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Abstract: The general eccentric connectivity index of a graph R is defined as ξec(R) = ∑u∈V(G) d(u)ec(u)α,
where α is any real number, ec(u) and d(u) represent the eccentricity and the degree of the vertex u in
R, respectively. In this paper, some bounds on the general eccentric connectivity index are proposed in
terms of graph-theoretic parameters, namely, order, radius, independence number, eccentricity, pendent
vertices and cut edges. Moreover, extremal graphs are characterized by these bounds.
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1. Introduction

For terminologies and notations in graph theory that are not defined here, we refer
to [1]. All considered graphs in this paper are finite, connected, and simple. A graph R
is an ordered pair R = (F, M). Here, F and M constitute the set of vertices and the set of
edges, respectively. Cardinalities of these sets |F| and |M| are called the order and the size
of the graph R. The neighborhood of a vertex u is the set of its adjacent vertices, and the
cardinality of this set is said to be the degree of u. The degree of u in R is denoted as dR(u).
A vertex u is called a pendant vertex if d(u) = 1. The length of any shortest path between
the vertices u and v is called the distance between them and is denoted as dR(u, v). The
maximum distance between the vertex u and any other vertex of R is called the eccentricity,
ecR(u), of u in R. The maximum and the minimum eccentricity of any vertex among all
vertices of the graph R is known as the diameter and the radius of R. The cardinality of
the largest independent set of R is called the independence number of R and the minimum
number of vertices whose removal from R generates a disconnected graph is called the
connectivity of R. The complement of a graph R is a graph R with the same vertex set and
two vertices are adjacent if and only if they are non-adjacent in R. For two graphs G and
H, G + H is the join graph of G and H whose vertex set is the vertices of G and H and the
edge set consist of all the edges of G and H with all edges connecting each vertex of G with
each vertex of H. Path, Star and complete graphs of order n are denoted by Pn, Sn and Kn.

Chemical graph theory is a branch of mathematical chemistry that deals with the
nontrivial applications of graph theory to clear up molecular issues. In standard, a graph
is used to represent a molecule with the aid of thinking about the atoms of the vertices
of the graph and the molecular bonds as the edges. Then, the principal goal is to use
algebraic invariants to reduce the topological structure of a molecule to a single quantity
that could generate the same residences of the molecule. This single number is known as a
topological index.
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The eccentric connectivity index of R [2], is defined as

ξec(R) = ∑
u∈V(R)

ecR(u)dR(u).

This index has been considered for some classes of graphs. Zhou and Du [3] and
Morgan et al. [4] independently investigated the sharp lower bound for the eccentric
connectivity index of trees with given order and diameter. Morgan et al. [5] inveterate
the sharp lower bound for the eccentric connectivity index of a connected graph with a
given diameter. Recent results on the eccentric connectivity index of graphs can be seen
in [2,4–21] and the references therein.

The authors in [22] introduced the general version of the eccentric connectivity index,
namely the general eccentric connectivity index (GECI). For any real number α, GECI of
graph R is defined as

ξec
α (R) = ∑

u∈V(R)
dR(u)ecR(u)α.

For α = 1 we obtain the classic eccentric connectivity index. The authors in [22]
worked for trees and unicyclic graphs and put some bounds on these classes of graphs in
terms of the order, diameter and pendant vertices for α > 0.

2. Main Results

In this section, some lemmas and the main results of the paper are presented. In a
graph, R adding an edge by joining two non-adjacent vertices increases the degrees and
may decrease the eccentricity of the vertices. The following lemma tells that adding an
edge in R increases the general eccentric connectivity index (GECI).

Lemma 1. Let u and v be non-adjacent vertices in R, then for α < 0

ξec
α (R) < ξec

α (R + uv).

Proof. From the definition of the general eccentric connectivity index for α < 0, we have,
ξec

α (R)− ξec
α (R + uv) ≤ ec(u)α(d(u)− d(u)− 1) + ec(v)α(d(v)− d(v)− 1) < 0.

The following result gives the upper bound on GECI for R in terms of the order of R.

Theorem 1. Let R be a connected simple graph on r vertices and m edges, then for α < 0

ξec
α (R) ≤ 2m ≤ r(r− 1)

equality holds if and only if R ∼= Kr.

