high
resolution leads to a sharp increase in video data, which makes it very difficult to store
and transmit video data [2]. Currently, the relatively perfect international video coding
standard high-efficiency video coding (HEVC) is mainly oriented to HD (720P, 1080I, 1080P)
video coding [3], which is unable to meet the current requirements of emerging video
coding such as ULTRA-high definition, high dynamic range, and 360◦ VR. Therefore, the
research and standard formulation of the next generation ultra-high definition video coding
technology has become very urgent. Similar to the advent of H.265/HEVC, H.266/VVC is
for further optimizing the compression, which can save about 50% of the data traffic and at

Symmetry 2022, 14, 2644. https://doi.org/10.3390/sym14122644 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122644
https://doi.org/10.3390/sym14122644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5617-3953
https://doi.org/10.3390/sym14122644
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122644?type=check_update&version=1


Symmetry 2022, 14, 2644 2 of 18

the same time ensure that the definition of video transmission remains unchanged, so VVC
has obvious advantages.

Many new intra-frame coding techniques have been proposed in VVC, such as the
quadtree nested multi-type tree (QTMT) partition method, 67 intra-prediction modes,
Position Dependent Intra Prediction Combination (PDPC), Linear model intra-prediction
techniques across luma-chroma, Multi-reference line Intra prediction technology, Intra-
frame prediction sub-block partitioning techniques, Matrix-weighted average intra-frame
prediction techniques, etc. [4,5]. Among them, the newly introduced multi-type tree (MTT)
partition process occupies a large amount of intra-frame coding time. Disabling MTT
can save about 90% of the encoding time, and there is a huge space for optimization [6].
In addition, new key technologies in each module bring high computational complexity
to video coding, so more and more researchers began to optimize different modules to
improve video coding speed, laying a solid foundation for the latest multi-function video
coding standard H.266/VVC.

In the coding structure of HEVC, the coding tree unit (CTU) plays an important
role. The CTU is the root node of the quadtree partition in HEVC. At the coding unit
layer, each coding unit block will be divided into prediction units (PUs) and transform
units (TUs) with symmetrical or asymmetrical structures. As with CU partitioning, for
prediction and transformation units PU and TU, the size of PU and TU under each
CU will not exceed the size of the current CU. To better improve the coding efficiency,
it is necessary to determine the optimal CU partition mode through rate-distortion
optimization in the tree coding unit layer (CTU). A key feature of HEVC is that there are
multiple division concepts: CU, PU, and TU. However, these concepts do not exist in
VVC, and CU is used as a uniform representation.

The new QTMT partition method in VVC makes CU partition more flexible, adding
rectangular blocks no longer limited to squares. VVC still adopts the CTU structure in
HEVC. In particular, the CTU will first perform quad-tree partition (QT), and then further
conduct multi-type tree partition. Multi-type tree partition includes four partition methods,
as shown in Figure 1, which are vertical binary tree division (BTV), horizontal binary tree
division (BTH), vertical ternary tree division (TTV), and horizontal ternary tree division
(TTH). In VVC, the maximum size allowed for the root node of the quadtree is 128 × 128
while the minimum size allowed for the child node of the quadtree is 16 × 16. But the
maximum size allowed for the root node of the ternary tree is 64 × 64 and the maximum
size allowed for the child node of the ternary tree is 4 × 4. Moreover, the maximum size
allowed for the root node of the binary tree is 64 × 64 and the minimum size allowed for
the child node of the binary tree is 4 × 4. For a clearer understanding of the coding unit
partition process, Figure 2 shows an example diagram.
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In the CU partition process of VVC, five partition modes need to be traversed at
most when using VTM for coding. Under the same depth, CUs are divided in the order
of QT, BTH, BTV, TTH, and TTV. To obtain the CU optimal partition decision, all possible
partition structure combinations are iteratively tried to select the partition structure with
the lowest distortion cost. Although this partitioning method can obtain the globally
optimal partition structure, it also consumes a lot of time. After adding binary tree (BT)
and ternary tree (TT) to VVC division, the order of selecting division modes may be
inconsistent during the traversal process, but the obtained division results are the same.
To this end, we can first carry out a horizontal binary tree partition, and again carry
out a horizontal binary tree partition for the two sub-blocks respectively, to obtain four
sub-blocks in the same horizontal direction. The result is the same as that obtained by
first performing one horizontal ternary tree partition and then dividing the middle block
by a horizontal binary tree.

