
����������
�������

Citation: Osetrin, K.; Filippov, A.;

Kirnos, I.; Osetrin, E. Type I

Shapovalov Wave Spacetimes in the

Brans–Dicke Scalar-Tensor Theory of

Gravity. Symmetry 2022, 14, 2636.

https://doi.org/10.3390/

sym14122636

Academic Editors: Tomohiro Inagaki

and Olga Kodolova

Received: 31 October 2022

Accepted: 8 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Type I Shapovalov Wave Spacetimes in the Brans–Dicke
Scalar-Tensor Theory of Gravity
Konstantin Osetrin 1,2,* , Altair Filippov 1 , Ilya Kirnos 1 and Evgeny Osetrin 1

1 Center for Mathematical and Computer Physics, Tomsk State Pedagogical University, 634061 Tomsk, Russia
2 Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
* Correspondence: osetrin@tspu.edu.ru

Abstract: Exact solutions for Shapovalov wave spacetimes of type I in Brans–Dicke’s scalar-tensor
theory of gravity are constructed. Shapovalov wave spacetimes describe gravitational wave models
that allow for the the separation of wave variables in privileged coordinate systems. In contrast to
general relativity, the vacuum field equations of the Brans–Dicke scalar-tensor theory of gravity lead
to exact solutions for type I Shapovalov spaces, allowing for the the construction of observational
tests to detect such wave disturbances. Furthermore, the equations for the trajectories of the test
particles are obtained for the models considered.
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1. Introduction

The recently proposed classification of Shapovalov wave spacetimes [1] provides
additional mathematical tools for the construction of exact integrable models of gravi-
tational waves, including primordial gravitational waves in Bianchi universes [2,3] and
other exact models of plane gravitational waves [4,5]. Recent advances in gravitational
wave astronomy in the detection of gravitational waves and the resulting astrophysical
information [6–8] have also increased interest in the mathematical aspects of gravitational
wave research.

The relevance of these lines of research is also related to the importance of the discovery
of primordial gravitational waves for constructing a theory of the early universe and the
possible confirmation of the stage of inflation predicted by some theories. The interest
in gravitational wave research is also due to possible secondary physical effects in a
gravitational wave, such as the formation of black holes [9,10], the capture of astrophysical
objects by a gravitational wave [11], gravitational wave lensing, and other effects.

The Shapovalov wave spacetimes allow for the presence of special symmetries of
the Hamilton–Jacobi equation, leading to the existence of privileged coordinate systems,
where the equations of motion of test particles and the eikonal equation for radiation in
the Hamilton–Jacobi formalism allow for the exact integration by the method of separation
of variables. Moreover, among the separable variables on which the spacetime metric
depends (non-ignored variables), there are wave variables along which the spacetime
interval vanishes. The gravitational wave velocity, according to the gravitational wave
detection data from neutron star mergers [12], equals the velocity of light. Therefore, the
existence of the possibility of separating null variables indicates the wave nature of such
spacetime models, and the use of wave variables in describing gravitational waves is
experimentally justified.

Shapovalov wave spaces in the four-dimensional cases include three main types
according to the number of commuting killing vectors they allow and, accordingly, in
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privileged coordinate systems, the number of killing vectors determines the number of
non-ignorable variables on which the spacetime metric depends. For privileged coordinate
systems, Vladimir Shapovalov obtained the structure of the space metric [13–15], which
leads to the separation of variables in the Hamilton–Jacobi equation, which allows one to
construct exact integrable models of gravitational waves in various theories of gravity in
which test particles move along geodesic curves of spacetime.

Currently, there is interest in studying the properties of modified theories of gravity
that could provide corrections to Einstein’s theory of gravity in the early stages of the
universe (quantum corrections, quadratic theories, f (R)-theories of gravity, theories with
a scalar field, etc.) and could provide a theoretical description of the phenomena of
“inflation”, “dark matter”, and “dark energy” [16–19]. Therefore, the use of additional
mathematical tools for the comparative analysis of exact models of gravitational waves
in different theories of gravity also enables the selection of the most realistic theories and
models.

