
Citation: Gabr, M.; Younis, H.;

Ibrahim, M.; Alajmy, S.; Khalid, I.;

Azab, E.; Elias, R.; Alexan, W.

Application of DNA Coding, the

Lorenz Differential Equations and a

Variation of the Logistic Map in a

Multi-Stage Cryptosystem. Symmetry

2022, 14, 2559. https://doi.org/

10.3390/sym14122559

Academic Editors: Takeshi Koshiba,

Milan Milosavljević, Yuan Ping and
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Abstract: The need for information security has become urgent due to the constantly changing nature
of the Internet and wireless communications, as well as the daily generation of enormous volumes of
multimedia. In this paper, a 3-stage image cryptosystem is developed and proposed. A tan variation
of the logistic map is utilized to carry out deoxyribonucleic acid (DNA) encoding in the first stage.
For the second encryption stage, the numerical solution of the Lorenz differential equations and a
linear descent algorithm are jointly employed to build a robust S-box. The logistic map in its original
form is utilized in the third stage. Diffusion is guaranteed through the first and third encryption
stages, while confusion is guaranteed through the application of the S-box in the second encryption
stage. Carrying out both confusion- and diffusion-inducing stages results in encrypted images that
are completely asymmetric to their original (plain) counterparts. An extensive numerical analysis
is carried out and discussed, showcasing the robustness and efficacy of the proposed algorithm in
terms of resistance to visual, statistical, entropy, differential, known plaint text and brute-force attacks.
Average values for the computed metrics are: Information entropy of 7.99, MSE of 9704, PSNR of
8.3 dB, MAE of 80.8, NPCR of 99.6 and UACI of 33. The proposed algorithm is shown to exhibit
low computational complexity, encrypting images at an average rate of 1.015 Mbps. Moreover, it
possesses a large key space of 2372, and is demonstratd to successfully pass all the tests of the NIST SP
800 suite. In order to demonstrate the superior performance of the proposed algorithm, a comparison
with competing image encryption schemes from the literature is also provided.

Keywords: chaotic maps; cryptography; image encryption; logistic map; Lorenz differential
equations; S-box

1. Introduction

Security has become a matter of utmost significance because of the enormous advance-
ments and complexity observed in today’s wireless communication networks and big data
applications [1–3]. Thus, utilizing cryptography [4,5], steganography [6,7], watermark-
ing [8] and their combinations [9,10] to protect data has become essential for ensuring the
secure functioning and use of millions of online services. For many years, well-established
cryptosystems were put in use, for virtually every type of data. Those included the Data
Encryption System (DES) [11], its variant, the Triple DES [12], as well as the Advanced
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Encryption Standard (AES) [13,14]. However, it quickly became clear that not all cryp-
tosystems are well-suited for application on multimedia such as 2D and 3D images and
videos. This is because images and videos have vast amounts of data, redundancy, as well
as strong cross-correlation among adjacent pixels. To this end, the literature on developing
secure, robust image cryptosystems has been on the rise in recent years. Algorithms that
carry out image encryption are based on mathematical operations that are derived from, or
related to, chaos theory [15–18], electric circuits [19,20], DNA encoding [21–25], and cellular
automata [26], to name a few. The following paragraphs highlight the significance of DNA
cryptography and chaos theory in security applications, as well as their use in cutting-edge
image encryption algorithms. Substitution boxes (S-boxes), a powerful component for
introducing confusion into a cryptosystem, are discussed next.

DNA cryptography makes use of both biological and computational properties to offer
more confidentiality over classical cryptographic algorithms while encrypting data [24].
Traditional cryptosystems often only provide one layer of protection, and it is possible that
their secrecy is compromised as the underlying computational techniques are made public.
On the contrary, DNA cryptography utilizes the self-assembling characteristics of DNA
bases in combination with a cryptographic approach to provide many security measures
that enhance the amount of data confidentiality [25]. For example, the authors of [22]
convert ciphertext to a genomic form using amino acid tables. The tables’ protein sequence
composition add to the ciphertext’s level of ambiguity. In [23], the authors propose a
DNA encoding algorithm that is built on a unique string matrix data structure producing
distinctive DNA sequences. They employ these sequences to encode plaintext as DNA
sequences. While DNA cryptography has garnered the interest of scientists and engineers
in recent years, it definitely has not gained as much attention as that dedicated to chaotic
and dynamical systems use in image cryptosystems.