The way and order of CU partitioning are different, and the same partition structure
may be obtained, this situation is called partition redundancy. Partitioning redundancy in-
creases the computational complexity of coding by repeatedly computing the rate-distortion
generation values of the same partitioning structure. To avoid similar situations, VVC
imposes some restrictions on the multi-fork tree partitioning process. In the above case,
VVC prohibits the middle part of the ternary tree from performing the partition with the
binary tree in the same direction as last time. In addition, partition restrictions also occur in
the following cases. As shown in Figure 3, after the square block is divided into a vertical
binary tree, the horizontal binary tree division is performed on both the left and right
sub-blocks. The result will be consistent with the direct quad-tree division of the parent
block, and four identical square sub-blocks are obtained. Since the right sub-block is parti-
tioned first, the horizontal binary tree splitting of the left sub-block should be prohibited.
And if the parent block first performs horizontal binary tree splitting, and the sub-block
does vertical binary tree splitting, the same result will be obtained. Therefore, the lower
sub-block should be partitioned, and the vertical binary tree splitting of the upper sub-block
should be prohibited.
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The new multi-type tree partition methods in VVC bring a heavy amount of calculation,
followed by a high computational burden of intra-frame coding. The standard encoder
traverses all partitioning possibilities to find the optimal partitioning method when making
multi-type tree partitioning decisions. Figure 4 shows the result of the reduction of the
coding time by the binary tree and ternary tree partition [6]. From this, it can be seen
that the structure of the quadtree nested multi-type tree added by VVC affects the coding
time. When the VTM encoder forbids binary tree partitioning, the average coding time
of each video sequence is saved by 75%, while when the coding blocks are prohibited
from ternary tree partition, the average coding time of each video sequence is saved by
48%. Furthermore, when both BT and TT splits are disabled, the average encoding time
is reduced by about 92%. Analysis shows that multi-type tree partitioning takes up a
lot of coding time. Therefore, research that focuses on reducing BT/TT partitioning can
achieve significant coding complexity reduction, which is more conducive to the real-time
application of encoders.
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Our main contributions in this paper are: A fast CU partition in the algorithm for
VVC is proposed. In the quadtree partition stage, the image edge information can be
extracted well according to the similarity of gradient structure, and the average gradient
structure similarity of coding units can be predicted in the early stage of intra-frame
prediction to terminate the partition in advance or carry out the quadtree partition. In the
multi-type tree partition stage, the texture direction of CU is determined according to the
standard deviation of different directions, and unnecessary intra-frame partition methods
are skipped to reduce the complexity of intra-frame coding. The experimental results show
that the proposed algorithm focuses on the rapid partition of coding units. By terminating
the division of coding blocks in advance, the process of rate-distortion optimization is
reduced, which improves the coding efficiency and saves coding time.

The remaining of this paper is organized as follows. Section 2 reviews the related work
for HEVC and VVC. Section 3 presents the fast partitioning algorithm for VVC intra-frame
coding block. Section 4 shows the experimental results to verify the effectiveness of our
proposed approach. Section 5 concludes the paper.

2. Related Works

With the continuous development of video coding standards, the coding performance
is also improving, but it also causes the explosive growth of visual data and greater coding
time complexity. The CU partitioning process for intra-frame coding occupies most of the
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coding time. For this reason, most intra-coding fast algorithms focus on how to reduce
the complexity of CU partitioning. A large number of scholars have contributed to the
complexity reduction of coding time while ensuring coding performance. And their main
work is to optimize the relevant algorithms to improve the coding speed.

