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Abstract: Based on the well-known rotor-vibrator model and the particle-plus-rotor model, multi-
particle-hole excitations from a collective even-even core described by the rotor-vibrator is considered
to describe well-deformed even-even nuclei. Like the particle-plus-rotor model, the intrinsic Vier-
ergruppe (D2) symmetry is still preserved in the rotor-vibrator plus multi-particle-hole description.
It is shown that a series of experimentally observed 0+ states in these nuclei may be interpreted as
the multi-particle-hole excitations in a complementary manner to the beta and gamma vibrations
described by the rotor-vibrator model. As a typical example of the model application, low-lying
positive parity level energies below 1.990 MeV in the eight experimentally identified positive parity
bands; a series of 0+ excitation energies up to 0+16; and some experimentally known B(E2) values,
E2 branching ratios, and E2/M1 and E0/E2 mixing ratios of 154Gd are fitted and compared to the
experimental data. The results suggest that the multi-particle-hole-pair configuration mixing may
play a role in these 0+ states.

Keywords: rotor-vibrator; multi-particle-hole excitation; configuration mixing; well-deformed nuclei

PACS: 21.10.Re; 21.60.Ev

1. Introduction

As is well known, both the collective model and the interacting boson model (IBM) are
very successful in describing spectroscopy of medium and heavy mass nuclei in low-energy
regime [1,2]. Shape phase evolution in these nuclei has also been extensively studied [3–8].
Shell model description of deformed nuclei has also been studied extensively [9–11] based
on the pseudo SU(3) model [12–14]. Up until now, most studies on low-lying spectra of
deformed nuclei in both rare earth and actinide regions have focused on a few low-lying
bands [15–23]. In [9–11], besides several low-lying bands, strongly enhanced M1 strengths
and related 1+ states were focused. However, it can be observed from the experimental
data of these well-deformed nuclei, typically in even-even 154−160Gd, that there are many
0+ excited states populated below 3 MeV, which is also related to the long-term debate on
the nature of the low-lying 0+ states [24–27]. Nevertheless, these 0+ states have not been
fully taken into account in model calculations [15–23].

Although rigorous shell model calculations with configuration mixing are needed in
order to reveal the nature of the 0+ states, the collective rotation–vibration model (RVM) [28]
is the simplest, at least qualitatively, to describe the low-lying rotational bands, such as
the ground-state, beta-, and gamma-vibration bands; although, these 0+ states described
by the RVM are questionable with too high excitation energies of 0+u levels with u ≥ 4
compared to the corresponding experimental data [29]. Moreover, the particle-plus-rotor
model (PRM) [1,30–34] is often adopted to describe well-deformed odd-A and odd-odd
nuclei, where the rotor is used to describe the collective motion of the even-even core,
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while the deformed Nilsson model is used to describe the concerned like-particles. As an
extension, in this work, we consider particle-hole excitations from the collective even-even
core, with which the 0+ and other bands are modified by the multi-particle-hole excitations.
Although the model Hamiltonian proposed can be applied to any well-deformed nucleus,
only 154Gd is taken as an example in the fit, of which the main features persist when the
model is applied to other deformed nuclei.

2. Formalism

We take the RVM Hamiltonian for the core of a well-deformed even-even nucleus.
Instead of the RVM Hamiltonian, one can also use the Davydov–Chaban version of the
collective Hamiltonian [35], of which, however, the main features are quite similar to
those of the RVM. According to the PRM prescription [1,30–34], the Hamiltonian with
configuration mixing due to multi-particle-hole excitations from the core is approximated as

Ĥ = P
(

ĤRV + Ĥpro
in + Ĥn

in

)
P, (1)

where ĤRV is the RVM Hamiltonian, which is approximated to be the same when a few
particles and holes are excited from the core for simplicity; Ĥpro

in (Ĥn
in) contains proton

(neutron), single-particle (p), and single-hole (h) energy terms and the interaction among
K = 0 like-particle and like-hole pairs due to the fact that the nuclear shape described
by the RVM is approximately axially symmetric, where K is the quantum number of the
projection of the angular momentum along the third axis of the intrinsic frame and P is
the projection operator, which projects onto 0p0h, 2p2h and 1p1h, 3p3h even parity K = 0
subspace of protons and neutrons. Namely, as an approximation, only 2p2h excitations
established on the 0p0h and 1p1h basis of protons and neutrons are considered. The RVM
Hamiltonian is given by [25,28]

ĤRV =
L2 − L2

z′

2=0
+

L2
z′

16Bη2 −
h̄2

2B

(
∂2

∂ξ2 +
1
2

∂2

∂η2

)
+

1
2

C0ξ2 + C2η2 − h̄2

16Bη2 , (2)

where B is the inertia parameter; C0 and C2 are the stiffness parameters; =0 = 3Bβ2
0 is the

moment of inertia, in which β0 is the deformation parameter; Lτ with τ = x′, y′, z′ are the
angular momentum operators of the core in the intrinsic frame; and ξ and η are variables
in describing small β and γ vibrations. Ĥpro

in and Ĥn
in are given by

Ĥpro
in =

ppro

∑
i=1

ε
pro
i, Ωi

n̂pro
i, Ωi
−

0

∑
i′=−p′pro+1

ε
pro
−i′ , Ω−i′

n̂pro
−i′ , Ω−i′

+ gpro

ppro

∑
i=1

0

∑
i′=−p′pro+1

(
S+

pro,i S−pro,−i′ + S+
pro,−i′ S

−
pro,i

)
, (3)

Ĥn
in =

pn

∑
i=1

εn
i, Ωi

n̂n
i, Ωi
−

0

∑
i′=−p′n+1

εn
−i′ , Ω−i′

n̂n
−i′ , Ω−i′

+ gn

pn

∑
i=1

0

∑
i′=−p′n+1

(
S+

n,i S−n,−i′ + S+
n,−i′ S

−
n,i

)
, (4)

where pρ and p′ρ with ρ = pro or n are the number of proton and neutron Nilsson levels
above and at or below the Fermi surface of a given even-even nucleus considered, respec-
tively. ε

ρ
j,Ωj

and ε
ρ
−i,Ω−i

are single-particle energies above and at or below the Fermi surface,
respectively, which are generated from a Nilsson shell model code and rearranged with
reference to the Fermi surface.

n̂ρ
i,Ωi

= a†
ρ,i, Ωi

aρ,i, Ωi + a†
ρ,i, Ω̄i

aρ,i, Ω̄i
(5)

is the particle number operator of the i-th Nilsson level above the Fermi surface, and

n̂ρ
−i′ ,Ωi′

= aρ,−i′ ,−Ω−i′
a†

ρ,−i′ ,−Ωi′
+ aρ,−i,−Ω̄−i

a†
ρ,−i,−Ω̄−i

(6)
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is the hole number operator of the −i-th Nilsson level at or below the Fermi surface, in
which a†

