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Abstract: We investigate the time propagation of tachyonic (superluminal) and tardyonic (sublu-
minal, ordinary) massive wave packets on cosmic scales. A normalizable wave packet cannot be
monochromatic in momentum space and thus acquires a positional uncertainty (or packet width) that
increases with travel distance. We investigate the question of how this positional uncertainty affects
the uncertainty in the detection time for cosmic radiation on Earth. In the ultrarelativistic limit, we
find a unified result, δx(t)/c3 = m2δpt/p3

0, where δx(t) is the positional uncertainty, m is the mass
parameter, δp is the initial momentum spread of the wave function, and p0 is the central momentum
of the wave packet, which, in the ultrarelativistic limit, is equal to its energy. This result is valid for
tachyons and tardyons; its interpretation is being discussed.

Keywords: symmetry and conservation laws; gauge field theories; gauge bosons

PACS: 11.30.-j; 11.15.-q; 14.70.-e

1. Introduction

Aficionados of quantum field theory are interested in the dispersion of ultrarelativistic
wave packets on cosmic scales. The unexpected early neutrino burst from the supernova
1987A as reported in [1] still inspires speculations about a potentially tachyonic nature of at
least some of the known neutrino species [2]. While this possibility needs to be considered
as remote, some interesting conclusions regarding fundamental properties of neutrinos
have been derived from the observations [3–5]. The situation gives rise to further questions:
Given the dispersion of quantum mechanical wave packets due to the spreading of the
momentum-space components, one might speculate that, over very long (cosmic) distance
and time scales, the quantum-mechanical wave packet might have spreaded sufficiently to
“mimic early arrival” of neutrino bursts, due to position uncertainty after propagation over
cosmic scales.

It is well known that, depending on the way in which one interprets the experi-
ments, tiny violations of the causality principle are permissible under the laws of quantum
mechanics. Let us consider a wave packet which fulfills the massless one-dimensional
Klein–Gordon equation,

φ(t, x) =
1

(2π)1/4
√

δx
exp

[
− (x− ct)2

4δx2

]
cos(x− ct) ,

(
1
c2

∂2

∂t2 −
∂2

∂x2

)
φ(t, x) = 0 , (1)

which is normalized to the condition
∫

dx |φ(t = 0, x)|2 =
∫

dx |φ(t, x)|2 = 1. The po-
sitional uncertainty of the wave packet at time t = 0 is easily shown to be equal to
δx(t)2 = 〈x(t)2〉 − 〈x(t)〉2 = δx2 and thus constant in time (no dispersion of the wave
packet). Clearly, the wave packet describes an ultrarelativistic spinless particle whose wave
function is centered at 〈x(t)〉 = c t, but the tip of the wave packet is forward displaced by a
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distance δx relative to the center of the wave packet. If the particle were classical, then its
trajectory would be described by the expectation value 〈x(t)〉 = c t, i.e., the particle would
travel on the light cone. However, quantum-mechanically, it is possible for the tip of the
wave packet to be ahead by a distance δx. This observation alone, of course, by no means
constitutes a violation of causality, but it illustrates the fact that one needs to be careful
when analyzing the propagation of quantum mechanical wave packets.

The wave packet given in Equation (1) shows no dispersion over time, or, equivalently,
the uncertainty [δx(t)]2 = δx2 is constant in time. Ultrarelativistic particles traveling at
exactly the speed of light are described by wave packets which do not display dispersion,
because all momentum components travel at the speed of light c, and the phase velocity c is
equal to the group velocity ∂E/∂p = ∂(c p)/∂p = c. One can understand the dispersion of
quantum-mechanical wave packets, in a somewhat colloquial, low-level analogy, by consid-
ering a herd of cows: The faster cows will form the tip of the herd, while the slower cows
will stay behind. The positional uncertainty δx(t)2 of the herd grows with time. The same
phenomenon applies to an “ultrarelativistic herd of cows” corresponding to the quantum
mechanical wave packet that describes a massive, ultrarelativistic Dirac particle. Here,
the dispersion relation is E =