2.1. Research Status of HEVC Fast Algorithms

Many works have been done to reduce the complexity of CU partition complexity in
HEVC. To realize the fast partitioning algorithm of intra-frame coding, a lot of research
has been carried out by the predecessors. Mu et al. [7] proposed a fast partition algorithm
based on the original pixel gradient texture analysis, which judged the partition method by
comparing the gradient texture of the CU, to terminate unnecessary partitions and reduce
the coding complexity. Lee et al. [8] utilized grayscale histograms to reduce the depth
range of the CU and then compared the sum of the absolute differences of the current
depth CU with the corresponding depth rate-distortion (RD) threshold within the depth
range, to determine whether to terminate the CU partition. Sun et al. [9] proposed to
calculate the Haar wavelet coefficients of the current CU according to the texture features
of the CU and compared it with the threshold, thereby saving the coding time of the CU.
Du et al. [10] used a random forest classifier for offline learning to speed up the CU
partitioning process based on the classification results. Zhang et al. [11] used two features
of entropy and texture contrast from the perspective of micro-texture and macro-texture of
coding blocks, so that block partitioning can be accurately predicted, which in turn saves
time. Zhang et al. [12] proposed a CU partitioning algorithm based on spatial correlation,
which predicts the minimum and maximum values of the current CU depth range by the
depth of adjacent CUs, thus reducing the number of traversals for quadtree partitioning
and saving coding time. Jimenez et al. [13] proposed a CU depth decision algorithm,
which determines the CU depth by performing statistical analysis of the CU depth using
hypothesis testing. Sun et al. [14] proposed a fast CU partitioning algorithm for HEVC
intraframe coding, which first obtains the CU texture complexity from a specific coding
block and then uses the texture complexity of the CU to decide whether a CU should
continue to be partitioned into four sub-CUs. In addition, fast CU partition algorithms
based on machine learning are becoming more and more popular. Xu et al. [15] proposed
a fast CU partition decision algorithm based on convolutional neural network (CNN),
and designed a hierarchical CNN with early termination (ETH-CNN) to learn to predict
CU partition maps. Fan et al. [16] used two convolutional neural networks to decide
the partition mode of CU and prediction unit respectively and used the pixel points and
quantization parameter (QP) information of the encoded image in training the convolutional
neural network. The above algorithms are proposed based on the quadtree division
structure in HEVC, which optimize the coding process without affecting the coding quality
of the encoder, to terminate the CU partition process and rate distortion optimization (RDO)
operation in advance. However, they do not apply to the multi-type tree structure proposed
in the new standard.

2.2. Research Status of VVC Fast Algorithms

The above algorithms are all oriented to the HEVC coding standard using QT partition,
while VVC exploits a more complex quad, ternary, and binary tree coding structure to fur-
ther compress the video. Combined with the newly added intra-frame coding technology,
we find a coding optimization method suitable for VVC. To reduce the coding complexity
in VVC, researchers have put forward a large number of fast partitioning algorithms, which
can be roughly divided into three categories: the traditional method, the second method
based on machine learning, and the third method based on neural networks.

In the traditional method, the CU partition is terminated in advance by acquir-
ing CU characteristics such as CU texture and CU partition depth to save coding time.
Zhang et al. [17] proposed a fast intra-frame coding algorithm based on texture features.
Among them, the algorithm uses texture energy and texture direction for CU delineation
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in advance, thus terminating unnecessary delineation and reducing the coding com-
plexity. Lei et al. [18] calculated and analyzed the distribution of Hadamard cost and
rate-distortion cost, and designed a CU partition early termination strategy based on the
Bayesian decision criterion. Saldanha et al. [19] judged the texture direction according
to the variance and intra-prediction mode of the current CU and skipped unnecessary
partition modes according to the texture direction. Cui et al. [20] determined the proba-
bility of each partition mode according to the gradients in the horizontal and vertical
directions and skipped the division mode with a lower probability.

The second category is machine learning-based methods using decision trees (DT),
support vector machines (SVM), and other methods to speed up CU division. Among
them, SVM is very popular to accelerate CU partition. Zhao et al. [21] proposed a fast CU
division decision algorithm based on SVM, analyzed the ratio of various CU size division
patterns, and trained SVM models to accelerate CU division ratio and edge point ratio.
Zhang et al. [22] proposed an intra-coding complexity reduction technique based on an
improved SVM to classify the CU partition decision. Chen et al. [23] proposed an SVM-
based CU partition early termination algorithm, which selects CU entropy and texture
contrast to represent the characteristics of CU partition direction, and predicts specific CU
partition direction through SVM. Besides support vector machines, there are other machine
learning-based algorithms. Huang et al. [24] used the Resnet neural network to predict the
division depth range of CU to terminate the CU partition in advance. For the CU that does
not meet the termination partition, the classification type is judged according to the random
forest classifier, to save the coding time. Yang et al. [25] designed a decision tree-based CU
partition mode selection algorithm (CSD-SL), but it needed to train different decision tree
models for different quantitative parameters and adopted more characteristic parameters
with high complexity. Zhang et al. [26] proposed an algorithm for fast partitioning of
coding blocks by using a random forest classifier model and fast intra-frame mode selection
based on texture features of video images.