In this direction, one of the first models of modified theories of this type was the
Brans–Dicke scalar-tensor theory of gravity [20]. Scalar-tensor theories have taken a firm
place in theoretical research on gravity and cosmology [21], determined by attempts to use
an additional scalar field to describe various possible scenarios for the dynamics of the
universe and other theoretical constructions [22–25].

In this work, Shapovalov wave spaces of type I are considered in the scalar-tensor
theory of Brans–Dicke gravity. An additional scalar field in the theory complicates the
field equations but also provides additional possibilities. The resulting equation for a
Klein–Gordon equation-type scalar field also requires further investigation. As Shapo-
valov [13,14] showed, the scalar equation can be integrated by separating the variables
in the same privileged coordinate systems as the Hamilton–Jacobi equation. Therefore,
the use of Shapovalov wave spaces also provides additional opportunities for the exact
solution of the scalar equation [26–29]. Recently, new results have also been obtained in the
study of the symmetries of the Klein–Gordon–Fock equations. [30–33].

Type I Shapovalov metrics are the most general gravitational wave models of Shapo-
valov spacetimes since they depend on three variables in the privileged coordinate system,
including the wave variable. Note that metrics of this type lead to degeneracy when
using Einstein’s vacuum equations since the number of non-ignorable variables in the
metric decreases as the vacuum field equations are solved, and the space becomes either
a Shapovalov wave space of type II with two non-ignorable variables in the metric, or a
space of type III with one wave variable in the metric. The preservation of type I metrics
is possible if additional fields and matter exist in the models under consideration. The
existence of non-degenerate type I Shapovalov models in the Brans–Dicke theory of gravity
and the possibility of detecting such gravitational waves in observations would therefore
be additional evidence for the scalar-tensor theories of gravity.

The authors investigate exact wave models of spacetime to find out the differences
that may arise in these gravitational wave models for Einstein’s theory and for modified
theories of gravity. Shapovalov type I wave spaces have internal symmetries that relate
them to mathematical models of gravitational waves, but still, these models of gravitational
waves do not lead to the appearance of exact solutions of Einstein’s vacuum equations,
unlike the type II and III models. Additionally, in the modified Brans–Dicke theory of
gravity, exact wave solutions occur for certain spaces, as we show below. This allows us to
observe differences in the detection of gravitational waves by existing and future detectors.
This is also important for analyzing the stochastic gravitational wave noise detected by
existing gravitational wave detectors. In addition, primordial gravitational waves of this
type could leave an imprint on the cosmic microwave background. Detecting “traces” of
such gravitational waves would argue that the scalar-tensor gravity theories are more
realistic than Einstein’s theory. The possibility of the exact integration of the equations of
motion of the test particles and the equations for geodesic deviation in these models of
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gravitational waves allows gravitational wave detectors to more efficiently analyze and
select such disturbances in signals with high noise.

2. Gravitational-Wave Spacetimes of Shapovalov

Shapovalov wave spaces allow for the exact integration of the equations of motion of
test particles in the Hamilton–Jacobi formalism

gαβ ∂S
∂xα

∂S
∂xβ

= m2c2, α, β, γ = 0, 1, 2, 3. (1)

with the separation of non-ignorable wave variables (the space metric depends on these
variables) along which the spacetime interval vanishes [1]. Here, S is the action function of
the test particle, m is the mass of the particle, and c is the speed of light. Let us also choose
a system of units in which the speed of light is equal to one.

Type I Shapovalov spacetimes admit a killing vector contained in the so-called “com-
plete set” of vectors and second-rank killing tensors that determine integrals of motion
linearly and quadratically in the momenta. In a privileged coordinate system where the
Equation (1) allows for the complete separation of variables, the type I Shapovalov space-
time metric depends on three variables, including the null wave variable denoted by x0.
Another null variable x1 is ignored (cyclic) and is not included in the metric.

Consider a model with a type I Shapovalov wave space metric, which can be written
in a privileged coordinate system in the following form:

gαβ =
1
f0


0 1 0 0
1 0 0 0
0 0 1

W 0
0 0 0 1

W

, (2)

where
f0 = f0(x0), W(x2, x3) = t3(x3)− t2(x2). (3)

The scalar curvature R takes the following form:

R(x0, x2, x3) =
f0

(t2 − t3)3

(
(t2 − t3)

(
t2
′′ − t3

′′)− t2
′2 − t3

′2
)

, (4)

where the top prime means the ordinary derivative with respect to the variable on which
the function depends.

