
Citation: Zhang, M.; Liu, L.; Li, C.;

Wang, H.; Li, M. A Particle Swarm

Optimization Method for AI Stream

Scheduling in Edge Environments.

Symmetry 2022, 14, 2565. https://

doi.org/10.3390/sym14122565

Academic Editor: Theodore E. Simos

Received: 31 October 2022

Accepted: 2 December 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Particle Swarm Optimization Method for AI Stream
Scheduling in Edge Environments
Ming Zhang 1,2, Luanqi Liu 1, Changzhen Li 1, Haifeng Wang 1,2,* and Ming Li 3

1 School of Information Science and Engineering, Linyi University, Linyi 276002, China
2 Shandong Provincial Network Key Laboratory, Linyi University, Linyi 276002, China
3 School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China
* Correspondence: gadfly7@126.com; Tel.: +86-135-6391-2296

Abstract: With the development of IoT and 5G technologies, edge computing has become a key
driver for providing compute, network and storage services. The dramatic increase in data size and
the complexity of AI computation models have put higher demands on the performance of edge
computing. Rational and optimal scheduling of AI data-intensive computation tasks can greatly
improve the overall performance of edge computing. To this end, a particle swarm algorithm based
on objective ranking is proposed to optimize task execution time and scheduling cost by designing a
task scheduling model to achieve task scheduling in an edge computing environment. It is necessary
to fully understand the concept of symmetry of resource utilization and task execution cost indicators.
The method utilizes nonlinear inertia weights and shrinkage factor update mechanisms to improve
the optimization-seeking ability and convergence speed of the particle-to-task scheduling solution
space. The task execution time and scheduling cost are greatly reduced. Simulation experiments are
conducted using the Cloudsim toolkit to experimentally compare the proposed algorithm TS-MOPSO
with three other particle swarm improvement algorithms, and the experimental results show that
the task execution time, maximum completion time and total task scheduling cost are reduced by
31.6%, 23.1% and 16.6%, respectively. The method is suitable for handling large and complex AI
data-intensive task scheduling optimization efforts.

Keywords: internet of things; edge computing; task scheduling; AI data-intensive computing tasks;
particle swarm optimization algorithm

1. Introduction

Over the past few decades, cloud computing architectures have been a key force in pro-
viding computing, networking and storage services to users, and these services have been
used in a wide range of domains. The Internet is an emerging technology today and has
been extended to the Internet of Things. The IoT is ubiquitous connectivity, interconnecting
tangible objects and end devices through the Internet [1]. End devices are able to sense data
from the environment and share the acquired information with their neighboring devices.
IoT plays an important role in enhancing service performance and reducing computational
costs [2]. At the same time, geographically distributed end devices generate large-scale
and complex data at the edge of the network [3]. Although cloud service centers are rich
in computational resources, end-to-end latency and energy consumption of edge devices
will become increasingly high if all data transfers are uploaded to remote clouds [4]. Cloud
computing architectures no longer meet the low-latency and high-performance require-
ments of AI data-intensive and latency-sensitive tasks. A better solution is to develop
and design edge computing. This computing architecture has emerged and become fully
popular to reduce the real-time nature of data processing in cloud service centers, and to
effectively relieve network transmission pressure [5]. Edge computing is an extension of
cloud infrastructure. It is the physical transfer of computing resources and data storage

Symmetry 2022, 14, 2565. https://doi.org/10.3390/sym14122565 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122565
https://doi.org/10.3390/sym14122565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14122565
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122565?type=check_update&version=1

Symmetry 2022, 14, 2565 2 of 18

facilities placed at the edge close to end users, thus reducing latency and bandwidth con-
sumption [6]. Edge computing is different from distributed computing architectures, where
information exchange between services is centralized in clusters of machines at a single
location in a distributed data center architecture. Edge computing involves a large number
of edge devices scattered in different geographical locations, and end-users are able to
perform computations close to the edge devices to enable a new computing model where
computations occur close to the data source side. The dramatic increase in the number
and variety of end devices has fundamentally changed the traditional form of distributed
computing architecture. Edge computing is widely popular in several AI fields, such as
smart health care, smart manufacturing, autonomous driving and augmented/virtual
reality [7]. The combination of edge computing and AI applications solves the arithmetic
problem of complex computational models and high data intensity. Edge computing also
has some problems similar to those of cloud computing, such as resource allocation and task
scheduling. The scheduling of different types of computational tasks is more challenging
because of the higher heterogeneity of computational resources within the edge cluster [8].
To handle AI data-intensive computational jobs in edge computing, an efficient edge service
scheduling scheme needs to be found to determine the final assignment of each task to
minimize execution time and scheduling cost.

Distributed scheduling of AI data-intensive jobs in edge computing environments
is an NP problem, and the merit of the scheduling algorithm directly affects the overall
performance of task execution. The main goal of task scheduling is to fully utilize system
resources to achieve higher throughput to solve large-scale and highly complex computa-
tional problems [9]. To address the problem of handling multiple objective optimization,
many researchers have developed multi-objective optimization (MOO) techniques [10],
which are search methods used to find solutions for several conflicting optimization objec-
tives. For example, it is important to improve the computational performance while taking
into account the scheduling cost. A particle swarm algorithm based on objective ranking
is proposed for the scheduling of AI data-intensive computation tasks in edge computing
environments. The method takes task execution time, maximum completion time and
scheduling cost as optimization objectives. A nonlinear inertia weighting strategy and a
shrinkage factor update mechanism are added to the traditional particle swarm algorithm.
This helps to improve the search ability of particles in the solution space and the balance
between local search and global search. The main contributions of this paper are as follows:
1© Establish a task scheduling optimization model to provide a theoretical basis for the task

scheduling strategy. A particle swarm algorithm based on objective ranking is proposed to
improve the convergence of the algorithm by using nonlinear inertia weights and introduc-
ing shrinkage coefficients. 2© To meet the high requirements of computationally intensive
AI tasks in terms of response time and computational performance, the algorithm is applied
to intelligent job scheduling in edge environments. The algorithm takes task execution
time, maximum completion time and scheduling cost as the optimal objectives, which
effectively helps to improve the computing performance of AI job systems. The efficiency of
its algorithm is verified through experimental comparison with the benchmark algorithm.

This paper is organized as follows: Section 2 introduces the work related to the
task scheduling optimization problem; Section 3 details the formal representation and
parameter analysis of the task scheduling model; Section 4 describes the particle swarm
algorithm based on objective ranking in detail; Section 5 validates the method and proves
the efficiency of its algorithm; Section 6 concludes the study.

2. Related Works

Currently, the development of the Internet of Things is changing to intelligent demand,
and the data at the edge of the network is exponentially growing, on the basis of which a
“large group” of network interaction space is formed. Each individual in the large group
is an intelligent body with wisdom and experience. There is an interaction mechanism
between individuals, which forms a powerful group intelligence to solve complex problems

Symmetry 2022, 14, 2565 3 of 18

through interaction. For the task scheduling optimization problem in the edge environment,
the quality of scheduling algorithms has an important impact on the optimization results.
The existing scheduling algorithms are mainly divided into two types: classical algorithms
and intelligent algorithms. The classical algorithms are: first-in-first-out (FIFO), random
selection (RS) and polling (RR) algorithms. Although these algorithms are simple to
implement and efficient for simple task scheduling, they cannot adapt to the scheduling
requirements of large-scale and high-complexity AI data-intensive computing tasks [11].
Numerous researchers have investigated the task scheduling optimization problem by
swarm intelligence algorithms and their variants. The swarm intelligence algorithms,
represented by the particle swarm algorithm and the ant colony algorithm, have better
robustness, flexibility and distributivity, which are the superiority of swarm intelligence
algorithms in solving NP complex problems [12]. The swarm intelligence optimization
algorithm is a probabilistic search, which does not require information about the gradient
of the problem. Compared to traditional optimization algorithms, individuals in group
intelligence algorithms are distributed and do not affect the global situation due to the
failure of an individual, which has a strong robustness. The individuals of this type of
algorithm can only sense local information, and the individuals follow simple rules that are
easy to implement. In addition, the system is used for low communication overhead and
can be easily expanded. Particle swarm optimization algorithms (PSO) have been widely
used to solve complex problems, such as finding optimal routes, scheduling, structural
optimization, image analysis and data mining [13]. Therefore, this paper uses PSO as the
research basis for this work.