The third category is neural network-based methods. In recent years, deep learning
frameworks have developed rapidly, and some researchers exploit trained neural networks
to predict CU partition patterns. Tang et al. [27] constructed a CNN model with variable
pooling layers, which can flexibly adapt to various CU shapes and determine in advance
whether the CU needs to be divided. Tissier et al. [28] took a 64 × 64 size CU as the input
of the CNN network, and calculated the edge probability on the 4 × 4 block boundary to
determine the partition probability, thereby terminating the CU division process early and
saving a lot of coding time. Li et al. [29] designed a CNN model that can terminate the
division early in each stage, which determined the coding block division process according
to the multi-stage flexible QTMT structure, and designed an adaptive loss function for
training the CNN model. Park et al. [30] proposed a lightweight neural network (LNN)
model that prematurely terminates ternary tree partitioning according to two valid features
(EVF and DVF) related to ternary tree partitioning. Li et al. [31] proposed a hierarchical
grid-based CNN model, which can directly obtain the full division of parent CU and child
CU, reducing the coding time.

Compared with HEVC, the coding structure of VVC is more flexible, and its com-
plexity is several times higher than that of HEVC. The increase in complexity is mainly
the consequence of rate-distortion. Therefore, rate-distortion optimization and fast CU
partition are the focus of the research. The above-mentioned literature reduces the rate-
distortion optimization process through various designed algorithms, and achieves the
effect of saving encoding time, but the intra-frame information has not been fully utilized,
and there is still room for improving encoding efficiency.

3. Method

In recent years, people have made new breakthroughs in the field of image research,
Wang et al. [32,33] proposed a new feature for evaluating image quality: Structural
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Similarity (SSIM). It consists of three parts, namely, brightness, contrast, and structure,
which can be expressed as:

SSIM(i, j) = Lum(i, j)Con(i, j)Str(i, j) (1)

Lum(i, j) =
2αiαj + c1

α2
i + α2

j + c1
(2)

Con(i, j) =
2βiβj + c2

β2
i + β2

j + c2
(3)

Str(i, j) =
βij + c3

βiβj + c3
(4)

where i and j are two image blocks (the proposed algorithm needs to consider the similarity
of CU, which will be referred to as CU in the following text), Lum(i, j), Con(i, j), and
Str(i, j) denote the brightness, contrast, structure, respectively. αi and αj represent the
mean values of the two CUs, βi and βj are the standard deviation values of the two CUs,
and βij is the covariance value of the two CUs. c1, c2, and c3 are set constants. To avoid
formula denominator of 0, c1, c2, and c3 are set as constants. The higher the SSIM of the
two CUs, the more similar the two CUs are.

Although the structural similarity model of the two CUs is relatively simple and has
certain advantages compared to the peak signal-to-noise ratio (PSNR) or mean square
error (MSE) model, there are also some shortcomings. For severely blurred and distorted
images, their texture properties are seriously damaged, and the structural aspect Str(i, j)
in SSIM does not reflect this change well. Since the gradient is sensitive to the texture
features and small detail contrast of the image, it can be a good evaluation of image
clarity. We further propose to determine the 32 × 32 or 16 × 16 size partition based on
the similarity of the gradient structure.

3.1. The Proposed Fast Cu Partitioning Algorithm

Compared with the Canny operator and the prewitt operator, the calculation of the
Sobel operator algorithm is relatively simple and the speed is relatively fast. To simplify the
calculation, the gradient calculation of the current CU adopts the simplest Sobel operator in
the 3 × 3 template gradient filter, including the vertical edge operator V and the horizontal
edge operator H, as shown in Figure 5:
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The Sobel operator consists of two groups of 3 × 3 matrices, which are in the vertical
and horizontal positions, respectively, and are convolved with the image plane to obtain
the approximation of the vertical and horizontal brightness differences respectively.

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 ∗ A (5)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ A (6)

G(i, j) =
√

Gx2 + Gy2 (7)

Among them, A is the original image, Gx is the vertical gradient value of the CU along
the (i, j) position, Gy is the lateral gradient value of the CU along the (i, j) position, G(i, j)
is the CU at (i, j) position of the gradient magnitude.

Liu et al. [34] proposed a new feature to measure the changes in image contrast
and structure: gradient similarity (GSIM). The gradient similarity between sub-block a
and sub-block b at the coding block position (i, j) and its calculation formula are shown
in Equation (8):

GSIM(i, j) =

2∑
i

∑
j

Ga(i, j)Gb(i, j) + C

∑
i

∑
j
[Ga(i, j)]2 + ∑

i
∑
j
[Gb(i, j)]2 + C

(8)

where Ga(i, j) and Gb(i, j) are the gradient amplitudes of coding blocks a and b at
positions (i, j), respectively, and C is a constant.

