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Abstract: In the areas of tidal and tsunami waves in oceans, rivers, ion and magneto-sound waves
in plasmas, electromagnetic waves in transmission lines, homogeneous and stationary media, etc.,
the Riemann wave equations are attractive nonlinear equations. The modified exp(−Φ(η))-function
method is used in this article to show how well it can be applied to extract travelling and solitary wave
solutions from higher-order nonlinear evolution equations (NLEEs) using the equations mentioned
above. Trigonometric, hyperbolic, and exponential functions solitary wave solutions can be extracted
using the above-mentioned technique. By changing specific values of the embedded parameters,
we can obtain bell-form soliton, consolidated bell-shape soliton, compacton, singular kink soliton,
flat kink shape soliton, smooth singular soliton, and other sorts of soliton solutions. The solutions
are graphically illustrated in 3D and 2D for the accuracy of the outcome by using the Wolfram
Mathematica 10. The verification of numerical solvers on the stability analysis of the solution is
substantially aided by the analytic solutions.

Keywords: Riemann wave equations; modified exp function method; solitary wave solution;
analytical solutions

1. Introduction

The partial differential equations have a specific version known as the nonlinear
evolution equations (NLEEs) (PDEs). In many disciplines of mathematics and the phys-
ical sciences, particularly in applied and pure mathematics, physics, chemistry, biology,
and biochemistry, these equations are frequently employed as models to represent the
physical significance [1]. Therefore, NLEE analytic solutions are crucial for adequately
understanding the qualitative characteristics of these phenomena. The mechanisms of
numerous complex occurrences can be decoded using analytical solutions to nonlinear
wave equations. The analytical solutions to these equations are crucial since the NLLEs
describe a variety of physical and mathematical occurrences [2,3]. A key factor in the
dynamics of pulse propagation over optical fibers at transcontinental and transoceanic
distances is played in particular by the soliton solutions of the NLEEs.

In order to analyze differential equations and, more particularly, to understand the
mathematics of financial equations, symmetry analysis is an excellent subject to learn.
Symmetry is the key to nature, but most views of the natural world miss it. One effective
technique for hiding symmetry is the occurrence of spontaneous symmetry-breaking.
Finite and infinitesimal symmetries fall into two separate types. Finite symmetries can be
continuous or discontinuous. Even though parity and temporal reversal are distinct natural
symmetries, space is always changing. Mathematicians have always been fascinated by
patterns. The classification of spatial and planar patterns is one of the eighteenth century’s
major accomplishments. Unfortunately, it has shown to be challenging to appropriately
solve non-linear fractional differential equations.
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As a result, looking for travelling wave solutions is a popular field of study in non-
linear science. Yet not every equation posed by these models can be resolved. As a result,
many new techniques have been created by mathematicians, engineers, and physicists,
such as the Sine-Gordon expansion method [4] the F-expansion method [5,6], the gener-
alized Kudryashov method [7], the solitary wave ansatz method [8,9], the homogeneous
balance method [10], the tanh function method [11], the modified simple equation tech-
nique [12], the first integral method [13], (G′/G)-expansion technique [14], the exp-function
technique [15], the improved F-expansion approach [16], the Hirota bilinear method [17,18],
the Whitham modulation theory [19], and so on.

The Riemann wave model of the following type [20] is examined in the following:

Ut + pUxxy + m U Wx + n WUx = 0, (1)

Uy = Wx, (2)

where p, m, and n are non-zero parameters. Equations (1) and (2) explain the interaction
of a Riemann wave travelling along the y-axis with a long wave propagating along the
x-axis in a (2 + 1)-dimensional space. These fully integrable equations have several uses in
understanding how ocean tsunamis and tidal waves spread. The depiction of the turbulent
state by fusing whistle wave packets with finite-amplitude random phases is another
crucial aspect of Equations (1) and (2). When the magnetic sound wave and Whistler
turbulence interact, the latter is dampened, which also dampens the electrostatic wave in
the plasma [21].

An effective and uncomplicated mathematical technique for resolving nonlinear dif-
ferential equations is the modified exp-function method. To the best of our knowledge,
the Riemann wave equations have not yet been solved using the modified exp function
method. In order to obtain the soliton solutions of the Riemann wave equations, we in
this work adopted the modified exp (−Φ(η)) function technique [22–26]. We found many
of the solitary wave solutions using the aforementioned method. By creating a proper
platform to determine the characteristics or functions of the NLEEs, analytical solutions
enable researchers to plan and carry out studies.