PSO belongs to the group intelligence heuristic optimization algorithm of compu-
tational intelligence. The algorithm is inspired by the predatory behavior of bird flocks,
which is very easy to simulate and very effective in dealing with optimization problems [14].
Based on the heterogeneity of edge cluster resources, the simplicity and efficiency of PSO
can no longer meet the high-performance requirements of edge systems due to the in-
creasing size and complexity of computational tasks and the diversity of optimization
objectives. Therefore, many researchers have investigated the task scheduling problem
by improving the PSO and combining it with multi-objective optimization techniques.
Bi et al. [15] designed a non-locally convergent particle swarm optimization algorithm
strategy for the computing intensive task scheduling problem. The problem of high de-
lay in the processing of tasks is solved. Steenkamp et al. [16] studied the scalability of
the polyguided particle swarm optimization algorithm on multi-objective optimization
problems. This method uses different file balance coefficient updating strategies to help
achieve the scalability of the algorithm. Verma et al. [17] proposed a hybrid particle swarm
optimization algorithm based on non-dominated ranking to optimize two conflicting objec-
tives of completion time and cost, and the method uses Pareto optimality to find the best
solution. Sahar et al. [18] applied an improved multi-objective particle swarm algorithm
to solve the workflow scheduling problem and considered four conflicting optimization
objectives of reliability, cost, maximum duration and energy consumption, using four im-
provements to improve the ability of the algorithm to converge to an undominated solution,
allowing a balance between exploration and exploitation during the scheduling process.
Pawel et al. [19] realized an archive management method for the dynamic multi-objective
optimization problem, and used six archive management methods to effectively track the
changing Pareto optimal solution. This work is to use the weighted sum method for multi-
ple optimization objectives and combine them into a single objective to find the optimal
solution. Kalka et al. [20] designed a method combining chemical reaction optimization
and particle swarm optimization to solve the mixed task scheduling optimization problem.
Minimize the calculation cost, execution time and energy consumption under the deadline
constraint, and improve the performance of PSO and various quality of service parameters.
Huang et al. [21] proposed a particle-swarm-based discrete variant optimization algorithm
to study the effects of four different update strategies, linear decreasing, Sigmod function,
simulated annealing and logarithmic decreasing, on inertia weights, respectively. The

Symmetry 2022, 14, 2565 4 of 18

results show that the PSO scheduler with a logarithmic decreasing strategy has the shortest
task execution time. However, the algorithm introduces more parameters, which increases
the complexity of the algorithm. Fakhouri et al. [22,23] developed an integer particle swarm
optimization algorithm in order to study the resource efficiency and user satisfaction of
edge cloud collaborative computing. The algorithm utilizes integer coding of the com-
putational core to rationalize the position of each particle through rounding and modulo
operations, while increasing the diversity of particles. The results show that the method has
better performance in terms of SLA satisfaction and resource efficiency, and the encoding
method and meta-heuristic of the method are integrated to expand the search space of
the algorithm and facilitate the particles to find the optimal solution. Vindigni et al. [24]
proposed a population descent swarm optimization algorithm for dynamically adjusting
the absolute error of the control strategy by finding the minimum of the time integral. The
conventional swarm optimization algorithm is not adaptive to the parameter changes of the
controller system. In order to make the controller adaptive in speed, the gain scheduling
adaptive tuning controller is used. This method increases the chattering bound of the
system by 47%.

The above research shows that different improvement methods of PSO can effectively
improve the performance of task scheduling in the edge environment. When facing AI
computing tasks with large data scale and high model complexity, existing methods still
need to be improved. In the edge computing environment, the research results for AI
data-intensive computing task scheduling problems based on particle swarm optimization
algorithms are not common. Therefore, on the basis of the original algorithm, PSO is
improved to better realize the reasonable configuration of tasks and to effectively reduce
the high latency and scheduling cost of edge AI data-intensive computing tasks in the
execution process, and improve the overall efficiency of edge intelligent computing.

3. Task Scheduling Model for Edge Computing

Edge computing is a parallel distributed system, and edge service clusters use virtu-
alization techniques to divide computing resources into multiple independent execution
environments. These independent environments are called virtual machines (VMs) [25].
These virtual machines provide services such as compute and storage based on user de-
mand. In an edge environment, virtualization technology allows flexible configuration of
multiple VMs on the same physical machine. The number of CPU cores per host determines
the number of VMs mapped. Task scheduling is actually a combinatorial optimization
problem, where tasks are reasonably assigned to different VM nodes within the edge cluster
by improving the allocation of VMs through task scheduling algorithms according to the
set optimization goals [26]. A reasonable scheduling strategy can reduce task execution
time while improving the overall performance of the edge system.

3.1. Problem Description

Edge AI data-intensive computing tasks in IoT can be described as a combination
of data-intensive jobs and common sensing tasks [27]. Users submit AI computation
task queues to the edge network cluster, and the network edge side of the end device
establishes a certain number of virtual machines through virtualization technology to
form an edge network cluster. When the edge cluster receives a task request, it assigns
the AI data-intensive computation tasks to n virtual machines for execution through a
suitable intelligent scheduling algorithm, and finally, the distributed results are combined
and returned to the user. For example, a certain task scheduling scheme a represents
the mapping relationship from computational tasks to virtual machines, and then six
computational tasks are assigned to five edge cluster virtual machines for execution when
a = [2, 1, 2, 5, 3, 4]; the mapping relationship between tasks and virtual machines is shown
in Figure 1.

Symmetry 2022, 14, 2565 5 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 18

are assigned to five edge cluster virtual machines for execution when [2,1, 2, 5, 3, 4]a = ; the

mapping relationship between tasks and virtual machines is shown in Figure 1.

Figure 1. Task scheduling framework.

An edge service cluster consists of a service provider that provides resources such as

compute and storage to users at different processing power and prices. The set of tasks

1 2 3 m
={ , , , }T T T T T

 (i = 1, 2, 3, ..., m), m denotes the total number of AI computation tasks.

The attributes of AI computation task can be denoted as
, , ,

i i i i i
TD cT sT AL FL=

. AI task

attributes are size of task i, start execution time, execution time and total task completion

time. Heterogeneous resources are deployed in the edge cluster, where the physical hosts

1 2 3
{ , , , }

K
P P P P P=

 are deployed in a data center and they are independent of each

other. A collection of virtual machines
{ , , , }

1 2 3
VM VM VM VM VM

n
=

 (j = 1, 2, 3, ..., n), j

represents the number of VM compute nodes in the edge cluster. The VM attributes are

denoted by a quadruplet as
, , ,

j cpuj mipj ramj bwj
VMA VM VM VM VM=

. The attributes of the

virtual machine are the number of CPUs, processing performance, memory, and band-

width. The data transmission volume of task i assigned to virtual machine j is expressed

in VTij. The task assignment matrix ijX A= . In Equation (1), aij denotes the correspondence

between task i and virtual machine node j. The notation of the problem description is de-

fined as shown in Table 1.

11 12 13 1

21 22 23 2

1 2 3

a a a a

a a a a

a a a a

j

j

i i i ij

A

=

, (1)

Table 1. Symbol definition.

Symbol Description

m number of tasks

n number of Virtual Machines

k number of physical hosts

T task sequence T = {T1, T2, …, Ti}

VM virtual machine nodes VM = {vm1, vm2, …, vmn}

i
cT

length of task i

Figure 1. Task scheduling framework.