Then, we replace the structure-function Str(i, j) in the structural similarity (SSIM) with
the gradient similarity GSIM(i, j) to gain the gradient-based structural similarity GSIM, as
shown in Equation (9). The gradient-based structural similarity is applied to the judgment
of CU division, and the average gradient structural similarity (MGSSIM) of CU is defined.
It is calculated by Equation (10), in which x is the number of similarity values.

GSSIM(i, j) = L(i, j)C(i, j)GSIM(i, j) (9)

MGSSIM =
1
n

n

∑
x=1

GSSIM(i, j) (10)

Considering the similarity of the 4 sub-CUs (CU1, CU2, CU3, CU4) after the current
coding block is divided by QT (as shown in Figure 6), GSIM is calculated in pairs to
obtain six similarity values, namely GSSIM12, GSSIM13, GSSIM14, GSSIM23, GSSIM24,
GSSIM34, respectively. And the mean value of these six values is utilized to obtain the
current average gradient structure similarity of CU MGSSIM.
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Since MGSSIM represents the average similarity of the four sub-CUs of the current
CU, it can be considered that when the similarity value is less than a certain threshold (set
as TH1), that is, the difference between the four sub-CUs is relatively large, it will be more
appropriate to divide them into a quadtree. When the similarity value is greater than a
certain threshold (set as TH2), the four sub-CUs are extremely similar. If they are coded
without partitioning, the residual error and the number of bits used will be smaller and the
coding effect will be better.

Threshold Selection

In the proposed CU intra-frame, fast partitioning algorithm based on average gradient
structure similarity, we use two thresholds, including TH1 and TH2. Statistical analysis of
the characteristics of these two thresholds shows that both TH1 and TH2 are related to the
quantization parameter (QP). The threshold Formulas (11) and (12) are defined as follows:

TH1 = α× QP (11)

TH2 = β× QP (12)

where α and β are adjustable parameters.
To verify the feasibility of the algorithm, the division characteristics of video sequences

with various resolutions are statistically analyzed. The statistical results are shown in
Figure 7. The blue mark is the proportion of quadtree division, the orange mark is the
proportion of multi-type tree division, and the gray mark is the proportion of no division.
To make the algorithm achieve a good balance between encoding time saving and bit rate
loss, we finally set α to 0.005, and β to 0.0084, respectively. This section is not mandatory
but can be added to the manuscript if the discussion is unusually long or complex.
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From the analysis of the table, it can be known that when the MGSSIM value of
the current CU is greater than TH2, an average of 75.4% of the CUs will terminate the
division process early and skip all division methods. When the MGSSIM value of the
current CU is less than TH1, an average of 83.8% of the CUs are quad-tree divided into
smaller CUs. When the MGSSIM value of the current CU is between the thresholds
TH1 and TH2, an average of 84.5% of the CUs choose to perform binary tree partition
or ternary tree partition. From the data in the figure, it can be seen that the gradient
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structure similarity has a good performance in the extraction of image details, which
also proves the superiority of our designed algorithm.

3.2. Skip Non-Optimal Partition Patterns Based on Standard Deviation

In the above algorithm, we calculated the average gradient structure similarity
between CUs, and analyzed their relationship by comparing them with the threshold.
To further optimize our algorithm, the standard deviation of the vertical and horizontal
directions can be used to further reduce the division mode and achieve the purpose of
reducing the encoding time.

When the similarity value is between TH1 and TH2, there are still multiple division
candidate modes for the coding block. To make multi-type tree division decisions, we need
to judge according to the texture direction of the coding block and skip the impossible
division directions. For a vertically textured CU, the luminance difference in the horizontal
direction is larger than the luminance difference in the vertical direction. For CUs with
horizontal textures, the opposite is true. The standard deviation SDV and SDH of its vertical
and horizontal features are calculated as:

SDV =
1

height

height

∑
i=1

√√√√ 1
width

width

∑
j=1

pixel(i, j)2 −
[

1
width

width

∑
j=1

pixel(i, j)

]2

(13)

SDH =
1

width

W

∑
j=1

√√√√ 1
height

height

∑
i=1

pixel(i, j)2 −
[

1
height

height

∑
i=1

pixel(i, j)

]2

(14)

where height and width are the height and width of the CU, respectively, and pixel(i, j) is
the pixel value of the current position.