ρ,i,±Ωi
(aρ,i,±Ωi ) with ρ = pro or n being the particle creation (annihilation) operator

for the i-th Nilsson level with the quantum number Ωi of the angular momentum projection
to the z′ axis of the intrinsic frame, while the operator with Ω̄i is the corresponding time-
reversed one. The last term of (3) and (4) describes the interaction of the 2p- and 2h-pairs,
which is assumed to be level-independent with real constant gpro ≈ gn = g < 0 in the
calculation, where

S+
ρ,i = a†

ρ,i Ωi
a†

ρ,i Ω̄i
, S−ρ,i = (S+

ρ,i)
†,

S−ρ,−i′ = aρ,−i′ −Ω−i′
aρ,−i′ ,−Ω̄−i′

, S+
ρ,−i′ = (S−ρ,−i′)

† (7)

are K = 0 particle- and hole-pair creation and annihilation operators, respectively. As
is well known, the RVM Hamiltonian is invariant under the intrinsic Vierergruppe (D2)
transformation. It is obvious that the D2 symmetry is still preserved when the interactions
among 2p- and 2h-pairs are involved. Since only one proton (neutron) particle-pair or hole-
pair is considered, the proton (neutron) pairing interaction is neglected due to the fact that
the pairing interaction of only one particle-pair or one hole-pair is relatively weak [36,37]
in this case.

In the calculation, similar to the approximation made in the PRM with the RVM
description of the core, rotational energies of the particles and holes, and the rotation-
particle and rotation-hole coupling terms are also neglected [28]. An eigenstate of the RVM
Hamiltonian (2) is written as |nβ, nγ, K, L M〉, where nβ and nγ are the number of β and γ
phonons, respectively; L is the quantum number of the total angular momentum in this case;
K and M are the quantum numbers of the angular momentum projected onto the z′ axis
of the intrinsic frame and z axis of the laboratory frame, respectively. The corresponding
eigenvalue of (2) is given by [28]

E
nβ ,nγ ,K
L = E0

2
(

L(L + 1)− K2)+ Eγ

(
K
2 + 1 + 2nγ

)
+ Eβ (nβ +

1
2 ),

E0 = h̄2

=0
, Eβ = h̄

√
C0
B , Eγ = h̄

√
C2
B , (8)

for nβ = 0, 1, · · · , nγ = 0, 1, · · · , K = 0, 2, 4, · · · , and for given K,

L =

{
K, K + 1, · · · , for K 6= 0,
0, 2, 4, · · · , for K = 0.

(9)

When there are p′ρ (pρ) Nilsson levels below (above) the Fermi surface, eigenstates of
the model Hamiltonian (1) in this case can be expressed as

|nβ, nγ, K; ξpro, ξn; L M〉 = NξproNξn

(
1 + ∑i,j C

ξpro
j,i S+

pro,jS
−
pro,−i

)
×(

1 + ∑i′ ,j′ C
ξn
j′ ,i′ S

+
n,j′S

−
n,−i′

)
|nβ, nγ, K, L M〉, (10)

where |n0, nγ, K, L M〉 is an eigenstate of the Hamiltonian of the core (2) and is assumed
to be the vacuum state of particles outside of the core and the holes within the core,

simultaneously; C
ξρ

ji is the expansion coefficient; and Nξρ
is the normalization constant. In

the following, except for the ground-state band with ξpro = ξn = 1, the other excited bands
described by (10) are simply called 2p2h bands. In the calculation, the Fermi surface of
protons or neutrons is determined by the last occupied Nilsson level of protons or neutrons
at the ground state of the Nilsson shell model for a given even-even nucleus. Besides the
eigenstates built on 0p0h shown in (10), there are those built on 1p1h excitation with a
K = 0 1p1h pair, which are the next lowest in energy to be considered with
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|nβ, nγ, K; (−i′ρ, j′ρ); ξpro, ξn; L M〉 = NξproNξn

(
1 + ∑′i,j C

ξpro
j,i S+

pro,jS
−
pro,−i

)(
1 + ∑′i′′ ,j′′ C

ξn
j′′ ,i′′ S

+
n,j′′S

−
n,−i′′

)
×

|(−i′ρ, j′ρ); nβ, nγ, K, L M〉, (11)

where the summation is over the Nilsson levels not occupied by the single-particle and the
single-hole, namely, j′ρ and −i′ρ levels are excluded within the sum, and

|(−i′ρ, j′ρ); nβ, nγ, K, L M〉 = S+
ρ,j′ρ ,−i′ρ

|nβ, nγ, K, L M〉

(12)

with [1]

S+
ρ,j′ρ ,−i′ρ

=

√
1
2

(
a†

ρ,j′ρ , Ωj′ρ
aρ,−i′ρ ,−Ω̄−i′ρ

− a†
ρ,j′ρ , Ω̄j′ρ

aρ,−i′ρ ,−Ω−i′ρ

)
, (13)

in which j′ρ and −i′ρ stand for the Nilsson levels occupied by the single particle and hole
with the same parity, satisfying Ωj′ρ = Ω−i′ρ . The excitation bands described by (11) are
called 1p1h bands.

The expansion coefficients in (10) and (11) can be expressed as

C
ξρ

ji =
g

Eξρ + 2ε
ρ
−iρ , Ω−iρ

− 2ε
ρ
jρ , Ωjρ

, (14)

where Eξρ should satisfy

Eξρ = ∑ ′
i,j

g2

Eξρ + 2ε
ρ
−iρ , Ω−iρ

− 2ε
ρ
jρ , Ωjρ

, (15)

in which ξρ stands for the ξρ-th root of (15), while the prime stands for the exclusion of
occupied Nilsson level. The eigenvalues of (1) corresponding to the eigenstates (10) are
given by

E
nβ ,nγ ,K
ξπ ,ξν , LM = E

nβ ,nγ ,K
L + Eξπ + Eξν , (16)

while those corresponding to the eigenstates (11) are given by

E
(−i′ρ ,j′ρ); nβ ,nγ ,K
ξπ ,ξν , LM = E

nβ ,nγ ,K
L + Eξπ + Eξν − ε

ρ

−i′ρ , Ω−i′ρ
+ ε

ρ

j′ρ , Ωj′ρ
. (17)

Similar to the multi-particle-hole configuration mixing schemes in the interacting
boson model [38–40], the E2 operator is defined as

Tµ(E2) = Qc
µ + Qph

µ + ∑ρ λρPρ

(
Qc

µ + Qph
µ

)
Pρ + λpro,nPproPn

(
Qc

µ + Qph
µ

)
PnPpro, (18)

where Pρ is the projection operator, which projects onto the 0p0h, 2p2h and 1p1h, 3p3h even
parity K = 0 subspace of protons or neutrons; λpro, λn, and λpro,n are the configuration
mixing parameters; Qc

µ is the quadrupole operator of the RVM [25,28],

Qc
µ =

3ZeR2
0

4π

{
D2∗

µ0(θ)
(

β0(1 + α) + ξ(1 + 2α) + α(ξ2 − 2η2)
)
+(

D2∗
µ2(θ) + D2∗

µ−2(θ)
)(

(1− 2α)η − 2αξη
) }

(19)
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with R0 = 1.2 A1/3 fm for the nucleus with the mass number A and α =
√