2. Description of the Method

To create the analytical solutions to the NLEEs, the modified exp(−Φ(η))-function
method is a crucial tool. This approach is used to look at the travelling wave solutions
as a generic case. The modified exp(−Φ(η))-function method will be used to conduct a
methodical and visual analysis of the travelling wave solutions.

The following are the core characteristics of the suggested modified exponential
function method [24,25]:

Consider a general NLPDE of the form

P
(
U, Ux, Uy, Ut, Ux x, Ux y, Ut t, Ux t, . . .

)
= 0, (3)

where U = U(x, y, t) is an unrevealed function, P is a polynomial in U(x, y, t) and its
derivatives with respect to x, y, and t, which includes the linear term of highest order
derivative and non-linear term. The major steps of the modified exp-function method are:

Step 1: The following travelling wave transformation

U(x, y, t) = u (η), η = α x + β y− c t, (4)

transforms Equation (3) into an ordinary differential equation (ODE)

F(u, u′, u′′ , u′′′ , . . .) = 0, (5)

where F is a polynomial in u, and primes denote ordinary derivatives with respect to η, α
and β are the wave number and c is the speed of the travelling wave.
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Step 2: Considering the following as the travelling wave solution to Equation (5)

u (η) = ∑M
i=0 Ai[exp(−Φ(η))]i = A0 + A1 exp(−Φ(η)) + . . . + AM exp(M(−Φ(η))), (6)

where Ai (0 ≤ i ≤ M) are the coefficients to be calculated later such that AM 6= 0. Addi-
tionally, Φ = Φ(η) satisfies the following ordinary differential equation (ODE)

Φ′(η) + λ exp(−Φ(η)) + µ exp(Φ(η)) = 0, (7)

where µ and λ are real parameters.
Equation (7) has the following solutions:
Family 1: When µ 6= 0,

(
λ2 − 4µ

)
> 0,

Φ(η) = ln

(
−
√

λ2 − 4 µ

2 µ
tanh

(
−
√

λ2 − 4 µ

2 µ
(η + E)

)
− λ

2 µ

)
. (8)

Family 2: When µ 6= 0,
(
λ2 − 4µ

)
< 0,

Φ(η) = ln

(√
−λ2 + 4 µ

2 µ
tan

(√
−λ2 + 4 µ

2 µ
(η + E)

)
− λ

2 µ

)
. (9)

Family 3: When µ = 0, λ 6= 0,
(
λ2 − 4µ

)
> 0,

Φ(η) = − ln
(
− λ

exp (λ(η + E))− 1

)
. (10)

Family 4: When λ 6= 0, µ 6= 0,
(
λ2 − 4µ

)
= 0,

Φ(η) = − ln
(
−2 λ (η + E) + 4

λ2 (η + E)

)
. (11)

Family 5: When λ = 0, µ = 0,
(
λ2 − 4µ

)
= 0,

Φ(η) = ln (η + E), (12)

such that A0, A1, A2, . . . AM, E, µ, λ are the variables that will be calculated later. By
applying the homogeneous balance technique between the highest-order linear term and
the highest-order non-linear term in Equation (5), the positive integers M can be calculated.

Step 3: Substituting Equations (6) and (7) into Equation (5), we obtain a polynomial
in different powers of the exp (−Φ(η)) and equating all the coefficients to zero, yields
a system of algebraic equations. By solving the obtained system of algebraic equations
by using Maple 18, we find the values of A0, A1, A2, . . . AM, E, µ, λ. Substituting var-
ious values of A0, A1, A2, . . . AM, E, λ, µ in Equation (6), and the general solutions of
Equation (7) complete the solution to the Riemann wave Equations (1) and (2).

3. Applications

The modified exp-function approach is used in this part to obtain novel analytical
solutions for the nonlinear Riemann wave equations, among these are a new complex
and a hyperbolic function solution. Equations (1) and (2) are converted into the following
NLODEs by the traveling wave variable Equation (4):

p α2βU′′′ + mαU W ′ + nα U′ W − c U′ = 0, (13)

W ′ =
β

α
U′, (14)

where c denotes the wave velocity and p, m, n, α, β are arbitrary non-zero constants.
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Integrating Equation (14) once with respect to η and considering the integration
constant to be zero, we take

W =
β

α
U. (15)

Substituting Equations (14) and (15) into Equation (13), we find

p α2β U′′′ + β(m + n) UU′ − c U′ = 0. (16)

Integrating Equation (16) with respect to η and considering integration constant to be
zero, we have

2p α2β U′′ + β(m + n) U2 − 2c U = 0. (17)