√
p2 + m2 (we assume p = px to be the momentum in the x

direction), and the phase velocity E/p is not equal to the group velocity ∂E/∂p = p/E < c.
The dispersion relation E =

√
p2 + m2 describes particles traveling at speeds lower than

the speed of light (so-called tardyonic particles). Recently, the tachyonic Dirac equation has
been studied in detail [6]. As is well known, the dispersion relation for tachyonic particles
reads as E =

√
p2 −m2. Again, the phase velocity E/p is not equal to the group velocity,

yet the group velocity ∂E/∂p = p/E > c is superluminal.
When we detect ultrarelativistic particles on Earth of cosmic origin, a natural question

to ask concerns the spread of the quantum mechanically “allowed” arrival times, assuming
that the wave packets describing particles, on their way through cosmos, propagated
according to the free tardyonic and tachyonic Dirac equations. Here, we thus engage in
the interesting task to study the dispersion of wave packets solving the free tardyonic and
tachyonic Dirac equations, and to study the time evolution of the positional uncertainy
under the free tardyonic and tachyonic Dirac equations.

This paper is organized as follows: In Section 2, we study the bispinor solutions
(in the helicity basis) which constitute the basis of our considerations. In Section 3, we
employ an expansion about the central momentum value p0 of the wave packet in order to
evaluate that positional uncertainty of the wave packet as a function of time. The cosmic
limit is discussed in Section 4. Conclusions are reserved for Section 5. Natural units with
h̄ = c = ε0 = 1 are used everywhere in our calculations unless stated otherwise.

2. Bispinor Solutions
2.1. General Considerations

In order to write the solutions for the tachyonic and tardyonic Dirac equations [6–15],(
iγµ∂µ − γ5 m

)
Ψ(x) = 0 (tachyonic) , (2a)(

iγµ∂µ −m
)

ψ(x) = 0 (tardyonic) , (2b)

we resort to the the helicity basis adapted to the ultrarelativistic case [8]. (Throughout this
paper, quantities referring to tachyonic entities such as bispinor wave functions are denoted
by uppercase Greek and Latin symbols, while quantities pertaining to tardyonic entities
are lowercase. Standard notation is used in Equation (2) for the Dirac gamma matrices
γµ, the partial derivatives ∂µ ≡ ∂/∂xµ, the mass parameter m, and the space-time point
x = (t,~r).)

In order to meaningfully discuss the dispersion of an ultrarelativistic wave packet, and
study quantum propagation, we need to construct normalizable states. It is well known
that momentum eigenstates are normalized to a Dirac-δ in momentum space and their
wave functions cannot be normalized to unity in coordinate space [15]. This problem has
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been considered in various contexts before. An example can be found in photon wave
packets, which are interpreted as photon wave functions in Ref. [16]. Specifically, in the
discussion surrounding Equation (365) of Ref. [16], Gaussian envelope factors are inves-
tigated. Hermite–Gaussian modes (in momentum space) are discussed in Equation (122)
of Ref. [17] in order to discuss wave-packet quantization of photons, inspired by previous
work [18] in this direction.

Here, we employ the Gaussian envelope function

f (p) =
(2π)1/4√

δp
exp

(
− (p− p0)

2

4δp2

)
, (3)

which is normalized to unity ∫ dp
2π
| f (p)|2 = 1 , (4)

and has the property
〈p2〉 − 〈p〉2 = δp2 . (5)

The mean-square momentum uncertainty is equal to δp2.