20/(7π) β0,
while D2∗

µν(θ) is the Wigner D-function of the Euler angles θ ≡ (θ1, θ2, θ3) and Qph
µ is the

quadrupole operator of the particles and holes.
Since 1p1h bands are relatively high, if the 1p1h states (11) are not considered, only

the diagonal part of Qph
µ contributes, which can be expressed as

Qph,dig
µ = D2∗

µ0(θ)∑
ρ

(
∑

i
qρ

i nρ
i + ∑

i
q̄ρ
−in

ρ,h
−i

)
(20)

with

qρ
i = eρ r2

0 ∑
l,j,l′ ,j′

Wi
l′ j′ΩWi

l jΩ〈No(l′
1
2
)j′Ω|(r/r0)

2Y20|No(l
1
2
)jΩ〉,

q̄ρ
−i = −eρ r2

0 ∑
l,j,l′ ,j′

W−i
l′ j′ΩW−i

l jΩ〈No(l′
1
2
)j′Ω|(r/r0)

2Y20|No(l
1
2
)jΩ〉, (21)

where No is the number of phonons of a major oscillator shell; r2
0 = 1.012 A1/3 fm2; eρ is the

effective charge of the particles, of which the hole is taken to be the same absolute value
of that of the particle but with the opposite sign; Wi

l jΩ is the expansion coefficients of the

i-th Nilsson level in terms of the eigenstates of the spherical harmonic oscillator; nρ,h
−i is the

number of holes in the Nilsson level −i; (l j)j′ stands for the angular momentum coupling;
and the matrix element 〈No(l′ 1

2 )j′Ω|(r/r0)
2Y20|No(l 1

2 )jΩ〉 is given by

〈No(l′
1
2
)j′Ω|(r/r0)

2Y20|No(l
1
2
)jΩ〉 = ∑

l′′ml ms

√
5(2l + 1)

4π(2l′′ + 1)
〈l′ml ;

1
2

ms|j′Ω〉 ×

〈lml ;
1
2

ms|jΩ〉〈lml ; 2 0|l′′ml〉〈l0; 2 0|l′′0〉〈Nol′|(r/r0)
2|Nol′′〉, (22)

where 〈lml ; 1
2 ms|jΩ〉 etc. are the SU(2) Clebsch–Gordan (CG) coefficients, and

〈Nol′|(r/r0)
2|Nol′′〉 = (No +

3
2 )δl′ l′′ +√

(No + l′ + 1)(N − l′ + 2) δl′′ l′−2 +
√
(No + l′ + 3)(N − l′) δl′′ l′+2. (23)

The matrix element of the quadruple operator related to the eigenstates (10) is given by

〈nβ, nγ, K; ξpro, ξn; L||T(E2)||n′β, n′γ, K′; ξ ′pro, ξ ′n; L′〉 = 〈nβ, nγ, K; L||Qc||n′β, n′γ, K′; L′〉 ×(
δξ ′proξpro δξ ′nξn(1 + λpro + λn)− λpro δξ ′nξnNξ ′pro

Nξpro − λn δξ ′proξproNξ ′nNξn +

λpro,n(δξ ′proξpro −Nξ ′pro
Nξpro)(δξ ′nξn −Nξ ′nNξn)

)
+

δn′βnβ
δn′γnγ

δK′K ∑ρ

(
δξ ′ρξρ

(1 + λpro + λn)− λρNξρ
Nξ ′ρ + λpro,n(δξ ′ρξρ

−Nξρ
Nξ ′ρ)

)
Λ

ξ ′ρ̄ξρ̄

L′LK , (24)

in which 〈nβ, nγ, K; L||Qc||n′β, n′γ, K′; L′〉 is the reduced matrix element of the core part [28],
where pro = n, n̄ = pro, and

Λ
ξ ′ρξρ

L′LK = 2〈L′ K; 2 0|L K〉 Nξ ′ρNξρ ∑
ji

C
ξ ′ρ
j,i C

ξρ

j,i (q
ρ
j + q̄ρ

−i). (25)
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Thus, B(E2) values are given by [28]

B(E2; nβ, nγ, K; ξpro, ξn; L→ n′β, n′γ, K′; ξ ′pro, ξ ′n; L′) =

2L′ + 1
2L + 1

|〈nβ, nγ, K; ξpro, ξn; L||T(E2)||n′β, n′γ, K′; ξ ′pro, ξ ′n; L′〉|2. (26)

The M1 operator is defined similarly as

Tµ(M1) = TRVM
µ (M1) + ∑ρ λρPρ

(
TRVM

µ (M1) + Tph
µ (M1)

)
Pρ + λpro,nPproPn

(
TRVM

µ (M1) + Tph
µ (M1)

)
PnPpro, (27)

where the same projection operators and configuration mixing parameters as those of
the E2 operator (18) are used; TRVM

µ (M1) and Tph
µ (M1) are the M1 operator of the core

described by the RVM and that of the particles and holes, respectively. The RVM core part
is defined as

TRVM
µ (M1) =

√
3

4π

(
g0 L̂µ + ∑3

i=1 gi(Qc(i)× L̂)(1)µ

)
(28)

with four effective gyromagnetic ratios gi (i = 0, · · · , 3), where L̂µ are the angular momen-
tum operators of the core in the laboratory frame, and

(Qc(i)× L̂)(1)µ = ∑
µ1µ2

〈2µ1; 1µ2|1µ〉Qc
µ1
(i)L̂µ2 (29)

with

Qc
µ(1) = D2∗

µ0(θ)(1 + α), (30)

Qc
µ(2) = D2∗

µ0(θ)
(
(ξ/β0)(1 + 2α) + (α/β0)(ξ

2 − 2η2)
)

, (31)

Qc
µ(3) =

(
D2∗

µ2(θ) + D2∗
µ−2(θ)

)(
(1− 2α)(η/β0)− 2(α/β0)ξη

)
. (32)

It is noted that the high-order terms involved in (28) are quite similar to those introduced
in the IBM calculation with no distinction between protons and neutrons [41]. Tph

µ (M1)
without high-order terms can be expressed as

Tph
µ (M1) =

√
3

4π ∑
µ′

D1∗
µµ′(θ)∑

ρ

(
gρ

p L̂ρ, p
µ′ + gρ

h L̂ρ, h
µ′
)
, (33)

where L̂ρ, p
µ (L̂ρ, h

µ ) is the angular momentum operator of the proton or neutron type particles
(holes) in the intrinsic frame, and gρ

p (gρ
h) is the effective gyromagnetic ratio of neutron or

proton type particle (hole). If the 1p1h states (11) are not considered, there is no contribution
of (33) to the matrix element of (27) related to the eigenstates (10) due to the fact that the
particles (holes) are paired with K = 0.

