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Abstract: In this article, we find the solutions to fractional Volterra-type integral equation nonlinear
systems through a Chebyshev pseudo-spectral method (CPM). The fractional derivative is described
in the Caputo manner. The suggested method’s accuracy and reliability are confirmed by the results.
The proposed method is implemented for solving various nonlinear systems; the results we obtained
were compared with the exact solution and other method solutions. The graphical representation
and tables show that our method’s error quickly converges as compared to other methods. By
comparing the proposed method’s solution with the actual solution and other methods, we can
confirm that CPM is more accurate and closer to the exact solution. We display the pointwise solution
in the tables, which verifies the proposed method’s accuracy at each point and aids in a better
comprehension of the suggested approach. Moreover, the results of using the suggested method at
different fractional orders are examined, showing that when a value moves from a fractional order
to an integer order, the result is closer to the precise solution. Furthermore, the proposed technique
for handling fractional-order linear and non-linear physical problems in science and engineering is
straightforward to implement.

Keywords: Chebyshev pseudo-spectral method; system of Volterra integral equations; Caputo operator

1. Introduction

Fractional-order calculus has been around for as long as integer-order calculus. It can
be seen in a letter by Leibniz to L’'Hopital on 30 September 1695. To this day, the question
about gil;ff, the Leibniz notation of the nth derivative of the linear function ¢(y) = ¥,
appears in a letter from L'Hopital. L'Hopital strangely inquired, “What will be the result if
n= %?”, to which Leibniz responded, “An seeming paradox, one day for which a useful
result will be drawn”. The integer-order calculus is generalized to the fractional order
calculus. Fractional calculus applications include anomalous transports in disordered
systems [1], the time-fractional Belousov—Zhabotinsky reaction [2], dielectric relaxation
phenomena in polymeric materials [3], long-time memory in a financial time series [4], and
transport dynamics in a system governed by anomalous diffusion [5].

Many somatic problems in real life may be demonstrated using mathematical for-
mulations, which convert physical occurrences into sophisticated mathematical formulae.
Differential equations are used to simulate various physical phenomena, such as population
growth or decay models [6-8]. However, some physical phenomena cannot be adequately
represented using integer-order differential equations. As a result, the researchers cre-
ated a new branch of mathematics known as fractional differential equations (FDEs). In
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comparison to integer-order differential equations, FDEs are employed to accurately simu-
late a variety of physical phenomena. In recent years, FDEs have gained prominence in
the modeling of real-world physical problems, such as colored noise [9], economics [10],
earthquake oscillation [11], and bioengineering [12]. The other applications are control
theory [13], rheology [14], signal processing [15], damping method [16], polymers [17],
and so on [18-22]. Mathematicians are interested in the solutions to these FDEs in order
to obtain the objective solution of mathematical models. Analytical and numerical so-
lutions are the most common forms of solutions. However, the analytical solutions we
obtain are complex and final for all real-world problems. As a result, mathematicians
solve these issues with approximate solutions [23,24]. Symmetry analysis is lovely to study
when studying differential equations, more specifically when studying equations from the
mathematics of finance. The secret to nature is symmetry, but most observations in the
natural world lack it. A powerful technique for disguising symmetry is the occurrence of
spontaneous symmetry-breaking. Finite and infinitesimal are two types of symmetries.
Finite symmetries may be continuous or discrete. While parity and temporal reversal are
discrete natural symmetries, space undergoes continuous modifications. Mathematicians
have always been fascinated by patterns. Classifications of spatial and planar patterns
made significant achievements in the eighteenth century.

Every branch of engineering and science uses fractional integral- and integro-differential
equations. When a physical phenomenon is described using differential equations, the result
is a differential equation, integro-differential equation, or integral equation. With these types
of equations, some applications are glass-forming processes [25], nanohydrodynamics [26],
drop-wise condensation [27], or wind ripples in the desert [28]. In most circumstances, there
is no analytical solution to integral- or integro-differential equations. It is difficult to find, even
if it exists in some circumstances. For approximating the solutions of integral- and integro-
differential equations, various numerical approaches have been developed. To solve these
challenges, a variety of approaches have been used, such as the nonstandard difference method
(NDM) [29], Adams-Bashforth-Moulton method (ABMM) [30], homotopy analysis method
(HAM) [31], generalized differential transform method (GDTM) [32], mixed interpolation
collocation method (MICM) [33], collocation method (CM) [34], iterated Galerkin method
(IGM) [35], spline collocation method (SCM) [36], Legendre wavelet method (LWM) [37],
Newton polynomial (NP) [38], predictor—corrector (PC) [39], and Galerkin method (GM) [40].