In H.266/VVC, there is a strong correlation between the CU division and the texture
information of the image, and the texture direction is related to the change of CU in
different directions, so we use the standard deviation of both vertical and horizontal
directions compared with the threshold TH3 to determine the texture direction of CU. The
calculation expression of Sver/hor is:

Sver/hor =
SDV
SDH

(15)

The specific expression for texture orientation determination is:

Sver/hor ≥ TH3 (16)

Given that we adopt a fast division of 32 × 32 and 16 × 16 CU, the multi-type tree
decision can only be applied to square cells, not non-square cells. If SDH in a CU is
greater than SDV , then BTH and TTH will be skipped, i.e., for a vertically textured CU, the
horizontal partitioning mode will be skipped. If SDV in a CU is greater than SDH , then
BTV and TTV will be skipped, i.e., for a horizontally textured CU, vertical partitioning
mode will be skipped.

Threshold Selection

To distinguish the relationship between the CU partition mode and SD, we selected
the VVC standard to specify six video sequences in six types of video test sequences to
conduct experiments, including “FoodMarket”, “ParkRunning3”, “Cactus”, “BQMall”,
“BasketballPass” and “FourPeople”. The first five frames of each sequence were encoded in
all internal (AI) configurations with QP = 27. We collected the statistical results of Sver/hor
and the corresponding vertical and horizontal MT partition patterns, overall results as
shown in Tables 1 and 2.
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Table 1. Statistics of CU partition vertical and horizontal modes when Sver/hor < 1.

Sver/hor < 1 Vertical Partition Modes (%) Horizontal Partition Modes (%)

FoodMarket 72 28
ParkRunning3 63 37

Cactus 66 34
BQMall 74 26

BasketballPass 70 30
FourPeople 77 23

Table 2. Statistics of CU partition vertical and horizontal modes when Sver/hor > 1.

Sver/hor > 1 Vertical Partition Modes (%) Horizontal Partition Modes (%)

FoodMarket 26 74
ParkRunning3 25 75

Cactus 29 71
BQMall 35 65

BasketballPass 23 77
FourPeople 38 62

The proportions of vertical and horizontal partition patterns in different sequences
are shown in the table above. As can be seen from Table 1, when the Sver/hor value is less
than 1, the percentage of vertical partitioning mode is 72%, 63%, 66%, 74%, 70%, and 77%,
respectively, and the percentage of vertical partitioning mode codes is more than twice that
of horizontal partitioning. If the Sver/hor value is greater than the higher threshold TH3, it
means that the complexity in the horizontal direction is greater than that in the vertical
direction, and the current CU is more likely to have horizontal textures. As can be seen
from Table 2, when the Sver/hor value is greater than 1, the average probability of horizontal
partitions being encoded is more than twice that of vertical partitions. If the Sver/hor value is
less than the lower threshold TH3, it indicates that the current CU is more likely to have
vertical textures, so we skip the horizontal partition mode.

The choice of threshold is related to QP. If the TH3 value is too small, the algorithm
will get better complexity reduction because more partition patterns are predetermined. If
the TH3 value is too large, the encoding performance will be better, but the computational
complexity will increase. In the case of QP = 27 and QP = 37, two video sequences “Bas-
ketballDrive” and “BQMall” were selected to test the prediction accuracy. We conducted
experiments for this purpose, and the relationship between threshold and accuracy is
shown in Figure 8. In our method, the overall accuracy of the proposed method is between
80% and 90%. When the QP value is greater than 28, we set the threshold TH3 to 1.7;
otherwise, we set the threshold TH3 to 1.2.
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3.3. The Overall Algorithm

The flowchart is shown in Figure 9, and the specific steps are as follows:
Step 1: Calculate the gradient structure similarity of every 2 CUs in the 4 sub-CUs under

the current CU node according to formula (10) to get 6 GSIM values, and then take the mean
value to obtain the average gradient structure similarity MGSSIM of the current CU.

Step 2: When the average gradient magnitude similarity is greater than the threshold
TH2, indicating that the four sub-CUs are extremely similar and no tree partition is per-
formed. The intra-prediction modes are directly traversed with the size of the current CU.
The same is true for coding, and the recursive traversal of the current CU is ended.

Step 3: If the average gradient structure similarity deviation is less than the threshold
TH1, it means that the difference between the four sub-CUs is too large, and the quad-tree
division is performed directly to divide the current CU into four smaller CUs, that is, the
recursive traversal of the current CU is skipped and the recursive traversal of the four
sub-Cu is directly entered.