The nonzero components of the Riemann curvature tensor have the following form:

R0202 = R0303 =

(
f0
′2 − 2 f0 f0

′′)(t2 − t3)

4 f03 , (5)

R2323 =
(t2 − t3)(t2

′′ − t3
′′)− t2

′2 − t3
′2

2 f0(t2 − t3)
. (6)

Moreover, all nonzero components of Weyl’s conformal curvature tensor Cαβγδ are
proportional to the scalar curvature R, and when the scalar curvature vanishes, they also
vanish, leading to a conformally flat spacetime.

Note that the ability to exactly integrate the Hamilton–Jacobi equations for Shapovalov
wave spaces makes it possible to obtain the trajectories of test particles, as well as to
find exact solutions for the geodesic deviation equation and the exact form of the tidal
accelerations in these spaces. These possibilities allow one to determine all of the physical
effects in gravitational waves.
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3. Brans–Dicke Scalar-Tensor Theory of Gravity

The Lagrange function for the Brans–Dicke theory of gravity (BDT) can be written in
the following form [21]:

L = φ (R + 2Λ)− ω

φ
gαβ∂αφ∂βφ + 16πκLmatter, (7)

where φ is a scalar field, ω is a constant parameter of the theory, and Λ is a cosmological
constant.

The field equations of the Brans–Dicke scalar-tensor gravity theory with cosmological
constant Λ can be written as follows:

Gαβ =
8π

Φ
Tαβ + Λgαβ +

ω

Φ2 (Φ,αΦ,β −
1
2

gαβgγδΦ,γΦ,δ) +
1
Φ
(Φ;αβ − gαβΦ;γ

;γ), (8)

3 + 2ω

Φ
Φ;γ

;γ =
8π

Φ
Tγ

γ + 2Λ. (9)

Here, the comma denotes the ordinary partial derivative, and the semicolon denotes
the covariant derivative.

To obtain exact gravitational wave solutions, consider the vacuum model Tαβ = 0. It
is convenient to pass to the form of the scalar field Φ = eφ; then, the BDT equations will
take the following more compact form:

Gαβ + gαβ(φ
;γ

;γ + (1 + ω/2)φ,γφ,γ −Λ)− φ;αβ − (ω + 1)φ,αφ,β = 0, (10)

(ω + 3/2)(φ;γ
;γ + φ,γφ,γ)−Λ = 0. (11)

Note that the higher derivatives of the scalar field φ can be found in Equation (10) and
substituted into the scalar Equation (11) to reduce the order of this equation.

The equations of the scalar-tensor theory of gravity of Brans–Dicke for the considered
metric lead to the following form of field equations:

φ,00 =
f0
′

f0
φ,0 +

3
2

f0
′2

f02 − (ω + 1)φ,0
2 +

f0
′′

f0
, (12)

φ,01 = (ω + 1)
(

2Λ f0

3 + 2ω
− φ,0φ,1

)
, (13)

φ,11 = −(ω + 1)φ,1
2, (14)

φ,1µ = −(ω + 1)φ,1φ,µ, µ, ν = 2, 3, (15)

φ,0µ = φ,µ

(
1
2

f0
′

f0
− (ω + 1)φ,0

)
, (16)

φ,µµ = W
(

1
3
(R + Λ) f0 −

1
2

f0
′

f0
φ,1 +

1
3

ωφ,0φ,1

)
− 5ω + 6

6
φ,2

2

+ ωφ,3
2 − (−1)µ φ,2t2

′ + φ,3t3
′

2W
, (17)

φ,23 =
φ,2t3

′ + φ,3t2
′

2W
− (ω + 1)φ,2φ,3, (18)

W((2ω + 3)R + 2(4ω + 3)Λ) f0 = ω(2ω + 3)(2Wφ,0φ,1 + φ,2
2 + φ,3

2). (19)

Equation (19) arises as a consequence of scalar Equation (9) when the higher deriva-
tives of the scalar field φ from the other field equations of the theory are substituted
into it.
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3.1. Scalar Field of the Form φ = φ(x0, x1, x2, x3) and φ,1 6= 0.