Proof. Since ec(u) ≥ 1 for all u ∈ V(R), so

ξec
α (R) = ∑

u∈V(R)
d(u)ec(u)α ≤ ∑

u∈V(R)
d(u) = 2m ≤ r(r− 1)

equality holds if and only if every vertex of R has eccentricity one, i.e., R = Kn.

Let r1 represent the number of vertices with the eccentricity one in R. Let Kn − qe be
the graph achieved from Kn by removing q independent edges for 0 ≤ q ≤ b r

2c.

Theorem 2. Let R be a connected graph of order r with r1 > 1 number of vertices with eccentricity
one and for α < 0, we have

ξec
α (R) ≤ r2α(r− 2) + r1(r− 1− (r− 2)2α)

and the equality holds if and only if R = Kr1 + (Kr−nr1 −
r−r1

2 e), where r− r1 is even.
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Proof. Let E1 = {u; ec(u) = 1, u ∈ V(G)}, then for w ∈ V(R)\E1, we have ec(w) ≥ 2 it
follows that d(w) ≤ r− 2. Now

ξec
α (R) = ∑

u∈E1

d(u)ec(u)α + ∑
w∈V(R\E1)

d(w)ec(w)α

≤ r1(r− 1) + ∑
w∈V(R\E1)

(r− 2)2α

= r1(r− 1) + (r− r1)(r− 2)2α

= r1(r− 1− (r− 2)2α) + r(r− 2)2α

and the equality holds if and only if ec(w) = 2 and d(w) = r − 2 for any w ∈ V(R)\E1.
Hence, the required result.

Theorem 3. Let R be a connected graph of order r and size m. Let a =
⌊

2r−1−
√

(2r−1)2−8m
2

⌋
be

the greatest integer satisfying that y2 + (1− 2r)y + 2m ≥ 0. Then, for α < 0, we have

ξec
α (R) ≤ r(r− 2)

2
+

r
2

a

and the equality holds if and only if R = Ka + (Kr−a − r−a
2 e), where r− a is even.

Proof. From Theorem 2, we know that ξec
α (R) ≤ r1(r− 1− (r− 2)2α) + r(r− 2)2α. More-

over, 2m = ∑w∈V(R) ≥ r1(r − 1) + r1(r − r1) this implies that r1 ≤ a. So, ξec
α (R) ≤

r1(r − 1 − (r − 2)2α) + r(r − 2)2α ≤ a(r − 1 − (r − 2)2α) + r(r − 2)2α and the equality
holds if and only if R has exactly a vertices with eccentricity one and rest of vertices having
degree two.

Theorem 4. Let R be a graph of order r and radius h. Then, for α < 0

ξec
α (R) ≤ r(r− h)hα

and the equality holds if and only if either R = Kr or R = Kr − r
2 e for even n.

Proof. For any u ∈ V(R), we know that d(u) ≤ r − ec(u). Then, for α < 0, we have
ξec

α (R) = ∑u∈V(R) d(u)ec(u)α ≤ ∑u∈V(R)(r− ec(u))ec(u)α ≤ r(r− h)hα. Function f (x) =
(r− x)xα is a decreasing function as f ′(x) < 0 for α < 0 and r > x. The equalities in the
above hold when ec(u) = r− d(u) and ec(u) = h for every vertex of R, i.e., G is an r− h
regular graph with ec(u) = h for any vertex u of R. This follows that either R = Kr or
R = Kr − r

2 e for even r.

Let R1 and R2 be two graphs obtained from Kr−γ + Kγ by removing an edge join-
ing two vertices in Kr−γ and Kγ and removing an edge incident two vertices in Kr−γ,
respectively.

Theorem 5. Let R be a graph with order r > 5 having independence number γ. Then, for α < 0,
we have

i. ξec
α (R) ≤ (r− γ)(r− 1) + γ(r− γ)2α and the equality holds if and only if R = Kr−γ + Kγ,

ii. ξec
α (R) ≤ (r + γ − 1)(r − 1) + (r − 2)2α + (r − γ − 1)2α + (γ − 1)(r − γ)2α and the

equality holds if and only if R = R1.