An edge service cluster consists of a service provider that provides resources such as
compute and storage to users at different processing power and prices. The set of tasks
T= {T1, T2, T3, · · · Tm} (i = 1, 2, 3, . . . , m), m denotes the total number of AI computation
tasks. The attributes of AI computation task can be denoted as TDi =< cTi, sTi, ALi, FLi >.
AI task attributes are size of task i, start execution time, execution time and total task com-
pletion time. Heterogeneous resources are deployed in the edge cluster, where the physical
hosts P = {P1, P2, P3, · · · PK} are deployed in a data center and they are independent of
each other. A collection of virtual machines VM = {VM1, VM2, VM3, · · ·VMn} (j = 1,
2, 3, . . . , n), j represents the number of VM compute nodes in the edge cluster. The VM
attributes are denoted by a quadruplet as VMAj =< VMcpuj, VMmipj, VMramj, VMbwj >.
The attributes of the virtual machine are the number of CPUs, processing performance,
memory, and bandwidth. The data transmission volume of task i assigned to virtual ma-
chine j is expressed in VTij. The task assignment matrix Xij = A. In Equation (1), aij denotes
the correspondence between task i and virtual machine node j. The notation of the problem
description is defined as shown in Table 1.

A =

a11 a12 a13 · · · a1j
a21 a22 a23 · · · a2j
...
ai1 ai2 ai3 · · · aij

, (1)

Table 1. Symbol definition.

Symbol Description

m number of tasks
n number of Virtual Machines
k number of physical hosts
T task sequence T = {T1, T2, . . . , Ti}

VM virtual machine nodes VM = {vm1, vm2, . . . , vmn}
cTi length of task i

VMmipj processing speed of VMj
VMbwj bandwith of VMj

VTij the size of the data transfer assigned to VMj by task i
Xij the assignment matrix, aij, represents the task i assigned to VMj

3.2. Task Scheduling Mathematical Model

The following mathematical model can be made to illustrate the problem of scheduling
AI data-intensive computing tasks within an edge cluster:

Symmetry 2022, 14, 2565 6 of 18

Definition 1. Total Task Execution Time Texe.

The task execution time is the time consumed after the task is assigned to each different
VM node for execution, tij denotes the execution time of task i on VM node j. Then, each
task execution time can be represented by a matrix.

Time =

t11 t12 t13 · · · t1m
tn1 t22 t23 · · · t2m
...
tn1 tn2 tn3 · · · tnm

, (2)

When a task Ti is assigned by the system to be processed on VMj, the execution time
of task tij is equal to the actual task size of Ti divided by the processing speed VMmipj of
that VMj, which can be described by the formula:

tij =
cTi

VMmipj
, (3)

Therefore, the total task execution time is defined as:

Texe =
m,n

∑
i=1,j=1

tij, (4)

Definition 2. Maximum Completion Time Makespan.

The maximum completion time is the maximum execution time of a task, which re-
flects the real-time response time and the total completion time of the task. The maximum
completion time is equal to the maximum of the sum of the execution time and communica-
tion time of each task. The size of the VM bandwidth affects the task communication time,
and the communication time of task i can be expressed as the task data transfer volume
VTij divided by the bandwidth of VMj. Therefore, the communication time of task i is
calculated as follows.

Tcommij =
VTij

VMbw j
, (5)

Therefore, the maximum completion time of the task is defined as:

Makespan = max
{

Tcommi j + ti j| i ∈ m ,j ∈ n
}

, (6)

Definition 3. Total Task Scheduling Cost Tcost.

Depending on the resource utilization in the edge service cluster, two different schedul-
ing costs exist: task execution cost and communication cost. The task scheduling cost can
be defined as the sum of task execution cost and communication cost. The task scheduling
cost of task i on VM node j can be expressed in Equation (7).

Tcost ij = α1tij + α2Tcommij , (7)

Unit price of processing on different virtual machines in unit time α1 represents:
communication cost of different virtual machines per unit time α2. The total task scheduling
cost can be expressed as:

Tcos t =
m,n

∑
i=1,j=1

Tcos tij , (8)

Objective optimization mathematical model:

Symmetry 2022, 14, 2565 7 of 18

(1) Optimal total task execution time.

f1(x) = Min(Texe), (9)

(2) Maximum completion time optimal.

f2(x) = Min(Makespan), (10)

(3) Optimal total task scheduling cost:

f3(x) = Min(Tcos t), (11)

From the perspective of the entire edge cluster, the lower the total cost of task schedul-
ing and the shorter the execution time, the higher the efficiency of the system; that is,
the greater the throughput of the system. To a certain extent, this means that edge AI
computing tasks need to consume less energy. Therefore, an effective task scheduling
strategy can reduce the task execution time and scheduling cost of the entire system.

4. Task Scheduling Algorithm Based on Goal Ordering
4.1. Standard Particle Swarm Algorithm

PSO is a swarm intelligence algorithm inspired by the flocculation behavior of birds;
similar to evolutionary algorithms. PSO is also a population-based heuristic search algo-
rithm, the purpose of which is to seek solutions through mutual cooperation and sharing
among individuals in a population. Suppose a population is initialized with N particles
(solutions), the spatial extent of particle search is D-dimensional, and each particle may be a
candidate solution to a particular problem. For a particle pi, it has two classical parameters,
position and velocity. The best position found based on the particle’s own motion search
experience is called the local optimal solution, denoted by Pbest. The best position found
by the particle in the whole population range through information sharing is called the
global optimal solution, denoted by Gbest. In the iterative process of particle optimization,
the velocity and position update of the particles are expressed by Equations (12) and (13);
where c1, c2 denotes the learning factor, the weight of the statistical acceleration direction
that pushes each particle to the global and local optimal position. r1, r2 is a random num-
ber, uniformly generated in the range [0, 1], responsible for providing randomness to the
particle flight. w denotes the inertia weight, which gives the tendency to extend the search
space and regulates the search ability of the particles in the solution space.

vi
n(k + 1) = wvi

n(k) + c1r1(Pbesti
n(k)− xi

n(k)) + c2r2(Gbesti
n(k)− xi

n(k)), (12)

xi
n(k + 1) = xi

n(k) + vi
n(k + 1), (13)

4.2. Adaptive Inertia Weights

The particle iteration process includes two processes, global and local search, and
keeping a good balance between these two phases can make the algorithm converge to the
global optimum in a reasonable time. In order to improve the convergence of PSO and
prevent the particles from prematurely falling into the local optimum, this paper introduces
an adaptive updating inertia weight strategy in the standard PSO. The parameter w controls
the influence of the previous velocity on the current velocity and regulates the search ability
of the particle reconnection space. At the beginning of the iteration, higher values of w help
the global search for the best solution, while lower values help the particle local search
for the best. All techniques based on swarm intelligence search rely on exploration and
local development to achieve good performance. When the algorithm knows little about
the search space, more exploration should be conducted in the initial stage. Since the
inertia weight factor w of the standard particle swarm algorithm is a fixed value, it makes
the algorithm easy to fall into local optimum in the early iterative stage. To avoid the
above problem, Shi et al. used a linear decreasing function to dynamically improve the

Symmetry 2022, 14, 2565 8 of 18

inertia weights w, and achieved certain results in the convergence and performance of the
algorithm. The linear decreasing inertia weight w is formulated as follows.

w = wmax − (wmax − wmin)× k/Kmax, (14)

where wmax, wmin are the maximum and minimum inertia weights, k is the current number
of iterations, and Kmax is the maximum number of iterations.

The standard PSO has fewer parameters and is easy to implement. It is suitable for
scientific research and engineering applications, and can quickly and efficiently search
for solutions, and is well suited to solve task scheduling problems in edge environments.
Since optimization problems usually involve more complex search spaces, the standard
PSO uses a stochastic search process and results in easy convergence to local optima. In
order to obtain more particles in the feasible solution space, it is necessary to improve the
computational ability of the algorithm to find the optimal particles in the search space, so as
to obtain the optimal scheduling results. The standard PSO is optimized and enhanced in
two main ways. First, during the local convergence parameter adjustment, linear decreasing
is a typical dynamic update strategy, but in the late iteration, the inertia weight gradually
decreases to the minimum value with the number of iterations, which affects the global
search accuracy. The nonlinear decreasing form is a dynamic method to prevent the
particles from falling into local optimum, which can better improve the particle search
ability in the solution space. Second, we improve the particle search accuracy and add some
auxiliary operations to balance the local and global search performance of the algorithm by
appropriately controlling the two learning factors. The combined two improvements allow
the algorithm to find the optimal result faster and more accurately during the iterative
process. In this paper, we design a new update method that adaptively updates the inertia
weights using a nonlinear decreasing form with the following expression.

w = wmax + (wmin − wmax)× ln(1 +
λek

Kmax
), (15)

The value of inertial weight is [0.4–0.9], K is the current number of iterations, the
maximum number of iterations. The value of e is taken to be approximately equal to 2.718
and the coefficient λ = 3.5.