Using the balancing approach between the terms U2 and U′′ , we find

2M = M + 2⇒ M = 2 (18)

When the values of M are entered into Equation (6), the trial solution becomes

U = A0 + A1 exp(−Φ) + A2 exp(2(−Φ)), (19)

where A2 6= 0. When Equations (7) and (19) are substituted into Equation (17), the left side
of Equation (17) is converted into a polynomial in exp(−Φ). We arrive at the coefficient
values listed below after using Maple 18 to solve the system of equations:

Case 1:

A0 = − 12 α2µ p
m+n , A1 = − 12α

√
pβ (4α2βµ p+c)
β(m+n) , A2 = − 12α2 p

m+n ,

λ =

√
βp (4α2βµ p+c)

pαβ ,
(20)

where m, n, µ , α, β and c are free parameters.
Case 2:

A0 = −3pα2βλ2 − c
β(m + n)

, A1 = −12pα2λ

m + n
, A2 = − 12pα2

m + n
, µ =

1
4

pα2βλ2 − c
pα2β

, (21)

where m, n, λ , β and c are free parameters.
Case 3:

A1 =
4i
√

3p((m+n)βA0−3c) α√
β(m+n)

, A2 = − 12pα2

m+n , λ = − i
√

(A0β(m+n)−3c)√
3β p α

,

µ = − 1
12

A0(m+n)
pα2 , A0 = A0,

(22)

where A0, m, n, β and c are free parameters.
Case 4:

A0 = 0, A1 = −
12
√
−2µpα2

m + n
A2 = − 12pα2

m + n
, λ =

√
−2µ, c = 6α2βµ p, (23)

where m, n, µ, β and p are free parameters.
Case 5:

A0 = −12pα2µ

m + n
, A1 = −12α2λp

m + n
, A2 = − 12pα2

m + n
, c = (λ2 − 4µ)pα2β, (24)

where m, n,µ, λ , β and p are free parameters.
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To find the hyperbolic and trigonometric function solutions to the non-linear Riemann
wave equation, we first explore the coefficients of Equation (20) by taking into account
Equations (8) and (9):

U1(x, y, t) = −
12α2µ pc sec h2

(
1
2

√
c(η+c1)

α
√

pβ

)
(m + n)

(
tanh

(
1
2

√
c(η+c1)

α
√

pβ

)√
c +
√

4α2βµ p + c
)2 . (25)

W1(x, y, t) = − β

α


12α2µ pc sec h2

(
1
2

√
c(η+c1)

α
√

pβ

)
(m + n)

(
tanh

(
1
2

√
c(η+c1)

α
√

pβ

)√
c +
√

4α2βµ p + c
)2

. (26)

U2(x, y, t) =
12α2βµ p2c

(
sec2[ f (x, y, t)] + 2

)
(m + n)

(
−
√
− c

pα2β
tan[ f (x, y, t)]pαβ +

√
pβ(4α2βµ p + c)

)2 , (27)

W2(x, y, t) =
β

α

 12α2βµ p2c
(
sec2[ f (x, y, t)] + 2

)
(m + n)

(
−
√
− c

pα2β
tan[ f (x, y, t)]pαβ +

√
pβ(4α2βµ p + c)

)2

 , (28)

where f (x, y, t) = 1
2

√
− c

pα2β
(η + c1).

To find the hyperbolic and trigonometric function solutions to the non-linear Rie-
mann wave equation, we search the coefficients of Equation (21) by taking into account
Equations (8) and (9):

U3(x, y, t) =
3(−α2βλ2 p + c)c sec h2

(
1
2

√
c

pα2β
(η + c1)

)
α2β2 p(m + n)

(√
c

pα2β
tanh

(
1
2

√
c

pα2β
(η + c1)

)
+ λ

)2 . (29)

W3(x, y, t) =
β

α


3(−α2βλ2 p + c)c sec h2

(
1
2

√
c

pα2β
(η + c1)

)
α2β2 p(m + n)

(√
c

pα2β
tanh

(
1
2

√
c

pα2β
(η + c1)

)
+ λ

)2

. (30)

U4(x, y, t) =
3(α2βλ2 p− c)c sec2

(
1
2

√
− c

pα2β
(η + c1)

)
α2β2 p(m + n)

(√
− c

pα2β
tan
(

1
2

√
− c

pα2β
(η + c1)

)
− λ

)2 . (31)

W4(x, y, t) =
β

α


3(α2βλ2 p− c)c sec2

(
1
2

√
− c

pα2β
(η + c1)