Proof. From Lemma 1, we know that for α < 0, adding an edge between two non-adjacent
vertices of G increases the GECI. Kr−γ + Kγ has the maximum number of edges with
independent number γ, this implies that (i) ξec

α (R) ≤ (r− γ)(r− 1) + γ(r− γ)2α.
For (ii), whenever we remove an edge e from Kr−γ + Kγ we always obtain either R1 or

R2. Moreover, ξec
α (R1) = (r + γ− 1)(r− 1) + (r− 2)2α + (r− γ− 1)2α + (γ− 1)(r− γ)2α
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and ξec
α (R2) = (r− γ− 2)(r− 1) + 2(r− 2)2α + γ(n− γ)2α. Lemma 1 implies that in order

to obtain the result we only need to compare the GECI of R1 and R2 for α < 0, which is
ξec

α (R1)− ξec
α (R2) = (r− 1)(1− 2α) > 0, which is the required result.

Let λ denote the covering number of R, since γ(R) + λ(R) = r then we have the
following corollary.

Corollary 1. Let R be a graph of order r and covering number λ, then for α < 0, we have

ξec
α (R) ≤ λ

(
r− 1 +

r− λ

2

)α

and the equality holds if and only if R = Kλ + Kr−λ.

Theorem 6. Let R be graph of order n and connectivity κ, then for α < 0, we have

ξec
α (R) ≤ 2α

(
r2 − r(3 + κ) + 3κ + 2

)
+ κ(r− 1)

and the equality holds if and only if R = (K1
⋃

Kr−κ−1) + Kκ .

Proof. For α < 0, let R′ be a graph with maximum ξec
α among all graphs of order n and

connectivity κ. Then, there is a set of vertices C with cardinality κ such that R′ − C =
⋃p

i Ri,
where p ≥ 2 and Ri’s are the connected components of R− C. By Lemma 1 adding edges
increases the ξec

α for α < 0, so R must be like R′ = (Kr1

⋃
Kr2) + Kκ such that r1 + r2 = r− κ

and without loss of generality suppose r1 ≤ r2. Now,

ξec
α (R′) = ∑

u∈V(Kr1 )

d(u)ec(u)α + ∑
u∈V(Kr2 )

d(u)ec(u)α + ∑
u∈V(Kκ)

d(u)ec(u)α

= r1(r1 + κ − 1)2α + r2(r2 + κ − 1)2α + k(r− 1)

= 2α(r− κ)
(
r− 1

)
− 2α+1r1r2 + κ(r− 1)

≤ 2α(r− κ)
(
r− 1

)
− 2α+1(r− κ − 1) + κ(r− 1)

= 2α
(
r2 − r(3 + κ) + 3κ + 2

)
+ κ(r− 1)

and equality holds if and only if r1 = 1 and r2 = r− κ − 1.

For edge connectivity and minimum degree, we have a famous relation κ(R) ≤
κ′(R) ≤ δ(R). Let φ(x) = 2α

(
r2 − r(3 + x) + 3x + 2

)
+ x(r− 1), then φ′(x) > 0 for α < 0

this implies that φ(x) is an increasing function for r > x > 0 so we have φ(κ) ≤ φ(κ′) ≤
φ(δ). This gives the following given results.

Corollary 2. Let R be a graph of order n and edge-connectivity κ′, then for α < 0 we have

ξec
α (R) ≤ 2α

(
r2 − r(3 + κ′) + 3κ′ + 2

)
+ κ′(r− 1)

and the equality holds if and only if R = (K1
⋃

Kr−κ′−1) + Kκ′ .

Corollary 3. Let R be a graph of order n with minimum degree δ, then for α < 0, we have

rδ(r− δ)α ≤ ξec
α (R) ≤ 2α

(
r2 − r(3 + δ) + 3δ + 2

)
+ δ(r− 1)

the left equality holds if and only if either R = Kr or R = Kr − r
2 e for even n and the right equality

holds if and only if R = (K1
⋃

Kr−δ−1) + Kδ.

Proof. Since d(u) ≥ δ for every u ∈ V(R) from Theorem 4 we know that f (x) is a decreas-
ing function, we have
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ξec
α (R) ≥ ∑

u∈V(R)
d(u)(r− d(u))α ≥ ∑

u∈V(R)
δ(r− δ)α = rδ(r− δ)α.