4.3. Contraction Factor Update Mechanism

In Equation (12), the setting of the c1, c2 parameters affects the trajectory of the
particles, while facilitating the information transfer between particles. The velocity vector is
effectively deflated by introducing the shrinkage factor ϕ to establish parameter restrictions
on the two learning factors c1, c2. It reduces the adverse effects on the algorithm caused by
improper settings of learning factors and facilitates the cooperative search of particles in
the local area. The expression of the shrinkage factor is given by:

ϕ =
2∣∣∣2 + 4c−
√

2c2 − 4c
∣∣∣ , (16)

Therefore, the optimized new velocity update Equation where c = c1 + c2, and c > 2.

vi
n(k + 1) = wvi

n(k) + ϕ[c1r1(Pbesti
n(k)− xi

n(k)) + c2r2(Gbesti
n(k)− xi

n(k))], (17)

On the basis of the new inertia weights, the size of the learning factor is adjusted
by introducing the shrinkage factor, so as to control the local and global search ability of
the particle in the solution space seeking, and effectively prevent the particle from falling
into the local optimal solution state. Integrating the improvement of the particle velocity
formula, the method can improve the convergence rate and performance of the algorithm.

Symmetry 2022, 14, 2565 9 of 18

4.4. Adaptability Function

The fitness is a weighted composite index used to evaluate the time efficiency and
time cost between the optimal implementation of the task optimization scheduling strategy.
It represents how well the particles in the particle swarm algorithm model change their
position states during the iterative optimization of the algorithm. The lower the fitness of
the scheduling scheme, the lower the cost and execution time of the task scheduling, and
the better the position state of the particles. In this paper, the adaptation degree calculation
is set to include two parts: task execution cost and communication cost. According to the
mathematical description of the task scheduling cost in Definition 3, the adaptation degree
function is defined as:

f itness = Min(α1Texe + α2Tcomm), (18)

4.5. Particle Swarm Algorithm Based on Target Ranking

Considering the characteristics of AI data-intensive computing tasks in IoT with
large scale and complex computational models, there is a need to efficiently implement
AI data-intensive computing task scheduling in the edge environment to improve the
overall performance of the edge cluster. In the optimization of multiple objectives with
conflicting goals, there is no single optimal solution, and the interaction between different
objectives finds a set of compromise solutions, called non-dominated or Pareto-optimal
solutions. The Pareto-optimal solution set consists of multiple trade-off solutions, and these
objective values are used to guide the non-dominated optimal position of the particles. A
solution belongs to the Pareto-optimal set if there is no other solution that improves at
least one objective without degrading any other objective. There are two basic approaches
to handling multi-objective optimization problems [28]: one approach is to reduce the
multi-objective optimization problem to a single-objective optimization problem. The
optimization is performed mainly by weighting different optimization objectives and
combining them into a single objective function. The complexity of this method lies in
determining the weight value of each objective according to the importance of the objectives,
and different weight values have a significant impact on the results. Therefore, this method
is suitable for use when the optimization objectives do not conflict. Another approach
is to separately evaluate each optimization objective and combine the concept of Pareto-
optimality (Pareto) nature to specify the priorities or weights of the different optimization
objectives. The Pareto-optimality approach involves many comparisons to determine the
optimal value of the best solution (leader). The determination of the leader is complicated
when there are more than two objectives and the objectives conflict with each other. This
is because there may be many non-dominated solutions in the vicinity of a particle and it
takes more time to find them. Therefore, instead of using the Pareto optimal method, a
new method based on goal ranking is used in this paper to overcome these drawbacks by
simplifying the search for the best scheduling solution.

Rational task scheduling for AI data-intensive jobs in edge computing environments,
where the priority of the task depends on the size of the task itself. In this paper, we design
a particle swarm optimization algorithm based on objective ranking to find the optimal
solution. By adding a computational fitness function to PSO, the value of each optimization
objective is separately calculated, and the solution in each swarm iteration is evaluated by
applying a ranking strategy. The solutions are ranked according to the objective values
in the PSO, and the particle with the lowest ranking among the corresponding three
optimization objectives is used as the optimal solution, i.e., the virtual machine assigned to
each task. The specific process is shown in Algorithm 1.

The algorithm consists of the main process of PSO. Based on the PSO algorithm, the
process of selecting the best position of the particle by processing the objective function is
changed. First, the execution time of each task to reach the available VMs, the maximum
completion time and the scheduling cost are calculated according to Equations (9)–(11). The
steps in line 3 to line 19 represent the main function of the PSO algorithm based on the goal
ordering. The main loop traverses all particles to find the best scheduling solution, and

Symmetry 2022, 14, 2565 10 of 18

the PSO algorithm is improved by adding a sorting function to compute the fitness value.
Specifically, in line 3, the particle population, velocity, position and task scheduling best
solution Pbest are initialized; lines 6 to 14 describe the main steps to evaluate the objective
function using the goal-ranking approach. In line 6, the sorted list is initialized; lines 7 to 9
calculate the fitness values for each objective, sorting the execution time, scheduling cost
and maximum completion time of each task in ascending order, respectively, and storing
each result in a separate matrix to select the VM number with the smallest value. Row
11 calculates the sum of the objective function values of the corresponding VMs for each
task in the three matrices by cycling through all VMs. Row 13 sorts the sums of the three
optimization objectives in ascending order. Line 14 selects the VM with index 0 based on the
ascending queue; i.e., the VM with the smallest value. Line 15 compares the fitness value
of each particle with the individual particle best using the evaluation function and returns
the particle best (pbest). Line 16 updates the velocity and position of the particles in each
iteration according to Equations (13) and (17). For a clearer understanding of the algorithm,
assume that there are six tasks to be reasonably assigned to four virtual machines, and
calculate the three optimized objective function values according to Equations (9)–(11),
respectively. The process of task selection of VM is shown in Figures 2–5.

Algorithm 1: Particle swarm optimization algorithm based on objective ranking

Input: number of iterations of the algorithm K, task T, virtual machine VM
Output: the best scheduling solution pbest of tasks to VMs
1. while termination criterion not met do
2. Calculate the three optimization objective values→Texe, Makespan, Tcost//Using
Equations (9)–(11)
3. Initial Population (Particle Swarm, vi, xi, pbest)
4. for Particle Swarm ∈ T do //iterate all particles
5. for vm ∈ VMs do
6. Initial (Objective ranking) //Initialize sort list
7. Sort the execution time in ascending order→vm1
8. Sort the maximum completion time in ascending order→vm2
9. Sort the scheduling cost in ascending order→vm3
10. for vm ∈ VMs do
11. Objective ranking(vm) = vm1 + vm2 + vm3//Sum the ranking of each
optimization goal
12. end for
13. Sum of the three objectives in ascending order→vmbest
14. Return vmbest (0) //Returns particles with index 0
15. pbest(i) = Evaluate Particle Swarm(i) //Evaluation of particles
16. Update (vi, xi) // Update the velocity and position of the particles, suing
Equations (13) and (17)
17. end for
18. end for
19. return pbest
20. end while

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 18

13. Sum of the three objectives in ascending order→vmbest

14. Return vmbest (0) //Returns particles with index 0

15. pbest(i) = Evaluate Particle Swarm(i) //Evaluation of particles

16. Update (vi, xi) // Update the velocity and position of the particles, suing

Equations (13) and (17)

17. end for

18. end for

19. return pbest

20. end while

Figure 2. Sort value of task execution time.