To calculate the solutions of FIDEs in this study, we applied a new technique called
the Chebyshev pseudo-spectral method (CPM). Our method reduces the proposed models
to linear/non-linear systems of algebraic equations, considerably simplifying the problems;
an appropriate method is then utilized to solve the resulting system. When compared to
other methods, the suggested method has higher accuracy and better convergence. The
numerical results show that the suggested technique is effective and reliable. In addition,
CPM can be used in a variety of other physical models.

2. Definitions and Preliminaries Concept

This unit introduces the fundamental concepts related to fractional calculus.

Definition 1. A real function &), > 0,, will be in the space C,, v € R if a real number exists
p > v, with () = P& () where &1(¢) € [0,00), and will be in the space CI' if and only if
&m e C,,meN.

Definition 2. The fractional Caputo derivative of order a is stated as [41,42]

D*E(y) = r(nl—,x) / P g e O

forn—1<a<nneN¢>0_7ecC".
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Definition 3. Jin-Hunan’s fractional derivatives are referred to as [42]

D“(:(IIJ) 1—-(1 —|-IX) ‘:(lpl) _ ‘:(1/72)

= li , 2
Dy* M=ol (1 — o) ?
where A does not approach zero.
Definition 4. Xiao-Jun defines fractional order derivatives as [42]
" _ a g — 1) _ A" (S(¥) — E(¥o))
Dlpg(lpo) - (: (IIJO) - d’,ba ‘VJ:#’O_ l/}h_)rrl/}() (47 _ 1[’0)“ 4 (3)
where
ANE(W) —E(o)) =T+ a)A(G(P) —E(¢o))
Definition 5. The integral operator in the Riemann—Liouville sense is stated as [41,42]
o _ 1 v _ a-—1
6W) = gy ) (0 =0 et @

with the following properties
DUI*E(p) = ¢(y),
g9

I"D*G() = &(y) — ) > v, p>0 n—1<a<n
k=0 '

3. Chebyshev Pseudo-Spectral Method (CPM)

Chebyshev polynomials are defined as the interval [—1, 1] and are demonstrated using
recurrence equations [43,44].

Tna(t) =2uTn(¢) — Tu-1(p), n=12,.. ®)

where
To(¥) =1, Ti(y) = ¢.

In order to apply the Chebyshev polynomials in the interval [0, 1], Chebyshev’s shifted
polynomials are described as 7, (1), which explains (in the same way) the Chebyshev
polynomials 7, () by relation

Ta() = Tu(2p — 1). (6)
The recurrence formula is as follows
Ton1(p) =229 = ) Tu(y) = Toa () n =1,2,... )

where
To(y) =L Ti(p) =2y - 1.
In terms of Chebyshev’s shifted polynomials, a function ¢(y) € L0, 1] is described

as =)
S(y) =X, enTu(y). (®)
n=1
The first (m + 1) terms of Chebyshev’s shifted polynomials are considered as
En(p) = Y enTuly), O
n=0
oD " <Z Cnﬁ(¢)> + 2 enTul®) = (9, 0). (10)
n=0 n=0

We have the ability to find a system of equations as
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oDy " (2 cnmwi)) + ) enTu(pn) = (@i, 8. (11)
n=0 n=0
Whereas
i—05
1101' = 2k=1p°

We used maple software to solve the resultant system, which provides a CPM solution.

4. Applications

Example 1. Consider the following fractional integral equation nonlinear system

0D (1= 92 + 1) + (&(t) + 2(1)dt = 739° — &v° + J9* + J¢°,
0Dy ((5+ 9 — £33 (1) — ¢(1)dt = 59® + 397 — 4¢* — 397, (12)
O<a<l1

with the exact solution &(Y) = 2, I(¥) = ¢,

In Table 1, we present the accurate and numerical results obtained by implementing the
suggested approach and the results obtained by CWM while Table 2 shows the absolute error
comparison of the suggested approach and results obtained through CWM at m = 6 and the radial
basis function network (RBEN) at m = 8. Figures 1 and 2 show the behavior of the exact solution
(E.S) and approximate solution (our technique) of this case when a = 1, while Figures 3 and 4 show
the error comparison of CPM, CWM, and RBFN. Moreover, Figure 5 demonstrate the graphical
behaviors of the solutions for various fractional orders, showing that as the value of & moves toward
the integer-order from the fractional order, the solution converges to the exact.