Hence, the matrix element of the M1 operator related to the eigenstates (10) is given by

〈n′β, n′γ, K′; ξ ′pro, ξ ′n; L′||T(M1)||nβ, nγ, K; ξpro, ξn; L〉 = 〈n′β, n′γ, K′; L′||TRVM(M1)||nβ, nγ, K; L〉 ×(
δξ ′proξpro δξ ′nξn(1 + λpro + λn)− λpro δξ ′nξnNξ ′pro

Nξpro − λn δξ ′proξproNξ ′nNξn +

λpro,n(δξ ′proξpro −Nξ ′pro
Nξpro)(δξ ′nξn −Nξ ′nNξn)

)
, (34)
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in which 〈n′β, n′γ, K′; L′||TRVM(M1)||nβ, nγ, K; L〉 can be expressed as

〈n′β, n′γ, K′; L′||TRVM(M1)||nβ, nγ, K; L〉 = g0

√
3L(L + 1)

4π
δn′βnβ

δn′γnγ
δKK′δLL′ +

(−1)L+L′+1

√
9L(L + 1)(2L + 1)

4π

{
L′ 2 L
1 L 1

} 3

∑
i=1

gi〈nβ, nγ, K; L||Qc(i)||n′β, n′γ, K′; L′〉, (35)

where the 6j-symbol with six angular momentum quantum numbers in the braces is involved
and explicit expressions of the reduced matrix elements 〈nβ, nγ, K; L||Qc(i)||n′β, n′γ, K′; L′〉 are
provided in [28].

Thus, the magnetic dipole moment of a given state is defined by

µ(nβ, nγ, K; ξpro, ξn; L) =
√

4π
3 〈LL; 10|LL〉〈nβ, nγ, K; ξpro, ξn; L||T(M1)||nβ, nγ, K; ξpro, ξn; L〉. (36)

B(M1) values are given by

B(M1; nβ, nγ, K; ξpro, ξn; L→ n′β, n′γ, K′; L′) =
2L′ + 1
2L + 1

|〈n′β, n′γ, K′; ξ ′pro, ξ ′n; L′||T(M1)||nβ, nγ, K; ξpro, ξn; L〉|2. (37)

Since only a few magnetic dipole moments of low-lying states and B(M1) values of the
transitions between low-lying states in 154Gd are experimentally available [29,42], E2/M1
mixing ratios defined in [41] with

∆(nβ, nγ, K; ξpro, ξn; L→ n′β, n′γ, K′; ξ ′pro, ξ ′n; L′) ≡
〈nβ, nγ, K; ξpro, ξn; L||T(E2)||n′β, n′γ, K′; ξ ′pro, ξ ′n; L′〉/〈n′β, n′γ, K′; ξ ′pro, ξ ′n; L′||T(M1)||nβ, nγ, K; ξpro, ξn; L〉 (38)

are calculated.
Similar to the E2 and M1 operators, if the 1p1h states (11) are not considered, the E0

operator can be effectively expressed as

T(E0) = Tc(E0) + ∑ρ ∑i(Λ
ρ
i ni + Λ̄ρ

−in
ρ,h
−i ) +

∑ρ λρPρ

(
Tc(E0) + ∑ρ ∑i(Λ

ρ
i ni + Λ̄ρ

−in
ρ,h
−i )
)

Pρ + (39)

λpro,nPproPn

(
Tc(E0) + ∑ρ ∑i(Λ

ρ
i ni + Λ̄ρ

−in
ρ,h
−i )
)

PnPpro, (40)

where the projection parameters λρ and λpro,n are the same as those used in the E2 operator,
the collective core part is given by [25,43]

Tc(E0) = 3ZeR2
0

4π

(
β2

0 + 2β0 ξ + ξ2 + 2η2), (41)

Λρ
i = eρ r2

0 ∑
l,j,l′ ,j′

Wi
l′ j′ΩWi

l jΩ〈No(l′
1
2
)j′Ω|(r/r0)

2|No(l
1
2
)jΩ〉,

Λ̄ρ
−i = −eρ r2

0 ∑
l,j,l′ ,j′

W−i
l′ j′ΩW−i

l jΩ〈No(l′
1
2
)j′Ω|(r/r0)

2|No(l
1
2
)jΩ〉. (42)

Similar to (22), the matrix element 〈No(l′ 1
2 )j′Ω|(r/r0)

2|No(l 1
2 )jΩ〉 is given by

〈No(l′ 1
2 )j′Ω|(r/r0)

2|No(l 1
2 )jΩ〉 = ∑mlms〈l

′ml ; 1
2 ms|j′Ω〉 ×

〈lml ; 1
2 ms|jΩ〉〈Nol′|(r/r0)

2|Nol〉. (43)

The matrix element of the E0 operator related to the eigenstates (10) is given by
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〈n′β, n′γ, K′; ξ ′pro, ξ ′n; L′||T(E0)||nβ, nγ, K; ξpro, ξn; L〉
= δL′L 〈n′β, n′γ, K′; L||Tc(E0)||nβ, nγ, K; L〉 ×(

δξ ′proξpro δξ ′nξn(1 + λpro + λn)− λpro δξ ′nξnNξ ′pro
Nξpro − λn δξ ′proξproNξ ′nNξn +

λpro,n(δξ ′proξpro −Nξ ′pro
Nξpro)(δξ ′nξn −Nξ ′nNξn)

)
+

δn′βnβ
δn′γnγ

δK′KδL′L ∑ρ

(
δξ ′ρξρ

(1 + λpro + λn)− λρNξρ
Nξ ′ρ + λpro,n(δξ ′ρξρ

−Nξρ
Nξ ′ρ)

)
Λξ ′ρ̄ξρ̄ , (44)

where

Λξ ′ρξρ = 2Nξ ′ρNξρ ∑
ji

C
ξ ′ρ
j,i C

ξρ

j,i (Λ
ρ
j + Λ̄ρ

−i). (45)

Accordingly, B(E0) and ρ2(E0) values are given by [25,43]

B(E0; nβ, nγ, K; ξπ , ξν; L→ n′β, n′γ, K′; ξ ′π , ξ ′ν; L) =

|〈n′β, n′γ, K′; ξ ′π , ξ ′ν; L||T(E0)||nβ, nγ, K; ξπ , ξν; L〉|2 (46)

and

ρ2(E0; nβ, nγ, K; ξπ , ξν; L→ n′β, n′γ, K′; ξ ′π , ξ ′ν; L) =

1
e2R4

0
B(E0; nβ, nγ, K; ξπ , ξν; L→ n′β, n′γ, K′; ξ ′π , ξ ′ν; L). (47)

3. Model Fit to 154Gd

Low-lying bands of 154Gd have been studied theoretically using the dynamic defor-
mation model [15], the coherent state model [16], and the interacting boson model [17–23].
However, only the ground-state, beta-, and gamma-bands were discussed. In this section,
we take 154Gd as an example to be fitted by the present model. The deformation parameters
ε2 = 0.22 corresponding to β0 ≈ 0.232 and ε4 = −0.04 for the Nilsson single-particle
energies of 154Gd are taken from [44], with which a few Nilsson single-particle energies of
protons and neutrons near the Fermi surface corresponding to proton number Z = 64 and
neutron number N = 90 are shown in Table 1. The lowest four pure 1p1h excitation energies
with two of neutrons and two of protons are also shown in the lower part of Table 1.

Table 1. The neutron and proton single-particle energies (in MeV) of 154Gd generated from the
Nilsson model with ε2 = 0.22 and ε4 = −0.04, in which the parity of the levels is also shown.