)
α2β2 p(m + n)

(√
− c

pα2β
tan
(

1
2

√
− c

pα2β
(η + c1)

)
− λ

)2

. (32)

To find the hyperbolic and trigonometric function solutions to the non-linear Rie-
mann wave equation, we search the coefficients of Equation (22) by taking into account
Equations (8) and (9):

U5(x, y, t) =
9A0 pcβ sec h2[g(x, y, t)](

−3
√

c
pα2β

tanh[g(x, y, t)]pαβ +
√

9
√
(− 1

3 β(m + n)A0 + c)pβ

)2 , (33)
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W5(x, y, t) =
β

α

 9A0 pcβ sec h2[g(x, y, t)](
−3
√

c
pα2β

tanh[g(x, y, t)]pαβ +
√

9
√
(− 1

3 β(m + n)A0 + c)pβ

)2

, (34)

where g(x, y, t) = 1
2

√
c

pα2β
(η + c1).

U6(x, y, t) = − 9A0 pcβ sec2[h(x, y, t)](
3
√
− c

pα2β
tan[h(x, y, t)]pαβ +

√
9
√
(− 1

3 β(m + n)A0 + c)pβ

)2 , (35)

W6(x, y, t) = − β

α

 9A0 pcβ sec2[h(x, y, t)](
3
√
− c

pα2β
tan[h(x, y, t)]pαβ +

√
9
√
(− 1

3 β(m + n)A0 + c)pβ

)2

, (36)

where h(x, y, t) = 1
2

√
− c

pα2β
(η + c1).

To find the hyperbolic and trigonometric function solutions to the non-linear Rie-
mann wave equation, we search the coefficients of Equation (23) by taking into account
Equations (8) and (9):

U7(x, y, t) =
24α2 pµ

(√
3 tanh

(
1
2
√
−6µ(η + c1)

)
+ 2
)

(m + n)
(√

3 tanh
(

1
2
√
−6µ(η + c1)

)
+ 1
)2 . (37)

W7(x, y, t) =
β

α

 24α2 pµ
(√

3 tanh
(

1
2
√
−6µ(η + c1)

)
+ 2
)

(m + n)
(√

3 tanh
(

1
2
√
−6µ(η + c1)

)
+ 1
)2

. (38)

U8(x, y, t) = −
24α2 pµ

(
−
√

3 tan
(

1
2
√

6µ(η + c1)
)
+ 2
)

(m + n)
(√

3 tan
(

1
2
√

6µ(η + c1)
)
− 1
)2 . (39)

W8(x, y, t) =
β

α

−24α2 pµ
(
−
√

3 tan
(

1
2
√

6µ(η + c1)
)
+ 2
)

(m + n)
(√

3 tan
(

1
2
√

6µ(η + c1)
)
− 1
)2

. (40)

Finally, taking into account Equations (8) and (9) and substituting the coefficient values
from Equation (24) into Equation (19), we derived the solutions for the hyperbolic and
trigonometric functions for Equation (1) as follows:

U9(x, y, t) = −
12µα2 p(λ2 − 4µ) sec h2

(
1
2

√
λ2 − 4µ(η + c1)

)
(m + n)

(√
λ2 − 4µtanh

(
1
2

√
λ2 − 4µ(η + c1)

)
+ λ

)2 . (41)

W9(x, y, t) =
β

α

− 12µα2 p(λ2 − 4µ) sec h2
(

1
2

√
λ2 − 4µ(η + c1)

)
(m + n)

(√
λ2 − 4µtanh

(
1
2

√
λ2 − 4µ(η + c1)

)
+ λ

)2

. (42)

U10(x, y, t) = −
48α2 p(− 1

4 λ2 + µ) µ sec2
(

1
2

√
−λ2 + 4µ(η + c1)

)
(m + n)

(√
−λ2 + 4µ tan

(
1
2

√
−λ2 + 4µ(η + c1)

)
− λ

)2 . (43)
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W10(x, y, t) =
β

α

− 48α2 p(− 1
4 λ2 + µ) µ sec2

(
1
2

√
−λ2 + 4µ(η + c1)

)
(m + n)

(√
−λ2 + 4µ tan

(
1
2

√
−λ2 + 4µ(η + c1)

)
− λ

)2

. (44)

4. Physical Expression of the Problem

It is important to remember that the values of the current parameters in the RWEs
define the properties of the wave profiles. For the purpose of demonstration, various
representations of the solution functions (25)–(44) are drawn for specific values of c, m, and
n, where the free parameters p, α, and β influence the wave velocity c and the parameters
p, α, β, m, and n are related to the coefficient of the greatest power of the linear and
nonlinear terms of Equation (17). Due to the difficulty of rendering (2 + 1)-dimensional
shapes in 3D maps, we only depict the steady propagation of all solitary wave findings for
RWEs in this article.