Let Kt
r be a graph obtained from Kr−t by joining t pendant vertices to one vertex of

Kr−t. Let >t
r be the set of all trees achieved by identifying both end vertices of Pr−t with

the centers of Sp+1 and Sq+1, respectively, where p, q ≥ 0 and p + q = k. One can notice
that ξec

α (R) = ξec
α (H) for every pair of graphs R, H ∈ >t

r. Let A(k) be the k-th harmonic
number, i.e., A(k) = 1 + 1

2 + · · ·+ 1
k .

Theorem 7. Let R be a graph of order r with t pendant vertices, for α < 0, we have

λ ≤ ξec
α (R) ≤ 2α

(
(r− t− 1)2 + t

)
+ r− 1

where

λ =



t(r− t + 1)α + (t + 2)(r− t)α + 4A(r− t− 1)− 4A
( r−t

2
)
;

when r− t is even

(
t + 21−α

)
(r− t + 1)α + (t + 2)(r− t)α + 4A(r− t− 1)− 4A

(
r−t+1

2

)
;

when r− t is odd

and the upper bound achieved if and only if R = Kt
r and lower bound is achieved if and only if

R ∈ >t
r.

Proof. Let R have the maximum GECI among all graphs of order r with t pendant vertices.
Let {u1, u2, · · · , ut} be pendant vertices of R, then by Lemma 1 V(R)\{u1, u2, · · · , ut}
induces a complete graph H. Now, all the pendant vertices are adjacent to some vertices of
H. Now our next goal is to show that R = Kt

r.
Suppose that u and v are the only vertices of R such that d(u) ≥ d(v) > r − t− 1.

A new graph R′ is achieved from R by shifting all pendant vertices from v to u. It is
easy to see that for any w ∈ V(R)\{u}, we have ecR(w) = ecR′(w), ecR(u) > ecR′(u) and
ecR′(w) = ecR(w)− 1 for any pendant vertex w. The degrees of vertices in V(R)\{u, v}
remain the same, and the degree of u increases by dR(v)− r + t + 1 and the degree of v
decreases by dR(v)− r− t + 1. Now, we compare the GECI values of R and R′ for α < 0 as
which is a contradiction against the supposition that R has maximum GECI.

Now, consider that H contains at least two vertices of degrees at least r − t. By
repeating the above procedure we can obtain a graph with a larger GECI, which is again a
contradiction. Hence, R = Kt

r.
Now, for the lower bound, suppose that K is the graph with minimum GECI among

all graphs of order n and t pendant vertices. Lemma 1 tells that K must be a tree. Further,
we need to prove that K ∈ >t

r.

Claim 1. K must be a caterpillar.

Proof of Claim 1. Let Ps+1 = u0u1u2 · · · us be a longest path in K. We consider s ≥ 4
because s = 3 is a caterpillar. Suppose that j ∈ {2, 3, · · · , b t+1

2 c} is the smallest integer
such that there is a vertex w different from ui−1 and ui+1 which is adjacent to ui. Let
NR(w) = {ui, w1, w2, · · · , wq}, where q ≥ 2. Let T1 be the subtree of K − uiui+1 − uiw
having ui and T2 and T3 are subtrees of K− uiui+1 − uiw having ui+1 and w, respectively.

Let T∗ = K− {ww1, ww2, · · · , wwq}+ {usw1, usw2, · · · , uswq}. Clearly, T∗ has t pen-
dant vertices and

i. ecK(u) < ecT∗(u) and dK(u) = dT∗(u) for all u ∈ (T1 ∪ (T3 − w)),
ii. ecK(w) < ecT∗(w), dK(w) = q + 1, dT∗(w) = 1,
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iii. ecK(u) ≤ ecT∗(u) and dK(u) = dT∗(u) for all u ∈ (T2 − us),
iv. ecK(us) = ecT∗(us), dK(us) = 1, dT∗(us) = q + 1.

From the above, we have

ξec
α (T∗)− ξec

α (K) > dT∗(w)ecT∗(w)α + dT∗(us)ecT∗(us)
α − dK(w)ecK(w)α−

dK(us)ecK(us)
α

=ecT∗(w)α + (q + 1)ecT∗(us)
α − (q + 1)ecK(w)α − ecK(us)

α

<q(ecT∗(us)
α − ecK(w)α) ≤ 0

the second last inequality is due to ecK(w) < ecT∗(w) while the last inequality is due to
ecT∗(us)α− ecK(w)α ≤ 0, and the result gives a contradiction that K has the minimum GECI
for α < 0.