Neutron ε
n(+)
−4,3/2 ε

n(−)
−3,1/2 ε

n(−)
−2,11/2 ε

n(−)
−1,3/2 ε

n(+)
0,1/2 ε

n(+)
1,3/2 ε

n(−)
2,3/2 ε

n(−)
3,5/2 ε

n(+)
4,5/2 ε

n(−)
5,1/2 ε

n(−)
6,5/2

−1.532 −0.628 −0.607 −0.244 0 0.821 1.127 1.706 2.043 2.790 2.856

Proton ε
pro(−)
−5,1/2 ε

pro(+)
−4,3/2 ε

pro(+)
−3,1/2 ε

pro(−)
−2,3/2 ε

pro(+)
−1,5/2 ε

pro(−)
0,5/2 ε

pro(+)
1,3/2 ε

pro(−)
2,7/2 ε

pro(+)
3,7/2 ε

pro(+)
4,1/2 ε

pro(+)
5,5/2

−1.740 −1.672 −1.629 −1.068 −0.016 0 0.187 1.236 1.280 1.608 1.663

Neutron-1h1p: −ε
n(+)
−4,3/2 + ε

n(+)
1,3/2 = 2.353, −ε

n(−)
−1,3/2 + ε

n(−)
2,3/2 = 1.370. Proton-1h1p: −ε

pro(+)
−4,3/2 + ε

pro(+)
1,3/2 = 1.859,

−ε
pro(+)
−1,5/2 + ε

pro(+)
5,5/2 = 1.679.

We use the model Hamiltonian (1) to fit positive parity level energies below 1.990 MeV
in the eight experimentally identified positive parity bands of 154Gd provided in the level
scheme of [29], while the level energy of 5+3 state is taken from the recent thesis [45]. In
the fitting, 20 Nilsson single-particle energies of both protons and neutrons near the Fermi
surface are taken with pρ = p′ρ = 10. It is observed that the level energies (in MeV) only
vary at the second decimal place if more Nillson single-particle energies are taken into
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account when |g| ≤ 0.3 MeV, and can be readjusted by the interaction strength g. The
calculation shows that the more the Nillson levels are taken into account, the smaller the
interaction strength |g| required in order to obtain a best fit to the 0+ band head energies
concerned. Therefore, the actual interaction strength |g| is smaller than that shown in
Table 2. The first part of Table 2 shows the fitting results of level energies below 1.990 MeV
in the eight experimentally identified positive parity bands provided in [29,45], where the
band numbers are assigned in [29], and the underlined 4+7 and 4+8 level energies above
1.990 MeV in bands 11 and 12, respectively, are also shown. It should be noted that spin and
parity of the level energy at 2.088 MeV assigned to be 4+8 in this work are not determined in
experiments [29]. In the fitting, it is observed that the gap of the first and the second 2p2h
excitation energies is always less than 0.3 MeV if the interaction strength |g| ≤ 0.3 MeV is
considered. As the consequence, the first two 2p2h excitations may be the 0+3 and 0+4 band
heads or the 0+4 and 0+5 band heads, of which the gaps are around 0.15 MeV. Accordingly,
in Scheme 1 (S1), the 0+3 band head is fitted as the first 2p2h state. Hence, the beta-vibration
energy Eβ and the interaction strength g are adjusted according to the 0+2 and 0+3 excitation
energies, respectively. In Scheme 2 (S2), the 0+4 band head is fitted as the first 2p2h state,
for which the beta-vibration energy Eβ is adjusted according to the 0+2 and 0+3 excitation
energies, while the interaction strength g is adjusted according to the 0+4 excitation energy.
The lower part of Table 2 provides the fitting results of a series of 0+ excitation energies
up to 0+16 in the two schemes, where nβ stands for nβ = n and K = 0; nγ stands for nγ = n
and K = 0; 2p2h stands for the 2p2h-band head with K = 0, nβ = 0, nγ = 0; and 1p1h
stands for 1p1h-band head with K = 0, nβ = 0, nγ = 0. The lowest eight 0+ excitation
energies obtained from the RVM are also provided. The fitting results of the levels in the
eight bands in comparison to the experimental ones are shown in Figure 1.

Table 2. Level energies below 1.990 MeV in the eight experimentally identified positive parity bands
of 154Gd [29,45]. The parameters used in S1 (S2) for the 154Gd core are E0 = 0.033 (0.033) MeV,
Eβ = 0.681 (0.636) MeV, Eγ = 0.780 (0.780) MeV, and g = −0.239 (−0.2685) MeV.

Band 1 (0+g band) Band 2 (0+2 band) Band 4 (2+3 band) Band 8 (2+5 band)
L+

ξ Exp. [29] S1 & S2 L+
ξ Exp. [29] S1 S2 L+

ξ Exp. [29] S1 & S2 L+
ξ Exp. [29] S1 S2

2+1 0.123 0.100 0+2 0.681 0.681 0.636 2+3 0.996 0.813 2+5 1.531 1.494 1.449
4+1 0.371 0.333 2+2 0.815 0.781 0.736 3+1 1.128 0.913 3+2 1.661 1.594 1.549
6+1 0.718 0.700 4+2 1.048 1.014 0.969 4+3 1.264 1.047 4+6 1.789 1.728 1.683
8+1 1.144 1.200 6+2 1.366 1.381 1.336 5+1 1.432 1.213 5+3 1.990 [45] 1.894 1.849
10+1 1.637 1.833 8+2 1.756 1.881 1.836 6+3 1.607 1.413

7+1 1.810 1.647

Band 6 (0+3 band) Band 10 (4+4 band) Band 11 (0+6 band) Band 12 (0+7 band)
L+

ξ Exp. [29] S1 S2 L+
ξ Exp. [29] S1 & S2 L+

ξ Exp. [29] S1 S2 L+
ξ Exp. [29] S1 S2

0+3 1.182 1.182 1.272 4+4 1.646 1.626 0+6 1.574 1.551 1.560 0+7 1.650 1.560 1.587
2+4 1.418 1.282 1.372 5+2 1.770 1.793 2+6 1.716 1.651 1.660 2+7 1.775 1.660 1.687
4+5 1.701 1.515 1.605 6+4 1.912 1.993 4+7 2.080 1.884 1.893 4+8 2.088 1.893 1.920

0+2 0+3 0+4 0+5 0+6 0+7 0+8 0+9 0+10 0+11 0+12 0+13 0+14 0+15 0+16

Exp. [29] 0.681 1.182 1.353 1.498 1.574 1.650 1.837 1.899 1.943 2.040 2.300 2.485 2.586 2.744 2.855

S1 0.681 1.182 1.272 1.362 1.551 1.560 1.863 1.870 1.953 2.043 2.078 2.232 2.241 2.399 2.523
β 2p2h 2p2h 2β 1p1h γ 2p2h-β 1p1h 2p2h-β 3β 1p1h 1p1h-β β-γ 2p2h 1p1h

S2 0.636 1.272 1.353 1.449 1.560 1.587 1.905 1.908 1.989 2.085 2.113 2.196 2.223 2.541 2.544
β 2β 2p2h 2p2h γ 1p1h 1p1h 3β 2p2h-β 2p2h-β 1p1h β-γ 1p1h-β 1p1h-β 4β

RVM 0.636 1.272 1.560 1.908 2.196 2.544 2.832 3.120
β 2β γ 3β β-γ 4β 2β-γ 2γ
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Figure 1. Low-lying level energies (in MeV) in the eight experimentally identified positive parity
bands of 154Gd, where the left (black) levels are those observed in experiments [29], the middle
(green) levels are those obtained from Scheme 1, and the right (red) levels are those obtained from
Scheme 2.