2.2. Tachyonic Dirac Spinors

The tachyonic bispinor solutions have been studied by us in Refs. [6–9,11,13,14]. We
recall the two-component helicity spinors as

a+(~k) =

 cos
(

θ
2

)
sin
(

θ
2

)
ei ϕ

 , a−(~k) =

 − sin
(

θ
2

)
e−i ϕ

cos
(

θ
2

)  , (6)

where θ and ϕ are the polar and azimuth angles of the wave vector~k. We start from the
negative-helicity, positive-energy solution given in Equations (2.8) and (3.2b) of Ref. [9],

Ψ(t,~r) =


√
|~p| −m

2 |~p| a−(~p)

−
√
|~p|+ m

2 |~p| a−(~p)

 exp(−iE t + i~p ·~r) , E =
√
~p 2 −m2 . (7)

For ~p = pxêx = pêx, one has θ = 90◦ = π/2 and ϕ = 0. Then,

Ψ(t, x, p) =
f (p)

2


−
√
(p−m)/p√
(p−m)/p√
(p + m)/p

−
√
(p + m)/p

 exp
(
−i
√

p2 −m2 t + ip x
)

, |Ψ(t, x, p)|2 = f (p)2 . (8)

A normalizable wave packet is thus obtained as

Ψ(t, x) =
∫ dp

2π

f (p)
2


−
√
(p−m)/p√
(p−m)/p√
(p + m)/p

−
√
(p + m)/p

 exp
(
−i
√

p2 −m2 t + ip x
)

. (9)

It is normalized to∫
dx |Ψ(t, x)|2 =

∫
dx Ψ+(t, x)Ψ(t, x) =

∫ dp
2π
| f (p)|2 = 1 . (10)
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If one takes the ultrarelativistic limit (p� m) in the bispinor prefactor, one obtains a
somewhat simpler form, which illustrates the connection to the spinless case,

Ψ(t, x) ≈
∫ dp

2π

f (p)
2

u exp
(
−i
√

p2 −m2 t + ip x
)

, (11)

where u = (−1, 1, 1,−1)T. Since f (p) is peaked in the region p ≈ p0 � m, this integration
region eventually dominates in all subsequent calculations.

2.3. Tardyonic Dirac Spinors

We start from the negative-helicity, positive-energy solution given in Equations (2.8)
and (2.10b) of Ref. [9],

ψ(t,~r) =


√

E + m
2 E

a−(~p)

−
√

E−m
2 E

a−(~p)

 exp(−iE t + i~p ·~r) , E =
√
~p 2 + m2 . (12)

The solution describing a positive-energy, negative-helicity particle is given as

ψ(t, x, p) =
1
2


−
√
(E + m)/E√
(E + m)/E√
(E−m)/E

−
√
(E−m)/E

 exp
(
−i
√

p2 + m2 t + ip x
)

, |ψ(t, x, p)|2 = 1 . (13)

A normalizable wave packet is obtained as

ψ(t, x) =
∫ dp

2π

f (p)
2


−
√
(E + m)/E√
(E + m)/E√
(E−m)/E

−
√
(E−m)/E

 exp(−iE t + ip x) . (14)

It is normalized to∫
dx |ψ(t, x)|2 =

∫
dx ψ+(t, x)ψ(t, x) =

∫ dp
2π
| f (p)|2 = 1 . (15)

If we take the ultrarelativistic limit (p � m) in the bispinor prefactor, then we can
approximate the solution as

ψ(t, x) ≈
∫ dp

2π

f (p)
2

u exp
(
−i
√

p2 + m2 t + ip x
)

, (16)

where u = (−1, 1, 1,−1)T.