Table 1. Example 1: exact vs. CPM, CWM solution at m = 6.

y  ESE(y) ES{(y) CPMi(y) CPM{(y) CWMi(y) CWM{(y)
0  0.0000000  0.0000000  0.0000000000 0.0000000000 —0.000026070  0.000222296
02  0.0400000  0.2000000  0.0399999999 0.2000000000  0.039987035  0.199964603
04  0.1600000  0.4000000  0.1599999999 0.4000000000  0.159982615  0.400041558
06 03600000  0.6000000  0.3599999999 0.6000000000  0.360047897  0.599977336
08  0.6400000  0.8000000  0.6400000000 0.7999999999  0.639966461  0.799997734
1.0 1.0000000  1.0000000  1.0000000000 0.9999999999  1.000185856  0.999922349
Table 2. CPM versus the CWM error comparison at m = 6 of problem 1.
4 Error(Zcpm) Error({cpm) ~ Error(fcwm)  Error(Ccwm) ~ Error(Zrern)  Error({rBeN)
0 0.00000 x 107 0.00000 x 107 0.00002607 0.0002222 7.54 x 1079 2.09 x 107%
0.2 1.60000 x 10715 1.00000 x 1015 0.00001296 0.0000353 228 x 107% 5.70 x 107
0.4 3.00000 x 107> 1.00000 x 10~ 0.00001738 0.0000415 1.98 x 107 479 x 107%
0.6 3.00000 x 10~ 0.00000 x 10+ 0.00004789 0.0000226 116 x 107% 6.33 x 1070
0.8 4.00000 x 105 2.00000 x 10~1 0.00003353 0.0000022 3.80 x 107% 129 x 1079
1.0 3.00000 x 10~ 1% 1.30000 x 1014 0.00018585 0.0000776 582 x 10°% 3.89 x 107 %
Example 2. Consider the following fractional integral equation nonlinear system
oDy (&2 (t) — G3(1))dt = &(y) — sin(yp) + ¢,
— 152
0Dy (G(1)C(£))dt = §(y) + 3 sin”  + cos(y), (13)

O0<a<1

with the exact solution &() = sin(y), {(¢) = cos(y),
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Figure 2. Example 1 of the solution graph, CPM solution and exact solution for {(¢).
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Figure 3. Our method, CWM, and RBEN error graph for Example 1.
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Enor

Figure 4. Our method, CWM, and RBEN error graph for Example 1.
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Figure 5. At different fractional orders, the absolute error graph of Example 1.

The accurate and numerical results obtained by implementing the suggested approach and
results obtained by CWM for m = 6 are shown in Table 3. In Table 4, the errors implemented by
the current approach are compared to those acquired by CWM. In Figures 6 and 7, we compare the
accurate results with our method’s results, showing that they are very near to each other. Moreover,
Figures 8 and 9 illustrate the CPM and CWM error comparisons, showing that CPM is in good
agreement with the exact results, whereas Figures 10 and 11 show graphical representations of the
solutions for various fractional orders.

Table 3. Problem 2: exact vs. CPM; CWM solution at m = 6.

4 ESS(y) ES{(y) CPM ¢(#) CPM {(9) CWM () CWM {(9)
0 0.00000000000 1.0000000000 0.00000000000 0.99999999999 -0.000001403 1.000000319
0.2 0.19866933079 0.9800665778 0.19866933072 0.98006657786 0.1986696393 0.9800669460
0.4 0.38941834230 0.9210609940 0.38941834202 0.92106099406 0.3894165787 0.9210604974
0.6 0.56464247339 0.8253356149 0.56464247340 0.82533561482 0.5646433964 0.8253349025
0.8 0.71735609089 0.6967067093 0.71735609079 0.69670670928 0.7173557641 0.6967067839
1.0 0.84147098480 0.5403023058 0.84147098076 0.54030230757 0.8414719842 0.5403020838
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Table 4. CPM versus the CWM error comparison at m = 6 of problem 2.

s Error(&cpm) Error({cpm) Error(Ecwm) Error(Tcwm)
0 0.0000000000 x 109 0.0000000000 x 1000 0.0000014037 0.000000319
0.2 6.7443073256 x 10711 1.9129717529 x 10~ 11 0.0000003085 0.0000003682
0.4 2.8634095988 x 10~10  6.3350567575 x 10~ 11 0.0000001763 0.0000004966
0.6 1.4540273872 x 10~11  8.3812136477 x 10~ 11 0.000000923 0.0000007124
0.8 1.0840388114 x 10710  6.5764647225 x 10~ 11 0.0000003268 0.0000000746
1.0  4.0385798791 x 1079  1.7087357128 x 10~? 0.0000009994 0.0000002221
CPM == Exact solution
0.8 o
0.7 S ’
0.6 yd
0.5
0.4
0.3
0.2
0.1
o
] 0.2 0.4 0.6 0.8 1
w