In the fitting to the level energies,

σ(E) =

(
1
N
N
∑
i=1

(Eexp
i − Eth

i )2

)1/2

(48)

is used, where N is the number of data used in the fitting, Eth
i is a level energy obtained

from this work, and Eexp
i is the corresponding experimental value. As far as the level

energies in the eight bands are concerned, σS1(E) = 0.113 MeV and σS2(E) = 0.167 MeV
indicate that S1 is a little better than S2 in fitting to the level energies. The fitting quality of
the RVM is the same as that of S2 if the level energies in bands 11 and 12 are excluded. As
is clearly shown in the lower part of Table 2, the 0+u (u ≥ 4) band head energies produced
from the RVM are much higher than the corresponding experimental results, while 0+u
(u ≤ 11) level energies are well reproduced in both S1 and S2.

Table 3 shows the intra- and inter-band reduced E2 transition probabilities of the
lowest three bands, namely, the ground-state band (nβ = 0, K = 0, nγ = 0), the 0+2 -band
(nβ = 1, K = 0, nγ = 0), and the gamma-band (nβ = 0, K = 2, nγ = 0) calculated from S1,
S2, and the RVM. The common feature of S1, S2, and the RVM results shown in Table 3 is
that the B(E2) values of the intra-band transitions in the ground-state band are equal to the
corresponding ones in the 0+2 -band. The root mean square deviation of these B(E2) values
is defined similar to that of the level energies shown in (48) is σS1(B(E2)) = 0.322 e2b2

in S1, σS2(B(E2)) = 0.285 e2b2 in S2, and σRVM(B(E2)) = 0.344 e2b2 in the RVM. Hence,
the RVM with particle-hole configuration mixing seems much better than the original RVM
in describing the level energies and slightly better in the intra- and inter-band reduced E2
transition probabilities of the lowest three bands. Moreover, only the electric quadrupole
moment of the 2+1 state of 154Gd is experimentally available. Q(2+1 ) calculated from S1,
S2, and the RVM are −2.755 eb, −2.850 eb, and −2.688 eb, respectively, which are all a
little larger than the experimental value Qexp(2+1 ) = −1.82 (4) eb [29]. Table 4 shows
the branching ratios B(E2; L+

i → L′+f )/B(E2; L+
i → L+

f ). It can be observed that the B(E2)
ratios of the transitions within the lowest three bands obtained from S1, S2, and the RVM
shown on the left part of Table 4 are almost the same, among which most of the ratios are
merely proportional to the square of the ratio of the related CG coefficients. Although there
is discrepancy in comparison to the corresponding experimental values, the data pattern of
these ratios follows that of the experimental data, which also indicate that most of these
ratios are irrelevant to the particle-hole excitation. The most noticeable deviation occurs in
the B(E2) ratios of the transitions from the 0+3 band to the beta-band and those from the
0+3 band to the ground-state band shown in the right part of Table 4. Most of these ratios
obtained from S1 are too small, while they are too large in both S2 and the RVM. The fitting
quality of the dynamic pairing plus quadrupole model [15,46] for these ratios [46] is quite
similar to that of S2 or the RVM. As shown in Table 2, the 0+3 band head is assigned as
the first 2p2h state, while it is the two β-phonon (nβ = 2) state in both S2 and the RVM.
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A model calculation with a mixing of the two configurations determined in S1 and S2 may
improve the results but there will be many parameters involved. The two exceptions are
the ratios B(E2; 4+5 → 2+4 )/B(E2; 4+5 → 4+1 ) and B(E2; 4+6 → 4+2 )/B(E2; 4+6 → 2+1 ). The
former is 84.0, 26.4, and 25.5 times larger in S1, S2, and the RVM, respectively, than the
experimental value, while the latter is about 18 times larger in S1, S2, and the RVM than
the experimental value.

Table 3. B(E2) values (in e2b2) of 154Gd with the model parameters shown in Table 2 and the
configuration mixing parameters λpro = −0.3305, λn = 0.650, λpro,n = 0.350 and effective charge
epro = 1.0 e, en = 0 in S1, and λpro = 0.100, λn = 0.40, λpro,n = −0.80, epro = 1.2 e, en = −0.2 e in S2,
where the symbol “–” indicates that the corresponding value is experimentally not available.

Exp. [29] S1 S2 RVM Exp. [16,29] S1 S2 RVM Exp. [29] S1 S2 RVM

2+1 → 0+g 0.770 0.529 0.561 0.503 2+2 → 0+2 0.476 0.529 0.561 0.503 2+3 → 0+2 0.006 0.0001 0.0001 0.0001
4+1 → 2+1 1.201 0.756 0.802 0.719 4+2 → 2+2 1.220 0.756 0.802 0.719 2+3 → 4+1 0.008 0.003 0.003 0.003
6+1 → 4+1 1.398 0.832 0.883 0.791 6+2 → 4+2 1.110 0.832 0.883 0.791 2+3 → 2+1 0.060 0.057 0.060 0.055
8+1 → 6+1 1.530 0.872 0.924 0.828 8+2 → 6+2 – 0.872 0.924 0.828 2+3 → 0+g 0.028 0.040 0.042 0.038

10+1 → 8+1 1.765 0.895 1.024 0.851
0+2 → 2+1 0.255 0.193 0.218 0.198 4+2 → 6+1 0.120 0.102 0.115 0.104
2+2 → 4+1 0.096 0.099 0.112 0.102 4+2 → 4+1 0.038 0.058 0.066 0.059
2+2 → 2+1 0.033 0.055 0.062 0.056 4+2 → 2+1 0.004 0.064 0.072 0.066
2+2 → 0+g 0.004 0.039 0.044 0.040 6+2 → 4+1 0.003 0.057 0.079 0.072

Table 4. The same as Table 3 but for the branching ratio B(E2;L+
i →L′+f )

B(E2;L+
i →L+

f )
.