The modified exp(−Φ(η))-function method has been applied to obtain the solutions
(25–44). These travelling wave solutions have been confirmed using Wolfram Mathematica
10. The same computer program was used to generate Figures 1–6. Solitary waves of
various forms, bell shape soliton, and smooth bell shape soliton, anti compacton soliton,
periodic shape soliton, brilliant singular soliton, singular kink solitons, and further kinds
of soliton solutions are among the practical solutions. The style of solitary waves has been
visually shown in terms of space and time. We investigated the nature of the solution.
The analytical solution’s graphs obviously show how the modified exp function method
is more reliable and effective. When we solve the Riemann wave equation, we find a
variety of solutions with different uncertain parameters. These unidentified factors have an
influence on the nature of the findings; various sorts of solutions are created from a solution
if parameters acquire different particular values. In the following, we demonstrated the
impact of the solution-related factors. Figure 1 displays the hyperbolic function solution
to the solitary wave to the single wave perspective to the 2D, and 3D plots of U1(x, t) and
W1(x, t) being we achieve the bell shape and bright singular soliton solution respectively
by considering the values p = −0.5, m = n = −2, α = 1, β = −2, c1 = 0.1, within the
interval −5 ≤ x, t ≤ 5, for 3D surfaces and t = 1 for 2D surfaces. In Figure 2 we obtain
the consolidated periodic solitons solution of U2(x, t) and W2(x, t) for the unidentified
coefficients p = 0.5, m = n = - 2, c1 = 0.1, α = 1, β = −1, c = 1, within the interval
−20 ≤ x ≤ 20,−1 ≤ t ≤ 1, for 3D surfaces and t = 1 for 2D surfaces. Now hyper-
bolic function solution in U3(x, t) and W3(x, t) being we acquire the singular soliton
and smooth bell shape soliton solutions respectively by considering the values p = 0.5,
m = 0.54, n = − 0.1, α = 0.88, β = 1, c1 = 0.1, within the interval −10 ≤ x ≤ −10,
−5 ≤ t ≤ 5, and t = 0.1 for 2D surfaces in Figure 3. Figure 4 represents the periodic
trajectory for the real and imaginary parts of the solitary wave view of 3D, and 2D plots of
U6(x, t) for the unknown constants p = 0.5, m = −1.1, n = −0.4, α = 1, β = −1, c1 = 0.1,
within the interval −8 ≤ x, t ≤ 8, and t = 1 for 2D surfaces. Figure 5 demonstrates the
solitary wave from the perspective of 2D, and 3D plots of U7(x, t) being that we receive a
singular kink type wave solution, the anti compacton soliton solutions, a compact is true
to the solitary wave having compacted support where the non-linear dispersion limits
within a determinate core, resulting in the disappearance of the exponential annexes by
considering the values p = 0.5, m = −1.1, n = −0.4, and α = 1, β = −1, c1 = 0.1, within
the interval −5 ≤ x, t ≤ 5, and t = 2 for 2D surfaces. Figure 6 shows that we acquire
the periodic wave solution by considering the standards p = −0.5, m = 0.54, n = −0.1,
α = 2, c1 = 0.1, λ = 1, n = −0.1, α = 2, c1 = 0.1, λ = 1, within the interval
−5 ≤ x, t ≤ 5, and t = 2 for 2D surfaces.
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5. Conclusions

The modified exp(−Φ(η))-function method has been successfully applied in this
article to develop the analytical solutions to the Riemann wave equations. For each of the
analyzed equations with some unknown parameters, we have constructed general solitary
wave solutions. For the definite values of the parameters, some existing solutions from the
literature are identified as well as some new solutions. Diverse varieties of solitary waves,
videlicet bell shapes, reduced bell shapes, compacton shapes, singular kink shapes, flat
kink shapes, smooth singular shapes, and other soliton solutions are among the established
solutions. The behaviour of the solitary waves in relation to time and space has been
illustrated graphically. This useful method can be applied to investigate different NLEE
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types that regularly occur in a variety of scientific and practical applications. The discovered
solutions will aid in the investigation of issues in mathematical physics and engineering.
The physical interpretation of the proposed solutions and their actual implementation in
practice will be looked into in this study.
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