The intrinsic properties of chaotic functions as a random phenomenon in nonlinear
systems are favourable for cryptography [27]. Specifically, their sheer sensitivity to initial
conditions, control parameters, periodicity, pseudo-randomness, and ergodicity. These
properties are incorporated into the design of image encryption algorithms. Broadly, such
schemes are divided into two classes: (a) One-dimensional (1D) and (b) Multi-dimensional
(MD). The utilization of 1D chaotic maps provides for simpler and more efficient software
and hardware implementations. However, this also translates into less desirable char-
acteristics, in terms of shorter chaotic periods, non-uniform distribution of their chaotic
output, as well as a greater susceptibility to cryptanalysis. On the contrary, the utilization
of MD chaotic maps in image encryption algorithms provides stronger security levels at the
expense of increased complexity and, consequently, longer running times for software and
hardware implementations. Extensive literature exists on the use of 1D and MD chaotic
functions in image cryptosystems. The authors of [4], for instance, propose an image
encryption algorithm that is based on a combination of encryption keys designed using the
Arnold cat map, the 2D logistic sine map, the linear congruential generator, the Bernoulli
map and the tent map. In a similar manner, the authors of [17] also employ multiple
chaotic maps, however, in their implementation, they aim at reaching a minimum number
of encryption rounds while maintaining a high degree of security and robustness. In [28],
the authors employ a finite field aiming to generalise the logistic map and search for an
auto morphic mapping between two logistic maps in order to compute parameters over
the finite field ZN . Shannon’s ideas are fully put into use in the work of [18], where an
LA-semi group is applied for confusion, and a chaotic continuous system is adopted for dif-
fusion. The authors of [29] present an interesting work that employs a zigzag transform in
a conjoint manner with a dynamic arrangement that alternates in a bidirectional crossover
approach to image encryption. In their proposed cryptosystem, both the logistic map and
a hyperchaotic Chen dynamical system are utilized. In actuality, this paragraph merely
touches upon the use of chaos theory in color image cryptosystems. Recent writing on the
subject is voluminous. The following paragraph focuses on a distinct but vital component
of numerous image encryption algorithms: substitution boxes.
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A crucial part of contemporary block cryptosystems is an S-box. It makes it easier
to convert any given plaintext into ciphertext. The confusion property is provided by
the straightforward addition of an S-box to a cryptosystem, which results in a non-linear
translation between the input and output data [30]. An S-box provides better security the
more uncertainty there is. For many block encryption techniques, the level of security
offered by using one or more S-boxes closely correlates with how resistant they are against
assaults. While such algorithms may have numerous stages, an S-box is typically the only
non-linear stage that improves the security of sensitive data [31]. To be acceptable for
real-time data encryption, the design of an S-box should be efficient and low in complexity.
Recent literature provides multiple instances of design and utilization of S-boxes in image
encryption algorithms. For example, the authors of [15] proposed an S-box utilising a third-
order nonlinear digital filter. Its non-linearity was enhanced using a novel optimisation
approach. In [31], the authors developed an optimization algorithm for a chaos-based
entropy source to generate an S-box. Multiple stage image encryption schemes where
an S-box is a core stage are rather popular among scientists and engineers, since such a
combination satisfies Shannon’s ideas of confusion and diffusion. Furthermore, employing
more than one encryption stage provides security against known plaintext attacks [32]. The
authors of [16] propose one such example of a 3-stage image encryption algorithm, where
in one of the stages they utilize the S-box proposed in [33]. This S-box is based on a modular
approach and is thus, highly nonlinear. In the other two stages, a Lucas sequence and a
Sine logistic map are made use of to generate encryption keys. Another 3-stage algorithm
is proposed in [34], where an S-box is also utilized as a core stage, sandwiched between the
application of two encryption keys. The first key is a Mersenne Twister based PRNG, while
the second key is a tan variation of the logistic map. In [35], the authors follow a similar
approach, generating a PRNG-based S-box using Wolfram Mathematica®, and utilizing the
Rossler system and the Recaman’s sequence, for each of the encryption keys.

Combining DNA cryptography with chaotic functions and S-boxes in image encryp-
tion algorithms gained the attention of many researchers in the field as an attempt to
achieve better performance [36], either in terms of improved security or lower computa-
tional complexity and thus ever decreasing encryption and decryption times. The work
presented in [37] introduced a cryptosystem for color images based on a combination of
chaotic maps and DNA sequences. The reported theoretical and statistical analyses reflected
the robustness of combining DNA with chaotic maps against statistical and brute force
attacks [37]. In [38], a 2D Henon-Sine map and DNA coding was proposed. Exclusive-OR
(XOR) and DNA random coding encryption operations were synthesized using an S-box for
image diffusion, while image scrambling was carried out through swap operations on the
pixels of the image. The work presented in [38] highlighted the merits of generalizing DNA
encryption with S-box substitution in image encryption techniques. In [21], the authors
proposed an image cryptosystem that utilizes parallel compressive sensing, chaos theory
and DNA encoding. The authors of [39] provide an interesting work for grayscale image
encryption that combines a 4D chaotic system with DNA encoding, the hash function SHA-
2 and the random movement of a chess piece (Castle), through an iterative process. The
authors of [40] not only combine the use of DNA encoding, SHA-512 hashing and multiple
hyperchaotic maps, but also utilize a novel variation of a chaotic map, a logistic-tan map,
as well as a pixel-shifting algorithm that is based on the Zaslavskii map.