Suppose that j ∈ {d t+1
2 e, · · · , s− 2} be a largest integer such that there is a vertex x

adjacent with uj and uj−1 6= x 6= uj+1. Let NK(x) = {uj, w′1, w′2, · · · , w′p}, where p ≥ 2.
Similar to the above discussion we can construct a new tree by removing w′ks from x
and joining these to u0, and the new graph has less GECI for α < 0, which leads to a
contradiction. Hence, K is a caterpillar.

Claim 2. K is an element of >t
r.

Proof of Claim 2. From the above claim, we conclude that K has the diameter r − t + 1.
Let Pr−t+2 = u0u1 · · · ur−t+1 be the longest path of K. Suppose that i ∈ {2, 3, · · · , d t+1

2 e}
be the smallest integer such that d(ui) > 0 and NK(ui) = {ui−1, ui+1, w1, · · · , wq}. Now,
we construct a new graph T∗∗ = K− {uiw1, uiw2, · · · , uiwq}+ {u1w1, u1w2, · · · , u1wq}.

Clearly, ecK(wi) < ecT∗∗(wi) for every wi’s and for other vertices ecK(x) = ecT∗∗(x).
Moreover, dT∗∗(vi) = dK(vi)− s, dT∗∗(v1) = dK(v1) + s and for any other vertices we have
dT∗∗(x) = dK(x). This implies that

ξec
α (K)− ξec

α (T∗∗) > dk(u1)ecK(u1)
α + d(ui)ecK(ui)

α − dT∗∗(u1)ecT∗∗(u1)
α−

dT∗∗(ui)ecT∗∗(ui)
α

= q(−ecK(u1)
α + ecK(ui)

α) > 0

the last inequality is due to ecK(ui) < ecK(u1) and α < 0. This gives a contradiction that K
has the minimum generalized GECI.

Now, assume that i ∈ {d t+1
2 e, · · · , r− t− 1} is the largest integer such that d(vi) > 2

and NK(ui) = {ui−1, ui+1, w′1 · · · , w′q}. We construct a new graph T∗∗∗ = K − uiw′1 −
uiw′2− · · ·− uiw′q + un−tw′1 + u− r− tw′2 + · · ·+ u− r− tw′q. Similarly, as above, we obtain
ξec

α (K)− ξec
α (T∗∗∗) > 0 and we have again a contradiction. Hence, we have K ∈ >t

r.

Let R1 and R2 be two non-trivial graphs having u ∈ V(R1) and v ∈ V(R2). The graphs
R∗ and R∗∗ are obtained from R1 ∪ R2 by adding an edge uv and by identifying u and v to
a new vertex say u and adding a pendant edge uv, respectively.

Lemma 2. Let R∗ and R∗∗ be two above defined graphs, then for α < 0, we have ξec
α (R∗) <

ξec
α (R∗∗).

Proof. Clearly, for any w ∈ R1 ∪ R2 − {u, v}, we have ecR∗(w) ≥ ecR∗∗(w) and dR∗(w) =
dR∗∗(w). For vertices u and v, we have

• ecR∗(u) = max{ecH1(u), ecH2(v) + 1}, dR∗(u) = dH1(u) + 1,
• ecR∗∗(u) = max{ecH1(u), ecH2(v)}, dR∗∗(u) = dH1(u) + dH2(v) + 1,
• ecR∗(v) = max{ecH1(u) + 1, ecH2(v)}, dR∗(v) = dH2(v) + 1,
• ecR∗∗(v) = max{ecH1(u) + 1, ecH2(v) + 1}, dG∗(v) = 1.
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Now, we have the following cases:
Case 1. ecH1(u) ≥ ecH2(v).

Here, we have ecR∗(u) = ecH1(u), ecR∗∗(u) = ecH1(u), ecR∗(v) = ecH1(u)+ 1, and ecR∗∗(v) =
ecH1(u) + 1. This gives

ξec
α (R∗)− ξec

α (R∗∗) ≤ dR∗(u)ecH1(u)
α − dR∗∗(u)ecH1(u)

α + dR∗(v)
(
ecH1(u) + 1

)α

− dR∗∗(v)
(
ecH1(u) + 1

)α

= dH2(v)
(
(ecH1 + 1)α − ecH1(u)

α
)
< 0

as α < 0.