Figure 3. Sort value of maximum completion time.

Figure 4. Sort value of task scheduling cost.

Figure 5. Best Virtual Machine Selection.

Figure 2. Sort value of task execution time.

Symmetry 2022, 14, 2565 11 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 18

13. Sum of the three objectives in ascending order→vmbest

14. Return vmbest (0) //Returns particles with index 0

15. pbest(i) = Evaluate Particle Swarm(i) //Evaluation of particles

16. Update (vi, xi) // Update the velocity and position of the particles, suing

Equations (13) and (17)

17. end for

18. end for

19. return pbest

20. end while

Figure 2. Sort value of task execution time.

Figure 3. Sort value of maximum completion time.

Figure 4. Sort value of task scheduling cost.

Figure 5. Best Virtual Machine Selection.

Figure 3. Sort value of maximum completion time.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 18

13. Sum of the three objectives in ascending order→vmbest

14. Return vmbest (0) //Returns particles with index 0

15. pbest(i) = Evaluate Particle Swarm(i) //Evaluation of particles

16. Update (vi, xi) // Update the velocity and position of the particles, suing

Equations (13) and (17)

17. end for

18. end for

19. return pbest

20. end while

Figure 2. Sort value of task execution time.

Figure 3. Sort value of maximum completion time.

Figure 4. Sort value of task scheduling cost.

Figure 5. Best Virtual Machine Selection.

Figure 4. Sort value of task scheduling cost.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 18

13. Sum of the three objectives in ascending order→vmbest

14. Return vmbest (0) //Returns particles with index 0

15. pbest(i) = Evaluate Particle Swarm(i) //Evaluation of particles

16. Update (vi, xi) // Update the velocity and position of the particles, suing

Equations (13) and (17)

17. end for

18. end for

19. return pbest

20. end while

Figure 2. Sort value of task execution time.

Figure 3. Sort value of maximum completion time.

Figure 4. Sort value of task scheduling cost.

Figure 5. Best Virtual Machine Selection.

Figure 5. Best Virtual Machine Selection.

5. Simulation Experiment Results and Analysis
5.1. Task Scheduling Environment Configuration

The high cost of designing and testing task scheduling models in a real edge computing
environment is why many researchers choose simulation experiments. Using simulation
mock-up experiments allows for flexible custom creation of entities and parameter configu-
rations. The research in this paper focuses on the optimization problem of scheduling AI
data-intensive computing tasks in an edge environment. The simulation experiments are
carried out using CloudSim, a cloud computing simulation experiment platform developed
and designed in-house at the University of Melbourne [29]. Given that the CloudSim
platform is open source and widely used, and provides a virtual engine, it helps to create
and manage multiple independent and collaborative virtual machine services on a single
data center node. In this paper, we implement task scheduling algorithms on the CloudSim
simulation platform by extending it. CloudSim platform is an open source simulation
engine that can simulate the creation of entities in a variety of environments, including
cloud data centers, physical hosts and virtual machines, messaging and clock management
between components, etc. CloudSim serves as a general and scalable simulation framework
that supports the simulation of emerging cloud computing infrastructure and management
services. CloudSim allows various services to be modeled, simulated and experimented
with, for example, management interface support for virtual machines, memory, storage
and bandwidth; this layer implements a generic and scalable simulation framework based
on user requirements for host-to-virtual machine mapping, managed application execution

Symmetry 2022, 14, 2565 12 of 18

and dynamic monitoring. Usually, the resources of one host in the data can be mapped
to multiple virtual machines based on user requirements, therefore, there is competition
between virtual machines for host resources. Cloudsim provides the detection of resources,
host-to-virtual machine mapping capabilities. Understanding the working mode and
workflow of Cloudsim, being familiar with the parameters and roles of each class, and
extending the original classes and methods is a way for developers to implement new
research methods and algorithms. A few core classes in the source code are outlined below.

(1) Cloudlet: The task of building the environment; this paper studies AI data-intensive
computing tasks.

(2) DataCenter: Data center that provides virtualized grid resources and contains the
allocation policy of virtual machines to resources.

(3) Host: Extends the machine to virtual machine parameters allocation policy, such as
bandwidth, memory, etc. A host can correspond to multiple virtual machines.

(4) VMScheduler: Virtual machine scheduling policy that manages the execution of tasks.

To evaluate the performance of the algorithm and compute the task scheduling model,
the algorithm in this paper is compared with three other improved particle swarm algo-
rithms. The performance of the algorithm is tested by creating available virtual machines
and tasks, and mapping the tasks to the virtual machines of the edge cluster. Before per-
forming task scheduling, a task scheduling simulation experiment environment needs
to be constructed. The simulation entity is created, which includes setting up the data
center, virtual machines and physical hosts, as well as setting up the corresponding pa-
rameter information. The basic flow of the simulation is: initialize CloudSim, create a
data center and its agents, and create feature objects to store the corresponding properties;
create virtual machines and tasks, and set the relevant parameters; after the simulation
environment is successfully built, invoke the improved task scheduling algorithm, start
CloudSim for simulation, and finally, generate results and perform experimental analysis.
Table 2 shows the configuration information about the experiment. There are four types of
virtual machines with different CPUs, processing power and memory sizes, which lead
to price differences in scheduling costs when tasks are processed. Tasks with different
physical attributes are rationally assigned to virtual machines by specific task scheduling
algorithms. AI computing tasks in IoT include intensive tasks and common sensor tasks
with task lengths initialized to random integer values from 45–15,000.

Table 2. Experimental configuration parameters.

Hardware
Configuration

configuration information CPU RAM HD OS

parameters Intel(R)
Core(TM)i7-3930K 16.0 GB 1 TB Windows 10

Mainframe
Features

configuration
information CPU MIPS RAM Size Bandwidth PE

parameter {2000, 2500, 3000, 3500} {4096, 4096, 4096, 4096} 1,000,000 2

Virtual Machine
Configuration

virtual machine number 1 2 3 4

memory 256 512 256 512

processing power 150 200 180 300

CPU cores 1 1 1 1

bandwidth 1500 2000 1000 3000

Mission
Properties

task properties task size data transfer volume number of tasks

fetch value 45–14,500 200–800 200–1000

Symmetry 2022, 14, 2565 13 of 18

5.2. Results and Analysis
5.2.1. Algorithm Performance Analysis

In numerous studies of intelligent particle swarm algorithms applied to task schedul-
ing, it has been demonstrated that the algorithm is suitable for complex scientific research
and engineering applications, and can quickly and efficiently find the optimal solution.
However, the PSO is a stochastic search process, which can easily converge to local extremes
when the particles are searching for the optimal solution. Therefore, different types of meth-
ods to improve the PSO are proposed to avoid falling into local optima. To demonstrate the
efficiency of the algorithm in this paper, the TS-MOPSO is experimentally compared with
three other benchmark algorithms. The various improved PSO are differently implemented,
but are based on the same PSO principle, so they work in a relatively close manner. In this
case, a large number of AI data-intensive task nodes can distinguish the performance of
the improved PSO well.

(1) PS-MOPSO [30]: This algorithm is a PSO with Pareto-optimal method by which to
obtain the optimal solution set. A nonlinear adaptive inertia weighting strategy is used
to update the particle velocity and position to improve the algorithm convergence and
finishing computational performance. Finally, the optimal solution is selected from them
by comparison.

(2) SAWPSO [31]: This algorithm combines a simulated annealing algorithm and an
improved particle swarm algorithm applied to edge computing task scheduling. A new
adaptive inertia weight adjustment strategy is used to balance the local and global search
ability of particles. At the beginning of the iteration, the simulated annealing algorithm is
embedded into the PSO, and the temperature is increased so that the population particles
have a higher probability of accepting non-optimal solutions, and thus, jumping out of
the local optimum; at the later stage of the iteration, the temperature is reduced and can
converge to the global optimum and accurately locate the optimal position of the particles.

(3) SAPSO: This algorithm combines the simulated annealing algorithm and the
standard particle swarm algorithm applied to edge computing task scheduling. The
difference with the second method lies in the adjustment of inertia weights.