Step 4: if the average gradient structure similarity is greater than the threshold TH1
and less than the threshold TH2, we make a multi-type tree division decision. The texture
direction of the CU is determined according to the standard deviation of the current coding
block in different directions. If the standard deviation SDV in the vertical direction is
greater than the standard deviation SDH in the horizontal direction, which indicates that
the texture features of the CU are mainly in the horizontal direction. The current CU
can skip subsequent vertical divisions, including vertical binary trees and vertical ternary
trees. On the contrary, the current CU can skip the subsequent horizontal binary tree and
horizontal ternary tree.
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This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.

4. Experimental Results

The test conditions and software reference configuration of our proposed algorithm
comply with the latest VTM configuration standard. Joint Video Experts Team (JEVT)
specifies six types of video test sequences (A1, A2, B, C, D, E) for the VVC standard to
test the performance of the algorithm. The video test sequences of various types, different
resolutions, and frame rates of VTM standard from 416 × 240 to 3840 × 2160 are selected,
and the VTM10.0 model is used for testing. The experimental environment of the test
sequence and the configuration parameters of the VTM test model are as follows: processor
Intel® Core TM i5-10500 G CPU, 2.90 GHz main frequency, RAM 8.0 GB, Windows 10 64-bit
operating system, and the software development tool is Microsoft Visual Studio 2017. When
testing the performance of the algorithm, the standard test video sequences recommended
by JVET are encoded in the All Intra (AI) access mode, and the number of encoded frames
for each sequence is selected as 100, QP = {22, 27, 32, 37}. The performance of the algorithm is
measured by metrics such as the percentage of time saved and the Bjøntegaard incremental
bit rate, and the data are averaged under four different QP values. To accurately evaluate
the coding performance, this algorithm uses the coding time (∆T) to evaluate the coding
efficiency, and uses the Bjøntegaard incremental bit rate (BDBR) to evaluate the coding
quality. The calculation method (17) is:

∆T =
Tproposed − Tvtm

Tvtm
(17)

Among them, Tvtm is the time required for VTM10.0 standard algorithm coding,
Tproposed is the time required by the improved algorithm, ∆T is the percentage of the differ-
ence between the proposed algorithm and the VTM10.0 intra-frame prediction algorithm
predicted coding time.

4.1. Comparison with the VTM 10.0 Algorithm

Experiments are carried out according to the above settings, and the comparison
results between the algorithm in this paper and the standard algorithm are shown in
Table 3. It can be seen that compared with the VTM10.0 standard algorithm, the VVC
intra-frame CU partition mode fast decision algorithm proposed in this paper has good
coding performance, the average coding time is improved by 49.32%, and the BDBR is
only increased by 1.38%. The sequence that saves the most time is BQMall, which saves
56.84% with a 1.46% BDBR increase. The sequence that saves the least time is Kimono,
which achieves 38.4% encoding time saving, while only 0.41% BDBR increase. At the same
time, the sequence with the largest increase in BDBR is BasketballDrill, and the sequence
with the least increase in BDBR is Kimono, which shows that the proposed algorithm is
stable and can achieve better complexity reduction on different video sequences.

To further analyze the performance of the proposed algorithm, Figure 10 shows the
rate-distortion curves of various sequences using VTM10.0 and the proposed algorithm.
The coding curves of the two are almost identical, indicating that the proposed algorithm
has almost no decrease in coding performance.
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Table 3. Coding performance of the proposed algorithm under VTM10.0.

Sequence Category Video Sequence
The Proposed Algorithm

BDBR (%) ∆T (%)

A1
Tango2 1.06 45.97

FoodMarket 1.21 49.62
Campfire 1.28 51.18

A2
CatRobot1 1.18 46.21

DaylightRoad2 1.27 49.50
ParkRunning3 1.32 52.31

B

BasketballDrive 2.28 55.09
BQTerrace 1.34 52.18

Cactus 1.29 52.32
Kimono 0.41 38.4

ParkScene 0.51 46.31

C

BasketballDrill 2.71 47.36
BQMall 1.46 56.84

PartyScene 1.13 48.78
RaceHorsesC 0.82 48.55

D

BasketballPass 1.42 49.26
BQSquare 1.54 43.21

BlowingBubbles 1.37 48.81
RaceHorses 1.14 44.20

E
FourPeople 1.63 53.36

Johnny 1.98 51.89
KristenAndSara 1.93 53.63

Average 1.38 49.32
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4.2. Comparison with Other Algorithms