Exp. S1 S2 RVM Exp. S1 S2 RVM

6+2 →4+1
6+2 →6+1

0.080 [16]; 0.043 [45] 1.236 1.236 1.236 2+4 →0+2
2+4 →0+g

4.6 [46] 0.950 2491.32 2491.32

8+2 →6+1
8+2 →6+2

0.006 [16] 0.085 0.090 0.091 2+4 →4+2
2+4 →2+2

1.531 [45], 0.79 [46] 1.800 1.800 1.800
2+3 →2+2
2+3 →2+1

1.000 [16] 0.003 0.003 0.003 2+4 →0+2
2+4 →2+2

0.027 [46] 0.700 0.700 0.700
3+1 →2+1
3+1 →4+1

1.006 [16] 2.500 2.500 2.500 2+4 →2+2
2+4 →2+1

100.000 [45], 79.2 [46] 0.950 2491.32 2491.32
4+3 →2+1
4+3 →4+1

0.148 [16], 0.125 [45] 0.340 0.340 0.340 2+4 →4+2
2+4 →4+1

10.000 [45], 5.6 [46] 0.950 2491.32 2491.32
4+3 →6+1
4+3 →4+1

0.270 [16], 0.264 [45] 0.086 0.086 0.086 4+5 →4+2
4+5 →4+1

74.118 [45], 45.5 [46] 0.950 2491.32 2491.32
4+3 →2+3
4+3 →4+1

8.251 [45] 4.476 4.476 4.476 4+5 →2+2
4+5 →4+1

3.235 [45] 1.044 2740.45 2740.45
51→31
51→61

18.051 [45] 13.844 13.844 13.844 45→24
45→41

588.235 [45] 49,404.8 15,506.1 15,027.5
5+1 →4+1
5+1 →6+1

0.744 [16], 0.585 [45] 1.750 1.750 1.750 4+5 →6+1
4+5 →4+1

10.294 [45] 1.750 1.750 1.750
6+3 →4+1
6+3 →6+1

0.081 [16], 0.096 [45] 0.269 0.269 0.269 4+6 →4+1
4+6 →2+1

7.778 [45] 2.945 2.945 2.945
7+1 →8+1
7+1 →6+1

2.532 [45] 0.667 0.667 0.667 4+6 →4+2
4+6 →2+1

55.556 [45] 1001.91 935.71 935.71
2+4 →0+g
2+4 →2+1

0.510 [45], 0.46 [46] 0.700 0.700 0.700 5+3 →4+2
5+3 →4+3

0.409 [45] 1.484 1.386 1.386
2+4 →4+1
2+4 →2+1

15.306 [45], 11.3 [46] 1.800 1.800 1.800

However, there are only a few magnetic dipole moments of low-lying states, and
B(M1) values of the transitions between low-lying states are experimentally available [42].
Therefore, experimentally deduced ∆ ≡ E2/M1 ratios reported in [41] are calculated in
order to validate the theory. In principle, the two experimentally measured magnetic dipole
moments and two B(M1) values can be used to fix the four gyromagnetic ratios in (28). In
the calculation, g0, g1, and g2 are fixed by the two magnetic dipole moments and B(M1,
2+2 → 2+1 ), respectively, while g3 is determined by a least square fit to the known E2/M1
ratios of the transitions from the 2+3 band to the ground-state band. The four gyromagnetic
ratios thus determined, together with the two magnetic dipole moments and two B(M1)
values, are shown in Table 5. It can be noticed in Table 5 that B(M1, 2+3 → 2+1 ) in S1, S2,
and the RVM is about 2 times smaller than the experimental value in order to obtain a
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best fit to the E2/M1 ratios of the inter-band transitions from the 2+3 band to the ground-
state band. The calculated results of the E2/M1 ratios in comparison to the experimental
data [41] are shown in Table 6, in which the IBM results of these ratios [41] are also included
for comparison. It is shown in Table 6 that the ratios of the inter-band transitions obtained
from both S1 and S2 are the same, which is due to the fact that these ratios are independent
of the configuration mixing parameters, while the only intra-band transition calculated in
S1 is slightly different from that in S2, because the configuration mixing parameters and the
contribution to the E2 matrix element from particles and holes are involved. The deviation
from the experimental E2/M1 values defined similar to that of the level energies shown
in (48) is σS1,S2(∆) = 2.15 eb/µN , σRVM(∆) = 2.17 eb/µN , and σIBM(∆) = 4.04 eb/µN ,
in which ∆(3+1 → 2+3 ) is excluded due to the uncertain experimental value. Therefore,
except that the B(M1, 2+3 → 2+1 ) obtained from S1, S2, and the RVM is about two times
smaller than the experimental value, which was not calculated in the IBM fit [41], the S1
and S2 results are the best.

Table 5. The effective gyromagnetic ratios gi (i = 0, · · · , 3) (in nuclear magneton µN) used in
Scheme 1, Scheme 2, and the RVM, and the fitting results to the known magnetic moments (in µN)
and B(M1) values (in Weisskopf unit) of 154Gd.

µ(2+1 ) µ(2+3 ) B(M1, 2+2 → 2+1 ) B(M1, 2+3 → 2+1 ) g0 g1 g2 g3

RVM 0.91 0.83 0.000109 0.000093 0.435 −0.089 −0.178 0.174
S1 0.91 0.83 0.000109 0.000093 0.425 −0.087 −0.174 0.170
S2 0.91 0.83 0.000109 0.000097 0.414 −0.085 −0.170 0.170

Exp. [42] 0.91+0.04
−0.04 0.83+0.07

−0.09 0.000109 (15) 0.000203 (23 )

Table 6. The same as Table 3 but for ∆ ≡ E2/M1 mixing ratios (in eb/µN) for 154Gd.

Exp. [41] S1 S2 RVM IBM [41] Exp. [41] S1 & S2 RVM IBM [41]

∆(2+3 → 2+1 ) −13.3+0.7
−0.7 −12.14 −12.14 -11.86 -13.3 ∆(3+1 → 2+1 ) −8.9+0.5

−0.5 −11.35 −11.09 -8.9
∆(3+1 → 4+1 ) −8.9+0.3

−0.3 −8.29 −8.29 -8.10 -11.1 ∆(4+3 → 4+1 ) −5.5+0.5
−0.5 −6.34 −6.19 −7.1

∆(5+1 → 4+1 ) −4.9+1.4
−2.9 −6.55 −6.55 −6.40 −4.1 ∆(5+1 → 6+1 ) −11.6+7.1

−∞ −5.43 −5.30 −7.8
∆(6+3 → 6+1 ) −4.2+1.8

−∞ −4.33 −4.33 −4.23 −4.6 ∆(7+1 → 6+1 ) −2.97+0.50
−0.67 −4.63 −4.53 −2.2

∆(7+1 → 8+1 ) −5.7+1.2
−1.8 −4.05 −4.05 −3.95 −5.9 ∆(2+2 → 2+1 ) 14.4+2.6

−1.9 11.85 11.59 14.5
∆(4+2 → 4+1 ) 5.3+2.3

−2.3 6.19 6.19 6.05 6.2 ∆(6+2 → 6+1 ) 2.86+0.33
−0.26 4.22 4.13 7.1

∆(8+2 → 8+1 ) 2.3+0.8
−0.6 3.21 3.21 3.14 4.4 ∆(10+2 → 10+1 ) 2.4+1.0

−0.7 2.59 2.54 15.9
∆(3+1 → 2+3 ) ±

(
15.5+3.4

−4.4

)
24.77 24.90 21.68 28.4

The mixing ratio B(E0; 0+i → 0+f )/B(E2; 0+i → 2+1 ) up to the 0+4 state and ρ2(E0, 0+2 →
0+1 ) × 103 are also calculated, which are shown in Table 7. It can be observed that the
ρ2(E0, 0+2 → 0+1 )× 103 obtained from S1, S2, and the RVM is about two times larger than
the experimental value, which is due to the fact that this value is almost independent
of the particle-hole excitation. The main reason of why the mixing ratios of S1 differ
from those of S2 is that 0+3 is the 2p2h state in S1, while it is the two β-phonon state
in S2. Although the results of S1 seem closer to the the experimental data, the ratio
B(E0; 0+3 → 0+1 )/B(E0; 0+3 → 0+2 ) deduced from S1 and S2 or the RVM is 27.62 and 0.020,
while that deduced from the experimental data is 0.11, which shows once again that a
configuration mixing of the two schemes may improve the model results.
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Table 7. The same as Table 3 but for the ratio B(E0;0+i →0+f )
B(E2;0+i →2+1 )

and ρ2(E0, 0+2 → 0+1 )× 103.