Figure 6. Example 2: CPM solution and exact solution for ().
Example 3. Consider the following fractional integral equation nonlinear system:
2
=051 + (5 +DLNO$(0) = a59° + a59° + 739t + Fy° +w2 +5¢,
)C( )+ By =021 + 192~ )9(1)) = 24¢5 o'+ 97+ 1979, (14)
V(1) = il (1) =5(t) = 7% — 39° — 5597 + GGyt — wL% 2= 5y,

with the exact solution &(y) = 1+ 1¢?, C(¢) = 3+ 192 ¢(y) = 3+ 1y We use the
technique described in Section 2 for & = 1 with m = 6 to solve this problem. Table 5 shows the exact
and CPM estimated solutions. Table 6 compares the absolute error of our technique to that of CWM.
The results of the proposed technique are in good agreement with the exact results, as shown in
Figures 12 and 13. The error comparison between CPM and CWM is provided in Figures 14-16 to
demonstrate the usefulness of CPM. In addition, in Figures 17-19 we can see the estimated solutions
for the various fractional orders.
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Figure 7. Problem 2: CPM solution and exact solution for {(1).
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Figure 8. Our method and the CWM error graph for Example 2.
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Figure 9. Our method and the CWM error graph for Example 2.
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Figure 10. At different fractional orders, the absolute error graph of Example 2.
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Figure 11. At different fractional orders, the absolute error graph of Example 2.
Table 5. Problem 3: exact vs. CPM solution at m = 6.
P ESZ(y) ESZ(y) ES ¢(y) CPM () CPM () CPM ¢ (¢)
0 1.000000000000 1.50000000 0.6666666666 1.000000000 1.50000000 0.6666666666
0.1 1.002500000000 1.50333333 0.7166666666 1.002500000 1.50333333 0.7166666666
0.2 1.010000000000 1.51333333 0.7666666666 1.009999999 1.51333333 0.7666666666
0.3 1.022500000000 1.53000000 0.8166666666 1.022500000 1.53000000 0.8166666666
04 1.040000000000 1.55333333 0.8666666666 1.040000000 1.55333333 0.8666666666
0.5 1.062500000000 1.58333333 0.9166666666 1.062499999 1.58333333 0.9166666666
0.6 1.090000000000 1.62000000 0.9666666666 1.090000000 1.62000000 0.9666666666
0.7 1.122500000000 1.66333333 1.0166666666 1.122500000 1.66333333 1.0166666666
0.8 1.160000000000 1.71333333 0.0666666666 1.160000000 1.71333333 1.0666666666
0.9 1.202500000000 1.77000000 1.1166666666 1.202499999 1.77000000 1.1166666666
1.0 1.250000000000 1.83333333 1.1666666666 1.249999999 1.83333333 1.1666666666
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Table 6. CPM versus the CWM error comparison at m = 6 of problem 3.

P (Ecpm) (Ccrm) (pcrm) (Ecwm) (Tcwm) (pcwm)

0 0.00000 x 10190 1.00000 x 10~1#  3.100000 x 10~ 0.000001158 0.000000642 0.0000097282
0.2 1.00000 x 10~1*  0.00000 x 1079  4.100000 x 10~15  0.000000959 0.000000460 0.0000008219
0.4 1.00000 x 10~ 1.00000 x 10~%  2.100000 x 10~1° 0.000000024 0.000000079 0.0000030059
0.6 0.00000 x 10190 2.00000 x 10~1*  3.100000 x 10~1>  0.000002301 0.000001072 0.0000071362
0.8 4.00000 x 10~ 0.00000 x 10190 2100000 x 10~4  0.000004458 0.000002475 0.0000081324
1.0 6.40000 x 10713 520000 x 1013  8.100000 x 10~1%  0.000022945 0.00001326 0.0000439496

I CPM »---- Exact m::]ul:ion'
1.25 ;
1.20 ,-"
”!
’_f
r”
1.15 f-'
/
110 A
/
P
1.05 p g
1.00 bem=—— -~
0.2 0.4 0.6 0.8
W

Figure 12. Example 3: CPM solution and exact solution for &(1).
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Figure 13. Example 3: CPM solution and exact solution for ¢ ().
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Error

Figure 14. Our method and the CWM error graph for Example 3.
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Figure 16. Our method and the CWM error graph for Example 3.
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Figure 17. At different fractional orders, the absolute error graph of Example 3.
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Figure 18. At different fractional orders, the absolute error graph of problem 3.
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Figure 19. At different fractional orders, the absolute error graph of Example 3.
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5. Conclusions

In this article, we find the solutions to nonlinear fractional equation systems by imple-
menting the Chebyshev pseudo-spectral method. This type of problem is reduced to the
solution of a system of linear and nonlinear algebraic equations using the method proposed.
The solutions obtained by utilizing the suggested approach are in good agreement with
the actual results and are more accurate than those of other methods. Moreover, it can be
confirmed from the figures and tables that our method’s error quickly converges compared
to other techniques. Maple was used to perform the calculations in this article.
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