In order to better show the differences of various improved PSO, the experiments
are set to 200 iterations and 1000 AI data-intensive task nodes are used as the task model.
Figure 6 shows the convergence trends of the search results of the four algorithms, mainly
analyzing the algorithm performance in terms of convergence speed and optimal solution.
The convergence speed is the minimum number of iterations for the number of particles
to reach the optimal position, and the optimal solution is the minimum value for the
particles to reach all extreme positions. As shown in Figure 6, the final fitness values of
the TS-MOPSO are all significantly smaller than the other three benchmark algorithms,
indicating that the algorithm can obtain near-optimal solutions. The slow convergence
of the fitness values of PS-MOPSO and SAPSO indicates that the particles of these two
algorithms randomly search for solutions during the iterative process. The search result is
closer to the optimal solution because the velocity and position update strategy of particles
is used in TS-MOPSO, and each particle knows the direction of the optimal solution before
searching. SAWPSO performs better than SAPSO because the former algorithm uses
the adaptive inertia weighting strategy, which makes the particles jump out of the local
extremes with certain probability. Both TS-MOPSO and PS-MOPSO introduce the standard.
PS-MOPO introduces the concept of Pareto-optimality, and it is more complicated to choose
the best scheduling solution in the optimal set because there may be many non-dominated
solutions in the neighborhood of the particles. Therefore, this algorithm is inferior to TS-
MOPSO in both convergence speed and optimal solutions. Based on the above analysis, the
TS-MOPSO outperforms other improved PSO in both convergence speed and fitness value,
and the experiments prove that the algorithm is more suitable for solving multi-objective
task scheduling optimization problems in the edge computing environment.

Symmetry 2022, 14, 2565 14 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 18

analyzing the algorithm performance in terms of convergence speed and optimal solution.

The convergence speed is the minimum number of iterations for the number of particles

to reach the optimal position, and the optimal solution is the minimum value for the par-

ticles to reach all extreme positions. As shown in Figure 6, the final fitness values of the

TS-MOPSO are all significantly smaller than the other three benchmark algorithms, indi-

cating that the algorithm can obtain near-optimal solutions. The slow convergence of the

fitness values of PS-MOPSO and SAPSO indicates that the particles of these two algo-

rithms randomly search for solutions during the iterative process. The search result is

closer to the optimal solution because the velocity and position update strategy of parti-

cles is used in TS-MOPSO, and each particle knows the direction of the optimal solution

before searching. SAWPSO performs better than SAPSO because the former algorithm

uses the adaptive inertia weighting strategy, which makes the particles jump out of the

local extremes with certain probability. Both TS-MOPSO and PS-MOPSO introduce the

standard. PS-MOPO introduces the concept of Pareto-optimality, and it is more compli-

cated to choose the best scheduling solution in the optimal set because there may be many

non-dominated solutions in the neighborhood of the particles. Therefore, this algorithm

is inferior to TS-MOPSO in both convergence speed and optimal solutions. Based on the

above analysis, the TS-MOPSO outperforms other improved PSO in both convergence

speed and fitness value, and the experiments prove that the algorithm is more suitable for

solving multi-objective task scheduling optimization problems in the edge computing en-

vironment.

Figure 6. Optimization curve of four algorithms for task scheduling.

5.2.2. Simulation Experiment Comparison Analysis

Figure 7 shows the experimental comparison trends of the four different algorithms

in terms of task execution time, maximum completion time and scheduling cost. It can be

seen that the TS-MOPSO achieves the best performance in terms of execution time, maxi-

mum completion time and scheduling cost, and its superiority over other algorithms be-

comes more obvious as the number of tasks increases. In addition, experiments also

demonstrate that the combination of multi-objective optimization techniques and particle

swarm algorithms is more suitable for solving multi-objective task scheduling optimiza-

tion problems. SAWPSO uses an adaptive inertia weight update strategy to prevent par-

ticles from falling into local optima during iteration, so the overall performance of this

algorithm is better than that of SAPSO. Both PS-MOPSO and TS-MOPSO use a nonlinear

inertia weight update method and introduce a shrinkage factor update mechanism to bal-

ance the performance of the algorithm. Both PS-MOPSO and TS-MOPSO use a nonlinear

Figure 6. Optimization curve of four algorithms for task scheduling.

5.2.2. Simulation Experiment Comparison Analysis

Figure 7 shows the experimental comparison trends of the four different algorithms
in terms of task execution time, maximum completion time and scheduling cost. It can
be seen that the TS-MOPSO achieves the best performance in terms of execution time,
maximum completion time and scheduling cost, and its superiority over other algorithms
becomes more obvious as the number of tasks increases. In addition, experiments also
demonstrate that the combination of multi-objective optimization techniques and particle
swarm algorithms is more suitable for solving multi-objective task scheduling optimization
problems. SAWPSO uses an adaptive inertia weight update strategy to prevent particles
from falling into local optima during iteration, so the overall performance of this algorithm
is better than that of SAPSO. Both PS-MOPSO and TS-MOPSO use a nonlinear inertia
weight update method and introduce a shrinkage factor update mechanism to balance the
performance of the algorithm. Both PS-MOPSO and TS-MOPSO use a nonlinear inertia
weight update method, and introduce a shrinkage factor update mechanism to balance
the local and global search ability of the algorithm, so that the optimal search ability of the
particles in the solution space can be better optimized. The difference is that PS-MOPSO
uses the Pareto-optimal method and finds the optimal scheduling solution by multiple
comparisons in the Pareto-optimal set, and the number of comparisons increases with
the number of optimization objectives, which leads to more time required for processing
multiple objectives. In contrast, TS-MOPSO uses an objective-based ranking method
to overcome this drawback and improve the overall performance of the algorithm by
simplifying the lookup to select the best VM.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 18

inertia weight update method, and introduce a shrinkage factor update mechanism to

balance the local and global search ability of the algorithm, so that the optimal search

ability of the particles in the solution space can be better optimized. The difference is that

PS-MOPSO uses the Pareto-optimal method and finds the optimal scheduling solution by

multiple comparisons in the Pareto-optimal set, and the number of comparisons increases

with the number of optimization objectives, which leads to more time required for pro-

cessing multiple objectives. In contrast, TS-MOPSO uses an objective-based ranking

method to overcome this drawback and improve the overall performance of the algorithm

by simplifying the lookup to select the best VM.

Since heuristic algorithms are stochastic optimization methods, they require at least

10 independent runs to produce meaningful statistical results. In this paper, each method

is independently executed more than 20 times and the average results of each algorithm

are given. Table 3 gives the best and worst values of the algorithms for each optimization

objective during the iterative process, and the corresponding mean and variance are cal-

culated. In terms of accuracy, the TS-MOPSO outperforms the other algorithms in all

cases. This can also verify the capability of the combinatorial optimization algorithm com-

pared to the rule-based simple algorithm. In terms of stability, the stability of the com-

pared algorithms is measured by calculating the variance, and the smaller the variance,

the more stable the algorithm is. TS-MOPSO has the smallest variance in all three optimi-

zation objectives, which indicates that the algorithm is more stable than the other algo-

rithms. Based on the above analysis, TS-MOPSO outperforms the other three benchmark

algorithms in terms of task execution time, maximum completion time and scheduling

cost, and can well reflect the requirements of real-time, scheduling cost, and low energy

consumption for AI data-intensive task scheduling in edge computing environments.

Figure 7. Optimization target comparison trend chart.

Table 3. Comparison of optimization target data.

 Algorithm Worst Value Best Value Mean Variance

Execution time

SAPSO 94 19 55.2 615

SAWPSO 80 16 46.6 456.4

PS-MOPSO 65 13 37.3 295.3

TS-MOPSO 48 11 27.7 165.3

Maximum completion

time

SAPSO 634 304 446 109

SAWPSO 559 228 384 113

PS-MOPSO 488 195 326 97.3

TS-MOPSO 375 141 239 83

Scheduling cost

SAPSO 378 182 55.2 65

SAWPSO 339 147 46.6 64.2

PS-MOPSO 294 125 37.3 55

TS-MOPSO 240 91 27.7 49

Figure 7. Optimization target comparison trend chart.