Assume that the scalar field φ depends on all variables, including the null variable x1,
on which the spacetime metric does not depend.

In this case, the system of BDT equations is quite cumbersome, but it allows one to
find the conditions for the compatibility of field equations, which leads to relations of the
following form:

φ,2(2 f0 f0
′′ − 3 f0

′2) = φ,3(2 f0 f0
′′ − 3 f0

′2) = 0. (20)

The requirement φ,1 6= 0 imposes strict conditions on the dependence of the scalar field
on the variables x2 and x3, so the case of φ,2

2 + φ,3
2 6= 0 in (20) leads to the degeneration of

the space into a flat one for any ω.
Thus, the scalar field for φ,1 6= 0 can only have the following form:

φ = φ(x0, x1).

In this case, the system of BDT equations takes the following form:

φ,00 =
f0
′

f0
φ,0 +

3
2

f0
′2

f02 − (ω + 1)φ,0
2 +

f0
′′

f0
(21)

φ,01 =
Λ
2

f0 −
ω + 2

2
φ,0φ,1 −

1
4

f0
′

f0
φ,1 (22)

φ,11 = −(ω + 1)φ,1
2 (23)

(2ω f0φ,0 − f0
′)(2ω + 3)φ,1 − 2(2ω + 1)Λ f0

2 = 0 (24)

(R + Λ) f0 + ωφ,0φ,1 −
3
2

f0
′

f0
φ,0 = 0 (25)

Consider Equation (23). For ω 6= −1, the scalar field is in the form

φ(x0, x1) =
1

ω + 1
ln
(

a(x0)x1 + b(x0)
)

, (26)

however, as a result of substitution into other equations of the system and the separation of
the coefficients of x1, it turns out that a(x0) = 0, and the scalar field does not depend on x1.
Consequently, a solution that satisfies the stated requirements is possible only for ω = −1.

The integration of the Equation (23) and the separation of the coefficients for x1 for
ω = −1 leads to the scalar field φ = αx1 + b(x0), α − const. Substitution into other
equations of the system allows one to find all of the unknown functions.

The final solution for the case φ = φ(x0, x1) is as follows:

f0 = eβx0
, (27)(

t2
′)2

= 2αβ t2
3 + λ t2

2 + γ t2 + δ, (28)(
t3
′)2

= −
(

2αβ t3
3 + λ t3

2 + γ t3 + δ
)

(29)

ω = −1, φ(x0, x1) =
Λ
αβ

eβx0 − β

2
x0 + αx1, (30)

where α, β, γ, δ, and λ are constants.
In the resulting solution, we can set α = β = 1 by scaling transformations; then,

f0 = exp x0,
(
tµ
′)2

= (−1)µ
(

2tµ
3 + λtµ

2 + γtµ + δ
)

, (31)

ω = −1, φ(x0, x1) = Λex0 − x0/2 + x1. (32)
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The cosmological constant Λ remains arbitrary, the Riemann curvature tensor Rijkl
and the Weyl conformal curvature tensor Cijkl do not vanish, and for the scalar curvature R
we obtain:

R = e−x0
, Cijkl 6= 0. (33)

Thus, a nontrivial solution for Shapovalov type I wave spaces in the Brans–Dicke
theory is obtained with a scalar field depending on null variables, with a cosmological
constant and an exponential conformal factor depending on the wave variable. Note that a
vacuum solution of this type does not arise in general relativity [1].