Case 2. ecH1(u) ≤ ecH2(v).
First consider ecH1(u) = ecH2(v). Here, we have ecR∗(u) = ecH1(u) + 1, ecR∗∗(u) =
ecH1(u), ecR∗(v) = ecH1 + 1, ecR∗∗(v) = ecH1(u) + 1.
This implies that

ξec
α (R∗)− ξec

α (R∗∗) ≤
(
dH1(u) + 1

)(
ecH1(u) + 1

)α −
(
dH1(u) + dH2(v) + 1

)(
ecH1(u) + 1

)α

+
(
dH2(v) + 1

)(
ecH1(u) + 1

)α −
(
ecH1(u) + 1

)α

=
(
dH1(u) + dH2(v) + 1

)(
(ecH1(u) + 1)α − ecH1(u)

α
)
< 0,

Now, take ecH1(u) < ecH2(v), then we have ecR∗(u) = ecH2(v) + 1, ecR∗∗(u) = ecH2(v),
ecR∗(v) = ecH2(v), ecR∗∗(v) = ecH2(v) + 1. This implies that

ξec
α (R∗)− ξec

α (R∗∗) ≤
(
dH1(u) + 1

)(
ecH2(v) + 1

)α −
(
dH1(u) + dH2(v) + 1

)(
ecH2(v)

)α

+
(
dH2(v) + 1

)(
ecH2(v)

)α −
(
ecH2(v) + 1

)α

=
(
dH1(u)

)(
(ecH2(v) + 1)α − ecH2(v)

α
)
< 0,

Theorem 8. Let R be a graph of order n with t ≥ 1 cut edges, then for α < 0, we have

ξec
α (R) ≤ 2α

(
(r− t− 1)2 + t

)
+ r− 1

and the equality holds if and only if R = Kt
r.

Proof. Let R be the graph with the maximum general eccentric connectivity index, then
by Lemma 2, all the cut edges are pendant edges in R. Now, the problem is to find the
maximum GECI with given pendant edges, which is discussed in Theorem 7, hence the
result.

Let Cr,t be a cactus by adding t independent edges among pendant vertices of Sr.

Theorem 9. Let R be a cactus of order greater than four having t cycles. Then, for α < 0, we have

ξec
α (R) ≤ n(2α + 1) + 2α+1t− (1 + 2α)

and the equality holds if and only if R = Cr,t.

Proof. Let V1 and V2 be the set of vertices of eccentricity one and greater than one, respec-
tively. Clearly, |V1| ≤ 1. Otherwise assume that u and v are vertices of eccentricity one and
these vertices must have degree r− 1. Then, there exist cycles having common edges in
RL,, which implies that R is not a cactus. Now, we have the following two cases:

Case 1. When |V1| = 1.
Let u be the vertex of eccentricity one, this implies that each vertex of R is adjacent to u.
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Hence, the cactus R is obtained by adding t independent edges among pendant vertices of
Sr, in other words, R = Cr,t.

Case 2. When |V1| = 0.
Here, every vertex of G has eccentricity greater than one and there are exactly r + t− 1
edges in R. Then, ξec

α (R) ≤ 2α ∑u∈V(R) d(u) = 2α+1(r + t− 1). This implies that ξec
α (R)−

ξec
α (Cr,t) ≤ 2α+1(n + t− 1)− n(2α + 1)− 2α+1t + (1 + 2α) = (r − 1)(2α+1 − 2α − 1) < 0,

since α < 0 which is required proof.

The following corollaries are direct consequences of the above result.

Corollary 4. Let R be a tree of order n, then for α < 0, we have

ξec
α (R) ≤ (r− 1)(2α + 1)

and the equality holds if and only R = Sr.

Corollary 5. Let R be a unicyclic graph of order r, then for α < 0, we have

ξec
α (R) ≤ r(2α + 1) + 2α+1 − 2α − 1

and the equality holds if and only R = Cr,1.

3. Conclusions

The general eccentric connectivity index is a newly introduced topological index. The
study of this newly introduced topological index is a useful and interesting task. We put
some lower and upper bounds on this topological index by using some graph parameters.
It will be interesting to find the extremal graphs for other classes of graphs by using some
graph parameters such as the number of vertices with the given parameter, the number of
vertices with the given maximum degree, etc.
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