Symmetry 2022, 14, 2565 15 of 18

Since heuristic algorithms are stochastic optimization methods, they require at least
10 independent runs to produce meaningful statistical results. In this paper, each method is
independently executed more than 20 times and the average results of each algorithm are
given. Table 3 gives the best and worst values of the algorithms for each optimization objec-
tive during the iterative process, and the corresponding mean and variance are calculated.
In terms of accuracy, the TS-MOPSO outperforms the other algorithms in all cases. This
can also verify the capability of the combinatorial optimization algorithm compared to the
rule-based simple algorithm. In terms of stability, the stability of the compared algorithms
is measured by calculating the variance, and the smaller the variance, the more stable the
algorithm is. TS-MOPSO has the smallest variance in all three optimization objectives,
which indicates that the algorithm is more stable than the other algorithms. Based on the
above analysis, TS-MOPSO outperforms the other three benchmark algorithms in terms
of task execution time, maximum completion time and scheduling cost, and can well
reflect the requirements of real-time, scheduling cost, and low energy consumption for AI
data-intensive task scheduling in edge computing environments.

Table 3. Comparison of optimization target data.

Algorithm Worst Value Best Value Mean Variance

Execution time

SAPSO 94 19 55.2 615
SAWPSO 80 16 46.6 456.4

PS-MOPSO 65 13 37.3 295.3
TS-MOPSO 48 11 27.7 165.3

Maximum completion
time

SAPSO 634 304 446 109
SAWPSO 559 228 384 113

PS-MOPSO 488 195 326 97.3
TS-MOPSO 375 141 239 83

Scheduling cost

SAPSO 378 182 55.2 65
SAWPSO 339 147 46.6 64.2

PS-MOPSO 294 125 37.3 55
TS-MOPSO 240 91 27.7 49

Three optimization objectives are selected for the multi-objective optimization problem
of AI data-intensive tasks in edge computing environments. Deploying a large number of
tasks on virtual machines in edge clusters by suitable task scheduling algorithms helps to
save task scheduling costs, as well as execution time, in the edge environment. Therefore,
task execution time and scheduling cost are important metrics to reflect the computational
performance of edge computing. The following are the effects of the changes in the
optimization objectives after different algorithms are applied to task scheduling. As shown
in Figure 8, TS-MOPSO obtains the best performance in all three aspects. The TS-MOPSO
task scheduling cost is smaller than the other three algorithms, and this algorithm can make
good use of the edge cluster computing resources in the edge computing environment,
thus significantly reducing the task execution time and scheduling cost.

Through the above sets of experiments, it can be proved that TS-MOPSO outperforms
other improved PSO in terms of optimization objectives, fitness and convergence trend.
The particle swarm optimization algorithm based on objective ranking proposed in this
paper is an efficient algorithm that can provide better approximate optimal solutions for
optimal scheduling of AI data-intensive tasks in edge environments.

Symmetry 2022, 14, 2565 16 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 18

Three optimization objectives are selected for the multi-objective optimization prob-

lem of AI data-intensive tasks in edge computing environments. Deploying a large num-

ber of tasks on virtual machines in edge clusters by suitable task scheduling algorithms

helps to save task scheduling costs, as well as execution time, in the edge environment.

Therefore, task execution time and scheduling cost are important metrics to reflect the

computational performance of edge computing. The following are the effects of the

changes in the optimization objectives after different algorithms are applied to task sched-

uling. As shown in Figure 8, TS-MOPSO obtains the best performance in all three aspects.

The TS-MOPSO task scheduling cost is smaller than the other three algorithms, and this

algorithm can make good use of the edge cluster computing resources in the edge com-

puting environment, thus significantly reducing the task execution time and scheduling

cost.

Figure 8. Optimize the effect of target changes.

Through the above sets of experiments, it can be proved that TS-MOPSO outperforms

other improved PSO in terms of optimization objectives, fitness and convergence trend.

The particle swarm optimization algorithm based on objective ranking proposed in this

paper is an efficient algorithm that can provide better approximate optimal solutions for

optimal scheduling of AI data-intensive tasks in edge environments.

6. Conclusions

Traditional scheduling models and algorithms are affected by the complexity and

uncertainty of edge environments, which make it difficult to directly handle AI data-in-

tensive computing tasks. To address the optimization problem of scheduling AI data-in-

tensive computing tasks in IoT, this paper designs and implements a task scheduling op-

timization model, and considers three optimization objectives: task execution time, maxi-

mum completion time and scheduling cost. Furthermore, a particle swarm optimization

algorithm based on goal ranking (TS-MOPSO) is proposed to optimize the proposed task

scheduling model. TS-MOPSO works on the basis of a multi-objective particle swarm op-

timization algorithm and adopts nonlinear adaptive inertia weights and a shrinkage factor

update mechanism to better balance the local and overall seeking ability of particles.

Based on this, three objective functions are evaluated using an objective ranking strategy

and the results are used for task scheduling to find the optimal virtual machine for each

task. This improves approach speeds and simplifies the process of evaluating the optimi-

zation objectives of the algorithm, which improves the overall performance of the edge

cluster while reducing the task execution time and scheduling cost by comparing with the

benchmark algorithm experiments. Currently, task scheduling research has been limited

in targeting data management in computational tasks. This paper does not consider the

Figure 8. Optimize the effect of target changes.

6. Conclusions

Traditional scheduling models and algorithms are affected by the complexity and un-
certainty of edge environments, which make it difficult to directly handle AI data-intensive
computing tasks. To address the optimization problem of scheduling AI data-intensive
computing tasks in IoT, this paper designs and implements a task scheduling optimization
model, and considers three optimization objectives: task execution time, maximum com-
pletion time and scheduling cost. Furthermore, a particle swarm optimization algorithm
based on goal ranking (TS-MOPSO) is proposed to optimize the proposed task scheduling
model. TS-MOPSO works on the basis of a multi-objective particle swarm optimization
algorithm and adopts nonlinear adaptive inertia weights and a shrinkage factor update
mechanism to better balance the local and overall seeking ability of particles. Based on
this, three objective functions are evaluated using an objective ranking strategy and the
results are used for task scheduling to find the optimal virtual machine for each task. This
improves approach speeds and simplifies the process of evaluating the optimization objec-
tives of the algorithm, which improves the overall performance of the edge cluster while
reducing the task execution time and scheduling cost by comparing with the benchmark
algorithm experiments. Currently, task scheduling research has been limited in targeting
data management in computational tasks. This paper does not consider the impact of data
layer dependency and data privacy in computational tasks on task scheduling models, but
only considers computational tasks and processing data as a whole. This research point
will be a future research direction and is addressed in conjunction with the multi-objective
optimization problem.

Author Contributions: Conceptualization, M.Z. and L.L.; methodology, L.L. and H.W.; formal
analysis, H.W. and C.L.; writing—original draft preparation, L.L.; writing—review and editing,
M.Z. and L.L.; visualization, M.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Shan Dong Province Key Research and Development Program
of China (No. 2019GGX101003), The funder: Ming Zhang; Shandong Provincial Natural Science
Foundation (ZR2021QF078), The funder: Changzhen Li; Shan dong Major Scientific and Technological
Innovation Project, China (No. 2019JZZY010134); Postgraduate Education and Teaching Reform Key
Training Project (SDYJG19210).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2022, 14, 2565 17 of 18

References
1. Abouzaid, L.; Sabir, E.; Elbiaze, H.; Errami, A. The meshing of the sky: Delivering ubiquitous connnectivity to ground internet of

things. IEEE Internet Things J. 2020, 8, 3743–3757. [CrossRef]
2. Din, I.U.; Bano, A.; Awan, K.A. LightTrust: Lightweight Trust Management for EdgeDevices in Industrial Internet of Things.