3.2. Scalar Field of the Form φ = φ(x0, x2, x3).

Consider the case where the scalar field φ does not depend on the “ignored” null variable
x1, on which the metric also does not depend. The system of BDT Equations (10) and (11),
resolved in terms of higher derivatives, has the following form:

φ,00 =
f0
′

f0
φ,0 +

3
2

f0
′2

f0
2 −

f0
′′

f0
− (ω + 1)φ,0

2, (34)

φ,02 = φ,2

(
1
2

f0
′

f0
− (ω + 1)φ0

)
, (35)

φ,03 = φ,3

(
1
2

f0
′

f0
− (ω + 1)φ0

)
, (36)

φ,22 = ΛW f0 +
ωφ,3

2 − (ω + 2)φ,2
2

2
− φ,2t2

′ + φ,3t3
′

2W
, (37)

φ,22 + φ,33 = 2ΛW f0 − (φ,2
2 + φ,3

2) (38)

φ,23 = −(ω + 1)φ,2φ,3 +
φ,2t3

′ − φ,3t2
′

2W
, (39)

(2Λ− R)W f0 + ω(φ,2
2 + φ,3

2) = 0, (40)

R =
t2
′2 + t3

′2 + W(t2
′′ − t3

′′)

W3 f0
, (41)

Λ(ω + 1) = 0. (42)

The study of the compatibility of the subsystem of Equations (34)–(36) leads to relations
that are further used to classify possible solutions:

φ,2(2 f0 f0
′′ − 3 f0

′2) = φ,3(2 f0 f0
′′ − 3 f0

′2) = 0. (43)

The compatibility Equation (43) lead to the following two possible cases:

(1) φ,2 φ,3 6= 0, 2 f0 f0
′′ − 3 f0

′2 = 0;
(2) φ,2 = φ,3 = 0, φ = φ(x0).

In the following, we will consider these cases separately.

3.2.1. Scalar Field of the Form φ = φ(x0, x2, x3) and φ,2 φ,3 6= 0.

From the compatibility conditions, we obtain f0 = 1/
(
x0)2, and now we can integrate

Equations (34)–(36). In this case, two cases are possible depending on the values of the
constant ω:

(A) ω = −1, φ = ξ(x2, x3)/x0. Substitution into Equation (41) allows us to separate the
coefficients at x0. As a result, we obtain R = 0, which, in view of (6) and (43), means
the degenerate case since spacetime becomes flat in this case.
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(B) ω 6= −1, Λ = 0, φ = 1
ω+1 ln ξ(x2,x3)

x0 , where the function ξ(x2, x3) must satisfy the
following equations:

ξ,22 =
ω

2(ω + 1)
ξ,2

2 + ξ,3
2

ξ
− ξ,2t2

′ + ξ,3t3
′

2W
, (44)

ξ,33 =
ω

2(ω + 1)
ξ,2

2 + ξ,3
2

ξ
+

ξ,2t2
′ + ξ,3t3

′

2W
, (45)

ξ,23 =
ξ,2t3

′ − ξ,3t2
′

2W
, (46)

ω

(ω + 1)2
ξ,2

2 + ξ,3
2

ξ2 =
t2
′2 + t3

′2 + W(t2
′′ − t3

′′)

W2 . (47)

Let us consider the solution when the scalar field φ admits the separation of variables:

ξ(x2, x3) = ξ2(x2) ξ3(x3), ξ2
′ ξ3
′ 6= 0. (48)

From here, we obtain the relations:

ξ,2 = ξ
d

dx2 log ξ2, ξ,3 = ξ
d

dx3 log ξ3. (49)

Substituting the relations (49) into Equation (46) and separating the variables, we
obtain

ξ2t2
′/ξ2

′ − 2t2 = ξ3t3
′/ξ3

′ − 2t3 = const = 2c. (50)

In this way,

2
d log ξ2

dx2 =
d log (t2 + c)

dx2 , 2
d log ξ3

dx3 =
d log (t3 + c)

dx3 . (51)

From this, we obtain relations relating the functions tµ and ξµ of the following form:

(ξ2)
2 = a(t2 + c), (ξ3)

2 = b(t3 + c), (52)

where a, b, and c are constants.
Since the functions t2, t3 enter the metric only as a difference, and the constants a, b

add only a constant term to the scalar field φ, then the constants a, b, c can be chosen in the
simplest way. As a result, we have an intermediate result for the scalar field φ:

ξ =
√

t2t3, φ =
1

2(ω + 1)
ln

t2t3

x02 . (53)

Having this, excluding the second derivatives from the Equations (44), (45), and (47),
we obtain the following relation:

ω(ω + 2) = 0. (54)

The case ω = 0 leads to a flat solution, and it is easy to see this, taking into account
the relations (6) and (41); thus,

ω = −2. (55)

The sum of Equations (44) and (45) after substituting (53) and (55) allows us to separate
variables, and we obtain

t2
′′

t2
− 3

2
t2
′2

t2
2 = −

(
t3
′′

t3
− 3

2
t3
′2

t3
2

)
= const = λ, (56)
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the solution is the following:

t2 = α/ cos2
√

λx2, t3 = β/ cosh2
√

λx3. (57)

Substituting this solution into Equations (44) and (45) leads to a simple condition
α = β; furthermore, the scaling constants α, λ can be converted to the simplest form, and as
a result, the final solution has the following form:

f0 = 1/
(

x0
)2

, t2 = ε/ cos2 x2, t3 = ε/ cosh2 x3, ε = ±1, (58)

φ = ln(x0 cos x2 cosh x3), Λ = 0. (59)

For the resulting exact solution (59) of the equations of the Brans–Dicke theory, the
Riemann curvature tensor, the scalar curvature, and the Weyl conformal curvature tensor
do not vanish:

R = 2εx02
, R2323 6= 0, Cijkl 6= 0. (60)

3.2.2. Scalar Field of the Form φ = φ(x0).

Let us consider the case where the scalar field φ depends only on the non-ignorable wave
variable x0 (φ,2 = φ,3 = 0), on which the wave metric itself depends. Equations (37) and (41)
imply that the cosmological constant Λ and the scalar curvature R vanish in this case:

Λ = R = 0. (61)

Then, one can immediately separate the variables in the Equation (41), which allows
you to find differential equations for the functions tµ(xµ):(

t2
′)2

= at2
2 + 2bt2 + c, (62)

(
t3
′)2

= −
(

at3
2 + 2bt3 + c

)
, (63)

where a, b, and c are constants.
The system of field equations is left with only one Equation (34) connecting the

function f0 (scale factor of the metric) and the scalar field φ(x0):

φ′′ = φ′
(

f0
′

f0
− (ω + 1)φ′

)
− 2 f0 f0

′′ − 3 f0
′2

2 f0
2 . (64)

Equation (64) obviously admits the solutions for the scalar field φ = φ0(x0) for a
given conformal factor f0(x0) of the metric.

In the case under consideration, the Weil tensor Cijkl vanishes, and only two nonzero
components of the Riemann curvature tensor remain Rijkl :

R0202 = R0303 =
W
4 f0

(3 f0
′2 − 2 f0 f0

′′), (65)

Cijkl = R2323 = 0. (66)

Thus, this solution is the case of conformally flat space, and the metric and components
of the Riemann curvature tensor depend on the wave variable x0. The scalar field φ and
the conformal factor of the metric f0 remain arbitrary functions of the wave variable x0 but
are related by the Equation (64).

Note that Equation (64) admits a de Sitter-type solution. Consider the scale factor of
the metric in the following form:

f0(x0) = keβx0
, k, β− const. (67)
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Then, Equation (64) takes the following form:

φ′′ = φ′
(

β− (ω + 1)φ′
)
+ β2/2. (68)

Equation (68) for scalar field φ for metric (2) with scale factor (67) has three solutions
depending on the values of the constant ω:

(1) ω = −1. Then,

φ = βeβx0 − β

2
x0, (69)

(2) ω < −3/2. Then,

φ =
β

2(ω + 1)
x0 +

1
ω + 1

ln cos(β
√
−(2ω + 3) x0/2), (70)

(3) ω > −3/2, ω 6= −1. Then,

φ =
β

2(ω + 1)
x0 − 1

ω + 1
ln cosh(β

√
2ω + 3 x0/2), (71)

where β is a constant parameter.
Thus, we have obtained a set of exact solutions to the equations of the scalar-tensor

Brans–Dicke theory in vacuum for the type I Shapovalov wave space. Recall that there
are no exact solutions of this type for the case of the vacuum Einstein equations [1] since
Shapovalov spaces of type I degenerate in the case of vacuum Einstein equations.