3. Standard Wave Packet
3.1. Tachyonic Case

We start from Equation (11). The tachyonic standard wave packet, derived from
Equation (11), reads as

Ψ(t, x) =
(2π)1/4

δp

∫ dp
2π

exp
(
−i
√

p2 −m2 t + ip x− (p− p0)
2

4δp2

)
(17)

It fulfills the (spinless) tachyonic wave equation,(
1
c2

∂2

∂t2 −
∂2

∂x2 + m2
)

Ψ(t, x) = 0 , (18)
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Its normalization is as follows,∫
dx |Ψ(t, x)|2 = 1 , 〈X(t)〉 =

∫
dx x |Ψ(t, x)|2 , 〈X(t)2〉 =

∫
dx x2 |Ψ(t, x)|2 . (19)

In the calculation of 〈X(t)〉, one needs to consider three integrals, namely, those over
the two momentum parameters defining the wave functions, and one over the x coordinate.
With advantages, one calculates the x integral first, with the help of the formula∫

dx x exp
(
i(p− p′)x

)
= −i

∂

∂p
δ(p− p′) . (20)

One then differentiates the integrand, and applies the Dirac-δ function, reducing the
problem to a one-dimensional p integral with an exponential weight factor. In the last step,
one does the remaining p integral under the appropriate ultrarelativistic approximations.
The tachyonic expectations values read as follows,

〈[X(t)]2〉 = 1
4δp2 + t2 +

m2 t2

p2
0

+
m4 + 3m2δp2

p4
0

t2 +
10m4δp2 + 15m2δp4 + m6

p6
0

t2

+
m8 + 21 m6 δp2 + 105 m4 δp4 + 105 m2 δp6

p8
0

t2 +O(p−10
0 ) , (21)

for the position, and

[〈X(t)〉]2 = t2 +
m2 t2

p2
0

+
m4 + 3m2δp2

p4
0

t2 +
9m4δp2 + 15m2δp4 + m6

p6
0

t2

+
m8 + 18 m6 δp2 + 177

2 m4 δp4 + 105 m2 δp6

p8
0

t2 +O(p−10
0 ) (22)

for its square. The mean-square uncertainty of the position, as a function of time, is found
as follows,

δX(t)2 = 〈[X(t)2]〉 − [〈X(t)〉]2 =
1

4δp2 +
m4 δp2 t2

p6
0

+

(
33m4 δp4

2p8
0

+
3m6 δp2

p8
0

)
t2 +O(p−10

0 ) (23)

At t = 0, the Heisenberg uncertainty relation is fulfilled in the minimal way, in the
sense that δx2 δp2 = 1/4. If one takes the bispinor prefactors from the spin-1/2 solution
given in Equation (8) into account, then some additional terms are found for t = 0,

〈[X(0)2]〉s=1/2 − 〈[X(0)2]〉s=0 =
m2

4p4
0
+

1
p6

0

(
5
2

m2δp2 +
1
4

m4
)

+
1
p8

0

(
1
4

m6 +
21
4

m4δp2 +
105

4
m2δp4

)
+O(p−10

0 ) . (24)

This approach leads to formulas for the time-dependent expectation values 〈X(t)]〉
and 〈[X(t)2]〉, but does not discuss the time-dependent form of the wave function itself. An
approximate calculation of time propagated wave function can, however, be accomplished
as follows. One starts from the representation

Ψ(t, x) =
(2π)1/4√

δp

∫ dp
2π

exp(i Φ(t, x, p)) , Φ(t, x, p) = −
√

p2 −m2 t + p x + i
(p− p0)

2

4δp2 . (25)

The dominant momentum region is around p ≈ p0. One expands Φ(t, x, p) about
p = p0, up to second order in (p− p0), and integrates over the resulting Gaussian function
in p, after completing the square. The result for the density |Ψ(t, x)|2 is finally found in a
relatively compact form,
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R(t, x) = |Ψ(t, x)|2 = N (t, x) exp(−G(t, x)) , N (t, x) =

√
2
π

(p2
0 −m2)3/2 δp√

(p2
0 −m2)3 + 4m4t2δp4

, (26a)

G(t, x) =
2(p2

0 −m2)2 δp2

(p2
0 −m2)3 + 4m4t2δp4

[
p2

0(t
2 + x2)−m2x2 − 2p0

√
p2

0 −m2 t x
]

(26b)