IEEE Internet Things J. 2021. [CrossRef]
3. Kim, Y.; Song, C.; Han, H.; Jung, H. Collaborative Task Scheduling for IoT-Assisted Edge Computing. IEEE Access 2020, 8,

216593–216606. [CrossRef]
4. Zhang, N.; Li, W.; Liu, Z.; Li, Z.; Liu, Y. A New Task Scheduling Scheme Based on Genetic Algorithm for Edge Computing.

CMC-Comput. Mater. Contin. 2022, 71, 843–854.
5. Kang, L.; Chen, R.S.; Cao, W. Mechanism analysis of non-inertial particle swarm optimization for Internet of Things in edge

computing. Eng. Appl. Artif. Intell. 2020, 94, 103803. [CrossRef]
6. Zhou, E.; Zhang, J.; Dai, K. Research on Task and Resource Matching Mechanism in the Edge Computing Network. Int. Core J.

Eng. 2020, 6, 94–104.
7. Kh, A.; Iud, B.; Aa, C. Intelligent and Secure Edge-enabled Computing Model for Sustainable Cities using Green Internet of

Things. Sustain. Cities Soc. 2021, 68, 102779.
8. Abdullahi, M.; Ngadi, M.A.; Dishing, S.I. An efficient symbiotic organisms search algorithm with chaotic optimization strategy for

multi-objective task scheduling problems in cloud computing environment. J. Netw. Comput. Appl. 2019, 133, 60–74. [CrossRef]
9. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing.

IEEE Trans. Wirel. Commun. 2020, 19, 447–457. [CrossRef]
10. Guang, P. Multi-objective Optimization Research and Applied in Cloud Computing. In Proceedings of the 2019 IEEE International

Symposium on Software Reliability Engineering Workshops, Berlin, Germany, 27–30 October 2019; pp. 97–99.
11. SI, G. Towards Application-Driven Task Offloading in Edge Computing Based on Deep Reinforcement Learning. Micromachines

2021, 12, 1011.
12. Shang, J.; Tian, Y.; Liu, Y. Production Scheduling Optimization Method Based on Hybrid Particle Swarm Optimization Algorithm.

J. Intell. Fuzzy Syst. 2018, 34, 955–964. [CrossRef]
13. Fang, J.; Ma, A. IoT Application Modules Placement and Dynamic Task Processing in Edge-Cloud Computing. IEEE Internet

Things J. 2021, 8, 12771–12781. [CrossRef]
14. Milan, S.T.; Rajabion, L.; Darwesh, A.; Hosseinzadeh, M. Priority-based task scheduling method over cloudlet using a swarm

intelligence algorithm. Clust. Comput. 2020, 23, 663–671. [CrossRef]
15. Bi, J.; Yuan, H.; Duanmu, S. Energy-Optimized Partial Computation Offloading in Mobile-Edge Computing with Genetic

Simulated-Annealing-Based Particle Swarm Optimization. IEEE Internet Things J. 2020, 8, 3774–3785. [CrossRef]
16. Steenkamp, C.; Engelbrecht, A.P. A Scalability Study of the Multi-Guide Particle Swarm Optimization Algorithm to Many-

objectives. Swarm Evol. Comput. 2021, 66, 100943. [CrossRef]
17. Verma, A.; Kaushal, R. A hybrid multi-objective particle swarm optimization for scientific workflow scheduling. Parallel Comput.

2017, 62, 1–19. [CrossRef]
18. Saeedi, S.; Khorsand, R. Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in

cloud computing. Comput. Ind. Eng. 2020, 147, 106649. [CrossRef]
19. Paweł, J.; Beatrice, M.; Ombuki, B.; Andries, P. Multi-guide particle swarm optimisation archive management strategies for

dynamic optimisation problems. Swarm Intell. 2022, 16, 143–168.
20. Kalka, D.; Sharma, S.C. A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing.

Sustain. Comput. Inform. Syst. 2021, 32, 100605.
21. Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using particle swarm optimization with time varying

inertia weight strategies. Clust. Comput. 2020, 23, 1137–1147. [CrossRef]
22. Fakhouri, H.N.; Hudaib, A.; Sleit, A. Multivector particle swarm optimization algorithm. Soft Comput. 2019, 24, 11695–11713.

[CrossRef]
23. Wang, B.; Cheng, J.; Cao, J. Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative

computing to improve SLA satisfaction. PeerJ Comput. Sci. 2022, 8, e893. [CrossRef]
24. Vindigni, C.R.; Orlando, C.; Milazzo, A. Computational Analysis of the Active Control of Incompressible Airfoil Flutter Vibration

Using a Piezoelectric V-Stack Actuator. Vibration 2021, 4, 369–396. [CrossRef]
25. Bellendorf, J.; Dám, M. Classification of optimization problems in fog computing. Future Gener. Comput. Syst. 2020, 107, 158–176.

[CrossRef]
26. Alsurdeh, R.; Calheiros, R.N.; Matawie, K.M. Hybrid Workflow Scheduling on Edge Cloud Computing Systems. IEEE Access

2021, 9, 134783–134799. [CrossRef]
27. Pishgoo, B.; Azirani, A.A.; Raahemi, B. A hybrid distributed batch stream processing approach for anomaly detection. Inf. Sci.

2021, 543, 309–327. [CrossRef]
28. Shi, Z.; Shi, Z.G. Multi-node Task Scheduling Algorithm for Edge Computing Based on Multi-Objective Optimization. J. Phys.

Conf. Ser. 2020, 1607, 012017. [CrossRef]
29. Sahkhar, L.; Balabantaray, B.K. Scheduling Cloudlets to Improve Response Time Using CloudSim Simulator. Lect. Notes Netw.

Syst. 2021, 170, 483–493.

http://doi.org/10.1109/JIOT.2020.3026349
http://doi.org/10.1109/JIOT.2021.3081422
http://doi.org/10.1109/ACCESS.2020.3041872
http://doi.org/10.1016/j.engappai.2020.103803
http://doi.org/10.1016/j.jnca.2019.02.005
http://doi.org/10.1109/TWC.2019.2946140
http://doi.org/10.3233/JIFS-169389
http://doi.org/10.1109/JIOT.2020.3007751
http://doi.org/10.1007/s10586-019-02951-z
http://doi.org/10.1109/JIOT.2020.3024223
http://doi.org/10.1016/j.swevo.2021.100943
http://doi.org/10.1016/j.parco.2017.01.002
http://doi.org/10.1016/j.cie.2020.106649
http://doi.org/10.1007/s10586-019-02983-5
http://doi.org/10.1007/s00500-019-04631-x
http://doi.org/10.7717/peerj-cs.893
http://doi.org/10.3390/vibration4020024
http://doi.org/10.1016/j.future.2020.01.036
http://doi.org/10.1109/ACCESS.2021.3116716
http://doi.org/10.1016/j.ins.2020.07.026
http://doi.org/10.1088/1742-6596/1607/1/012017

Symmetry 2022, 14, 2565 18 of 18

30. Xie, Y.; Zhu, Y.; Wang, Y. A novel directional and non-local-convergent particle swarm optimization based workflow scheduling
in cloud-edge environment. Future Gener. Comput. Syst. 2019, 97, 361–378. [CrossRef]

31. Yang, L.; Hu, X.; Li, K. A vector angles-based many-objective particle swarm optimization algorithm using archive. Appl. Soft
Comput. 2021, 106, 107299. [CrossRef]

http://doi.org/10.1016/j.future.2019.03.005
http://doi.org/10.1016/j.asoc.2021.107299

	Introduction
	Related Works
	Task Scheduling Model for Edge Computing
	Problem Description
	Task Scheduling Mathematical Model

	Task Scheduling Algorithm Based on Goal Ordering
	Standard Particle Swarm Algorithm
	Adaptive Inertia Weights
	Contraction Factor Update Mechanism
	Adaptability Function
	Particle Swarm Algorithm Based on Target Ranking

	Simulation Experiment Results and Analysis
	Task Scheduling Environment Configuration
	Results and Analysis
	Algorithm Performance Analysis
	Simulation Experiment Comparison Analysis

	Conclusions
	References