In addition, we also compare the algorithm proposed in this chapter with the existing
CU fast partitioning decision algorithm. Considering the different test sequences used by
different algorithms, only the same test sequences are selected for comparison to ensure the
fairness of the comparison results. In the third algorithm, some experimental results are not
given, so they are indicated by “-”. Since the human eye is generally not very sensitive to
the chromaticity component, the focus here is on the contrast of the luminance component.
In order to visually evaluate the performance of different methods, ∆T and BDBR were
used as measures in the comparison. The algorithms involved in the comparison include
Zhang [17], Zhao [21], and Tang [27], and their results are shown in Table 4. As can be
seen from the table, the performance of our algorithm exceeds that of the literature [28]
because the time saved by our algorithm far exceeds the performance of this algorithm. The
performance of the algorithm in this paper and the algorithm in [17] are not comparable
because time and BDBR are mutually constrained. In addition, we compared the proposed
algorithm with the existing SVM-based algorithm [21]. With the same test sequence,
reference [21] can achieve a time saving of 54.30%, but the BDBR increases by 1.54%.
Although a significant saving in coding time can be achieved, the coding performance
suffers a significant loss and is not suitable for applications requiring high coding quality.

Table 4. The encoding performance of the proposed algorithm compares with previous works.

Class Video
Sequence

Zhang [17] Zhao [21] Tang [27] Proposed
Algorithm

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

B
Kimono 1.16 48.76 1.31 54.68 0.87 33.32 0.41 38.40

ParkScene 1.34 55.93 1.45 48.73 0.83 35.41 0.51 46.31
BQTerrace 0.88 50.02 1.08 45.30 0.95 34.50 1.34 52.18

C

PartyScene 0.63 49.52 0.87 52.74 0.55 31.10 1.13 48.78
Race

HorsesC 0.71 47.02 1.25 51.07 0.37 23.63 0.82 48.55

Basket
ballDrill 0.96 45.69 1.60 53.92 1.30 33.39 2.71 47.36

D

Blowing
Bubbles 0.61 42.07 1.57 51.33 0.95 33.90 1.37 48.81

Race
Horses 0.68 43.28 1.14 55.79 0.71 31.79 0.82 44.20

BQSquare 0.45 37.14 0.93 54.78 0.68 30.73 1.54 4.21

E

Johnny - - 2.37 54.63 - - 1.98 51.89
Four

People 1.07 54.26 2.19 55.21 1.38 38.01 1.63 53.36

Kristen
AndSara 1.12 52.81 1.88 55.46 1.61 34.84 1.93 53.63

Average 0.87 47.78 1.54 54.30 0.93 32.78 1.35 48.06

In this paper, we study the CU fast partitioning decision algorithm based on three
methods and compare the complexity reduction effect with RD performance, and the
reduction of coding complexity is the main improvement of our algorithm. As shown in
Figure 11. Compared with the literature [17], the algorithm proposed in this paper saves
0.22% in complexity reduction but improves 0.48% in coding loss. Compared with the
literature [21], our algorithm is more stable, and although it does not save more coding time,
it reduces nearly 0.2% in terms of coding efficiency loss. Compared with the literature [27],
the algorithm proposed in this chapter slightly increases the coding efficiency loss but
saves more coding time by about 15.28%. Compared with the algorithms proposed in the
literature [17,21,27], the coding efficiency is significantly improved, the image quality loss
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is smaller, and the overall performance is better. The algorithm in this paper effectively
reduces the intra-frame coding time and improves the coding efficiency, while maintaining
no significant degradation in code rate and PSNR.
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5. Summary

This paper proposes a fast coding algorithm for VVC intra-frame based on gradient
structure similarity and directional features. First, a new image quality evaluation
method—SSIM is introduced in detail, and then the concept of gradient is proposed.
The main idea of the algorithm is composed of two main parts. In the first part, given
the feature that gradient structure similarity can well extract edge information of coding
blocks, the Sobel operator is utilized to extract the gradient features of each sub-CU
after the quadtree division, and calculate the average gradient structure similarity
between sub-CU. And then the average gradient structure similarity is compared with
the threshold value to further judge whether CU terminates partitioning or performs
quadtree partitioning. In the second part, considering that there is a strong correlation
between the texture direction and CU changes in different directions. The texture
direction can be judged by calculating the standard deviation of the current CU vertical
direction and horizontal direction, which avoids the unnecessary intra-frame candidate
division modes and greatly saves the coding time. The experimental results show that
compared with the original platform VTM10.0, the algorithm reduces the encoding time
by 49.32% on average while the BDBR only increases by 1.38%, which outperform the
state-of-the-art methods.
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