Let us consider an example and temporarily restore SI units. For illustration purposes,
we consider

m = 10 u , p0 = 100u c , δp = 8u c , t0 = 12
h̄

uc2 , (27)

where u is an arbitrarily chosen mass scale, c is the speed of light, and h̄ is Planck’s unit of
action. These parameters lead to a numerically and graphically convenient representation
(see Figure 1, where in the figure, we set h̄ = u = c = 1). Numerically, one obtains the
results√

〈[X(t0)]2〉 = 12.061842
h̄

uc
, 〈X(t0)〉 = 12.061676

h̄
uc

, δ〈[X(t0)]
2〉 = 0.0040125

(
h̄

uc

)2
. (28)

The first terms listed in Equation (23) add up to

h̄2

4δp2 +
(mc)4 δp2 (ct)2

p6
0

+

(
33(mc)4 δp4

2p8
0

+
3(mc)6 δp2

p8
0

)
(ct)2 = 0.0040109

(
h̄

uc

)2
, (29)

leading to very good agreement with the analytic result (23). Note that the initial mean-
square positional uncertainty is δ〈[X(t = 0)]2〉 = 0.00390625(h̄/(uc))2, which is manifestly
different from the result given in Equation (28). We now switch back to natural units.

(a) (b)

Figure 1. We illustrate the time-propagated tachyonic and tardyonic wave functions for the example
case m = 10, p0 = 100, δp = 8, and t0 = 12, given in Equation (27). The dashed curve in (a) displays
the initial density ρ(t = 0, x), while the blue curve shows the tardyonic density ρ(t = t0, x) and the
dark green curve shows the tachyonic time-evolved function R(t = t0, x). As demonstrated more
clearly in the close-up in (b), the tachyonic wave has propagated a little faster in the positive x direction
as compared to the tardyonic wave. The positional uncertainty of the time-evolved tachyonic and
tardyonic wave packets is almost the same, as is evident from Equations (28), (29), (39), (40) and (42).

3.2. Tardyonic Case

We start from Equation (16) and define a tardyonic standard wave packet,

ψ(t, x) =
√

2π

δp

∫ dp
2π

exp
(
−i
√

p2 + m2 t + ip x− (p− p0)
2

4δp2

)
. (30)
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It solves the tardyonic (subluminal) wave equation,(
1
c2

∂2

∂t2 −
∂2

∂x2 −m2
)

Ψ(t, x) = 0 . (31)

The normalization is as follows,∫
dx |Ψ(t, x)|2 = 1 , 〈x(t)〉 =

∫
dx x |Ψ(t, x)|2 , 〈x(t)2〉 =

∫
dx x2 |Ψ(t, x)|2 . (32)

The tardyonic expectation value of the mean-square position is

〈[x(t)]2〉 = 1
4δp2 + t2 − m2 t2

p2
0

+
m4 − 3m2δp2

p4
0

t2 +
10m4δp2 − 15m2δp4 −m6

p6
0

t2

+
m8 − 21 m6 δp2 + 105 m4 δp4 − 105 m2 δp6

p8
0

t2 +O(p−10
0 ) . (33)

The square of the expected position is

[〈x(t)〉]2 = t2 − m2 t2

p2
0

+
m4 − 3m2δp2

p4
0

t2 +
9m4δp2 − 15m2δp4 −m6

p6
0

t2

+
m8 − 18 m6 δp2 + 177

2 m4 δp4 − 105 m2 δp6

p8
0

t2 +O(p−10
0 ) (34)

The mean-square coordinate uncertainty is thus

δx(t)2 = 〈[x(t)2]〉 − [〈x(t)〉]2 =
1

4δp2 +
m4 δp2 t2

p6
0

+

(
33m4 δp4

2p8
0
− 3m6 δp2

p8
0

)
t2 +O(p−10

0 ) , (35)

which is seen to be equivalent to the result given in Equation (23) upon the replacement
m → i m. One finds, for the solution in Equation (13), additional terms at the initial time
t = 0,