Exp. [47] S1 S2 RVM

0+2 →0+1
0+2 →2+1

0.060 (9) 0.183 0.183 0.183
0+3 →0+1
0+3 →2+1

0.112 (18) 3.377 7.716 7.716
0+3 →0+2
0+3 →2+1

1.02 (16) 0.122 392.59 392.59

0+4 →0+1
0+4 →2+1

0.80 (16) 0.142 0.234 7.716

ρ2(E0, 0+2 → 0+1 )× 103 89 (17); 96 (17) [43] 206.16 232.57 211.13

4. Summary

In this work, based on the collective rotor-vibrator model and the particle-plus-rotor
model, multi-particle-hole excitations from a collective even-even core described by the
rotor-vibrator are adopted to describe well-deformed even-even nuclei, which is a primary
attempt to reveal the nature of a series of 0+ states observed in these nuclei. It is shown
that a series of experimentally observed 0+ states in these nuclei may be interpreted as the
multi-particle-hole excitations complementary to the beta and gamma vibrations described
by the rotor-vibrator model. As a typical example of the model application, low-lying
positive parity level energies below 1.990 MeV in the eight experimentally identified
positive parity bands; a series of 0+ excitation energies up to 0+16; and some experimentally
known B(E2) values, E2 branching ratios, E2/M1 and E0/E2 mixing ratios of 154Gd are
fitted and compared to the experimental results.

In fitting to the level energies below 1.990 MeV in the eight experimentally identified
positive parity bands in 154Gd, two schemes with the 0+3 band head as the 2p2h state and
that as the two beta-phonon state are considered. It is shown that the fitting quality of
the two schemes is quite the same and much better than the original RVM, especially
when higher excited 0+u bands with u = 6 and u = 7 are involved. Although the B(E2)
values of the transitions within the lowest three bands obtained from S1, S2, and the RVM
are quite the same and close to the corresponding experimental data, there is noticeable
deviation in the B(E2) ratios of the transitions from the 0+3 band to the 0+2 band and those
from the 0+3 band to the ground-state band. Most of these ratios obtained from scheme
1 is too small, while they are too large in both scheme 2 and the RVM. Although the
E2/M1 ratios fitted by S1, S2, and the RVM are acceptable and better than those fitted
by the IBM [41], B(M1, 2+3 → 2+1 ) obtained from S1, S2, and the RVM is about two times
smaller than the experimental value in order to obtain a best fit to the E2/M1 ratios of
the inter-band transitions from the 2+3 band to the ground-state band. Except for B(M1,
2+3 → 2+1 ), the E2/M1 ratios obtained from S1 and S2 are better than those obtained from the
original RVM. Deviations in the mixing ratios B(E0; 0+i → 0+f )/B(E2; 0+i → 2+1 ) up to the
0+4 state also occur in the two schemes. Therefore, although there will be many parameters
involved, a model calculation with a mixing of the two configurations determined in
scheme 1 and scheme 2 may improve the results. Previously, it was pointed out that the 0+3
band head is a pairing isomer and can hardly be interpreted as the pure two beta-phonon
state [46]. Similar conclusions on the 0+2 state with possible 2p2h configuration mixing
were also drawn in [26,27]. As pointed out in [48], the pairing isomer can be viewed as
an excited state with different deformation of the Fermi surface from that of the ground
state, which is related to the so-called shape coexistence and configuration mixing [48].
Furthermore, it is concluded in [25,48] that strong proton-pair-neutron-pair correlations
must be involved in low-lying 0+ states of well-deformed even-even nuclei. The analysis
of the simplified multi-particle-hole configuration mixing schemes shown in this work
further confirms these conclusions, although only a part of the pairing interactions among
like-nucleon pairs [25,48] are taken in effect in the 2p- and 2h-pair interaction introduced in
the present work.

It is obvious that many improvements can be made in order to provide more accurate
model descriptions of well-deformed nuclei. For example, rotational energies of particles
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and holes, and the rotation-particle and rotation-hole coupling terms neglected in the
present calculation, should be included resulting in the well-known K-band mixing [49,50],
with which the B(E2) values of the intra-band transitions within the 0+3 and 0+4 bands,
and the related inter-band transitions and E2/M1 ratios, may be improved. Configuration
mixing of the excited core with different deformation from that of the unexcited one, to-
gether with the multi-particle-hole excitations with the different deformed bases, can be
considered to reveal possible shape coexistence [48] and to improve the model description
of the electromagnetic transitions. A more precise description in considering all valence
proton and neutron pairs confined within a deformed single-particle potential with pairing
interactions is also possible. By doing so, not only can the pairing interactions among both
neutron and proton pairs, together with multi-particle-hole excitations from a closed shell,
be fully taken into account, but also 1+ states formed from isovector proton–neutron pairs
leading to the scissor and twist modes [9–11] lying higher in energy and not considered in
this work can be produced to study the strongly enhanced M1 transitions in well-deformed
nuclei. With these improvements, a model calculation for a chain of isotopes may be carried
out to investigate the consistency of shape phase evolution in these nuclei [6,7,16,37]. These
possible improvements will be considered in our future work. Furthermore, besides experi-
ment in measuring E2 and M1 transition rates and mixing ratios more precisely similar to
that reported in [45,46,51], two-nucleon transfer reactions in measuring 0+ nucleon-pair
transfer reaction rates in these well-deformed nuclei suggested in [25] are in demand,
from which the nature of a series of excited 0+ states can be further analyzed.

Author Contributions: Methodology, F.P.; numerical calculations and analyses, Y.W., A.L. and L.D.;
writing—original draft, F.P.; writing—review and editing, J.P.D.; plus senior leadership and oversight,
F.P. and J.P.D. All authors have read and agreed to the final version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12175097,
12175066).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Mathematica code for the model calculation and the results pre-
sented are available upon request.

Conflicts of Interest: The authors have no conflict of interest.

References
1. Bohr, A.; Mottelson, B.R. Nuclear Structure II; Benjamin: Reading, UK, 1975.
2. Iachello, F.; Arima, A. The Interacting Boson Model; Cambridge University: Cambridge, UK, 1987.
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