Therefore, scalar-tensor theories of gravity can provide such exact models of gravita-
tional waves that do not appear in general relativity.

4. Equations of Motion and Trajectories of Test Particles

Let us consider the equation for the motion of test particles in a gravitational field in
the Hamilton–Jacobi formalism (the speed of light is chosen to be unity):

gαβ ∂S
∂xα

∂S
∂xβ

= m2.

The complete integral of the Hamilton–Jacobi Equation (1) for the Shapovalov space-
times in the privileged coordinate system can be represented in a separated form:

S = θ0(x0) + θ1(x1) + θ2(x2) + θ3(x3), (72)

moreover, for the ignored variable x1, on which the metric in the privileged coordinate
system does not depend, the function θ1(x1) can be reduced by admissible coordinate
transformations to the form kx1, where k is a constant.

From Equation (1), separating the variable x0, we obtain:

m2

f0(x0)
− 2kθ0

′(x0) =
1

t3(x3)− t2(x2)

((
θ2
′(x2)

)2
+
(

θ3
′(x3)

)2)
= const = p. (73)

Finally, separating the variables x2 and x3 we obtain:(
θ2
′(x2)

)2
+ pt2(x2) = −

(
θ3
′(x3)

)2
+ pt3(x3) = const = q. (74)

Thus, for the complete integral of the particle action function S(xα, k, p, q) we obtain
the following expression:

S = kx1 − p
2k

x0 +
m2

2k

∫ dx0

f0(x0)
+ ε2

∫ √
q− pt2(x2) dx2
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+ ε3

∫ √
pt3(x3)− q dx2, ε2, ε3 = ±1, (75)

where k, p, and q are constant parameters.
The equations of the trajectories of the test particles for the considered Shapovalov

spaces of type I in the Hamilton–Jacobi formalism take the following form:

∂S
∂k

= const = σ1 → x1 +
p

2k2 x0 +
m2

2k2

∫ dx0

f0(x0)
= σ1, k 6= 0, (76)

∂S
∂p

= const = σ2 → − x0

2k
− ε2

2

∫ t2(x2) dx2√
q− pt2(x2)

+
ε3

2

∫ t3(x3) dx3√
pt3(x3)− q

= σ2, (77)

∂S
∂q

= const = σ3 → ε2

2

∫ dx2√
q− pt2(x2)

− ε3

2

∫ dx3√
pt3(x3)− q

= σ3, (78)

where σ1, σ2, and σ3 are new independent constant parameters of the test particle motion
determined by the initial conditions. Thus, the motion of test particles in the considered
spacetime models is determined by a set of constant parameters k, p, q, σ1, σ2, and σ3, given
by the initial conditions.

Note that the proper time of the test particle τ using the obtained trajectory equations
can be written in the following form in terms of the coordinate variables on the trajectory:

τ = S
∣∣
m=1 = 2kx1 +

p
k

x0. (79)

Here, we set the additive constant equal to zero by choosing the origin. Thus, proper
time, as expected, is a linear combination of the null variables x0 and x1.

If we substitute (79) into Equation (76), then on the trajectories of test particles, we
obtain:

τ = −1
k

∫ dx0

f0(x0)
+ 2kσ1, (80)

Thus, Equations (79) and (80), together with Equations (77) and (78), define the
coordinates of the test particle xα on the trajectory as a function of the proper time of the
particle τ.

5. Conclusions

The exact solutions of the vacuum equations of the Brans–Dicke theory of gravity
for Shapovalov type I wave spaces are found. The solutions for gravitational waves are
obtained depending on the maximum possible number of variables for wave metrics of
four-dimensional spacetime (three variables, including the wave variables) in privileged co-
ordinate systems where it is possible to separate the wave variables in the Hamilton–Jacobi
equation for test particles and in the Eikonal equation for radiation. The situation is shown
to be different from general relativity, where these gravitational-wave models based on
Einstein’s vacuum equations are degenerate [1]. Shapovalov’s wave spaces thus provide
an additional mathematical tool to obtain exact models of gravitational waves, allowing
us to study differences in modified theories of gravity and to form tests to verify these
differences by observations.
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