〈[x(0)2]〉s=1/2 − 〈[x(0)2]〉s=0 =
m2

4p4
0
+

1
p6

0

(
5
2

m2δp2 − 1
2

m4
)

+
1
p8

0

(
3
4

m6 − 21
2

m4δp2 +
105

4
m2δp4

)
+O(p−10

0 ) . (36)

For the approximate calculation of time-propagated wave function, one employs the
same steps that lead to Equation (26) in the tachyonic case. One writes the wave function as

ψ(t, x) =
√

2π

δp

∫ dp
2π

exp(iφ(t, x, p)) , φ(t, x, p) = −
√

p2 + m2 t + p x + i
(p− p0)

2

4δp2 . (37)

Then, one expands φ(t, x, p) about p = 0, up to second order in (p = p0), and integrates
over the resulting Gaussian function in p, after completing the square. The result is

ρ(t, x) = |ψ(t, x)|2 = n(t, x) exp(−g(t, x)) , n(t, x) =

√
2
π

(p2
0 + m2)3/2 δp√

(p2
0 + m2)3 + 4m4t2δp4

, (38a)

g(t, x) =
2(p2

0 + m2)2 δp2

(p2
0 + m2)3 + 4m4t2δp4

[
p2

0(t
2 + x2) + m2x2 − 2p0

√
p2

0 + m2t x
]

. (38b)

We consider the same example as in Equation (27), m = 10 u, p0 = 100 u c, δp = 8 u c,
and t0 = 12h̄/(uc2), but for the tardyonic case, and temporarily switch to SI units (again).
Numerically, one obtains the results
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√
〈[X(t0)]2〉 = 11.939453

h̄
uc

, 〈X(t0)〉 = 11.939286
h̄

uc
, δ〈[X(t0)]

2〉 = 0.0040058
(

h̄
uc

)2
. (39)

The first terms listed in Equation (35) add up to

h̄2

4δp2 +
(mc)4 δp2 (ct)2

p6
0

+

(
33 (mc)4 δp4

2p8
0

+
3 (mc)6 δp2

p8
0

)
(ct)2 = 0.0040054

(
h̄

uc

)2
. (40)

This result is in very good agreement with the analytic result (35). A plot which
illustrates the difference between tachyonic and tardyonic propagation is found in Figure 1
(where we set h̄ = u = c = 1 in the plot). From now on, we again switch to natural units.

4. Cosmic Limit

Up to this point, we have assumed that p0 is the largest variable in the problem. The
cosmic limit is obtained when one considers large propagation times and distances. It is
appropriate to scale t→ λ t and x → λ x and to keep only the leading-order terms in λ. A
careful investigation of the expressions for R(t, x) and ρ(t, x) is sufficient. One can, in fact,
integrate over x and x2 with the densities given in Equations (26) and (38), and calculate the
standard deviation of the position expectation value. The limit of large t, small m, and large
p0 is obtained as

δX(t)2 ≈ δx(t)2 ≈ m4 δp2 t2

p6
0

, t→ ∞ .
δp
p0
� 1 ,

m
p0
� 1 . (41)

In order to confirm and ramify the result, one observes that the limit of large t, and
m � δp � p0 means that the 1/p8

0 terms in Equations (23) and (35) are suppressed
in comparison to the 1/p6

0 term, which is listed in Equation (41). Finally, since we are
investigating the ultrarelativistic limit, it is useful to convert the positional uncertainty
into a detection time uncertainty acquired for the detection of the ultrarelativistic particle
coming in from the cosmos, and convert the result to SI mksA units. We choose as the
cosmic travel time an interval of 168,000 light years, which is the distance to the Large
Magellanic Could, where the supernova 1987A originated [1]. One finds

δX(t)
c

∣∣∣∣
t=168,000 yr

≈ δx(t)
c

∣∣∣∣
t=168,000 yr

≈ 5.298× 10−6 δξ

ξ

(
χ

ξ

)2
s , (42)

where “s” of course is the symbol for the unit “second”, δξ is the momentum spread in
GeV/c, ξ is equal to the central momentum p0 in GeV/c, and χ is the mass of the particle,
measured in eV/c2. It means that, if the particle wave function is centered about a well-
defined ultrarelativistic mean momentum p0 � m (i.e., δξ/ξ � 1 and χ/ξ � 1), then the
detection time uncertainty amounts to less than a microsecond even for cosmic travel over
appreciable distances (here, as an example, the distance to the Large Magellanic Cloud).
The result (42) applies equally to tachyons as well as tardyons.

5. Conclusions

In this paper, we have investigated the propagation of ultrarelativistic tachyonic and
tardyonic wave packets on short as well as cosmic time and distance scales. In Section 2, we
study the positive-energy bispinor solutions of left helicity of the tachyonic and tardyonic
Dirac equations, which describe propagation in the positive x direction of an ultrarelativis-
tic spin-1/2 particle. We use these as exemplary states in order to study the problem at
hand. Our choice is inspired by the fact that neutrinos, which remain a possible candidate
for tachyons, typically occur in left-helicity states. For an up-to-date summary of possible
empirical indications that some neutrinos are tachyons, see Ref. [19]. We find that, in the
ultrarelativistic limit, the spin-1/2 solution, in the helicity basis, reduces to the spinless so-
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lution, multiplied by a constant four-components bispinor (see Equations (11), (16) and (17),
as well as (30)).

A normalizable, localizable wave packet of Gaussian shape is used as an initial
condition for the time propagation (see Section 3. We find that the mean-square posi-
tional uncertainty of the wave packet increases quadratically with time, for both tachy-
onic as well as tardyonic particles. Our results (for the spinless case) are summarized in
Equations (23) and (35). For spin-1/2 particles, the result is (somewhat surprisingly) almost
the same, but the initial value (at t = 0) for the mean-square positional uncertainty receives
a modification according to Equations (24) and (36).

In the cosmic, ultrarelativistic limit (m� p0), the time t is the dominant variable, and
we assume that the momentum uncertainty δp is also much smaller than p0. In this limit,
the result for the time evolution of the positional uncertainty reduces to a single term, given
in Equation (41). This result is proportional to m4, where m is the mass term, and hence
invariant under the replacement m → i m. A numerical evaluation of the result given in
Equation (41) reveals that, under reasonable assumptions about the momentum spread
of ultrarelativistic particles, the dispersion of ultrarelativistic wave packets is sufficiently
small, even on cosmic times scales, that it remains possible to associate the generation
time of the particle with the detection time, up to an uncertainty which increases by no
more than a microsecond per light year (see Equation (42)). One of the consequences of this
result is that the “early” arrival of the neutrino burst under the Mont Blanc, recorded in
coincidence with the 1987A supernova, cannot be explained by the positional uncertainty
of the propagated ultrarelativistic wave packet on its way from the Large Magellanic Cloud.
(Other possible explanations (e.g., Ref. [20]) have been discussed in the literature.) Our
result (42) is generally applicable for tachyons and tardyons.

Finally, let us explore if we can understand the result (42) intuitively, with respect to the
“herd of cows analogy” made in Section 1. In a wave packet composed of a tardyonic herd, in
view of the classical dispersion relation E = m/

√
1− v2 (with v < 1), the faster “cows” are

the ones with more energy. In a tachyonic herd, in view of the classical dispersion relation
E = m/

√
v2 − 1 (with v > 1), the faster “cows” are the ones with less energy. In both

cases, the herd is composed of faster and slower ones, and the wave packet spreads. This
consideration qualitatively explains the universal character of the result (42) for tachyons
and tardyons.
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