The contributions of this paper are as follows:

• We propose a 3-stage image encryption scheme that makes use of Shannon’s ideas
of confusion and diffusion. In the first stage, DNA coding is employed, providing
diffusion at the bit level. In the second stage, an S-box based on the numerical solution
of the Lorenz differential equations and a linear descent algorithm is developed and
used for confusion at the pixel level. In the third stage, the logistic map is utilized to
produce an encryption key, providing diffusion at the bit level. The concatenation of
these three stages guarantees output encrypted images to be completely asymmetric
to their original (plain) counterparts.
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• We propose an efficient and fast encryption scheme, with images of dimensions
128 × 128 encrypted in only 0.377145 s, achieving an average encryption rate of
1.015 Mbps.

• We propose a multi-stage image encryption scheme. Using more than one encryption
stage provides security against known plaintext attacks.

• We propose an image encryption scheme that possesses a large key space of 2372, and
is effectively resistant to brute force attacks.

• We utilize both conventional (information entropy, pixel cross-correlation, MSE, PSNR,
MAE, NPCR, UACI and NIST SP 800 suite) and unconventional performance evalua-
tion metrics such as the Fourier transform and advanced bit dependency metrics to
gauge the security and robustness of the proposed cryptosystem.

This paper is organized as follows. Section 2 outlines the mathematical background and
describes the proposed image cryptosystem. Section 3 presents the computed numerical results
and carries out a comparative analysis with counterpart cryptosystems from the literature.
Finally, Section 4 draws the conclusions and suggests possible future research directions.

2. Proposed Image Cryptosystem

This section describes the proposed 3-stage image cryptosystem. It starts off by
describing each stage separately, then how they complement each other forming one
cryptosystem. Finally, the decryption process is described.

2.1. DNA Encoding Based on a Tan Variation of the Logistic Map

As mentioned before, key embedding is considered as a critically important component
in image encryption. This is due to the role it plays in data diffusion. Moreover, in many
of the more recent image encryption techniques, key embedding is performed two times,
separated by a confusion step. As the proposed technique in this work follows the same
model, the two stages of key embedding are performed differently. The third stage in this
work utilizes bit-wise key embedding, as discussed in Section 2.3. For the first stage, which
is the scope of this section, DNA encoding is utilized as a means for embedding a seed-
based key into the raw data of an input image (to be encrypted), which is demonstrated
in Section 2.1.2. Prior to that, the method of the key generation is discussed as well in
Section 2.1.1.

2.1.1. Tan Variation of the Logistic Map

The logistic map is a recurrence relation, which is also a second-degree polynomial
mapping that models how complex, chaotic behavior can be simulated by extremely simple
non-linear dynamic equations. In recorded research history, the first mention of an equation
which behaves accordingly dates back to 1976 [41]. The general mathematical definition of
a logistic map is (Equation (3) in [41]):

Xt+1 = α× Xt × (1− Xt) (1)

Equation (1) shows a recurrent function where the value of Xt+1 is directly calculated
using the value of Xt, and the value of a scale factor α. Adopted in this work is a variation
of the logistic map function, which utilizes the application of the tan function, beside
introducing the use of a seed (as the value of X0). The tan variation is equated as:

Xt+1 = α× tan(Xt)× (1− Xt) (2)

Regarding the ranges for both keys (α and X0), both are to be chosen such that for
every Xt in the sequence, the range should remain ]0, 1[. Starting by the lower limit, the 0 is
avoided as tan(0) = 0, which will result in, once a 0 appears in the sequence, all remaining
values in the sequence will become 0. When it comes to the upper limit, given that the
function in a tan variant, π

2 ≈ 1.5708 is to be avoided as tan(π
2 ) = ∞. Moreover, plotting

the tan curve, starting from 1 till 1.5708, the curve slope starts to be steep (in other words,
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with a tangent slope greater than 1). The main effect of this is that the rate of increase in tan
values, given small steps in input, starts to be harder to limit (as it approaches infinity). As
per that, initiating the value of X0, the range is considered optimal (for this scenario) as
]0, 1[. According to the X0 range, regarding the scale factor α, for a chaotic behaviour, the
range is [3.3, 3.6]. This is confirmed visually through plotting the bifurcation diagram and
Lyapunov exponent, in Figures 1 and 2, respectively.

Figure 1. Bifurcation diagram of the proposed tan variation of the logistic map.

Figure 2. Lyapunov exponent diagram of the proposed tan variation of the logistic map.
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2.1.2. DNA Encoding

Numerous studies have identified the DNA computer characteristics of vast paral-
lelism, enormous storage, and ultra-low power consumption. DNA cryptography is a
novel cryptography discipline that evolved from research on DNA computing, in which
DNA is employed as an information carrier and contemporary biological technology is
used as an implementation tool. As per that, in order to achieve better encryption, the DNA
domain is the domain variation on which the image will be manipulated during this stage.
The process of DNA encoding of an image is a modification of the bit stream representation
in which each pair of successive bits is joined. In such a situation, the processes conducted
would seem to be bit-level operations, but the attacker would not be able to readily trace
them back using bit-level analyses.

DNA coding has three stages. First, it creates a DNA sequence from bit stream
sequences by merging every 2 bits into 1 DNA base, as per the following relation:

{(00→ A), (01→ T), (10→ C), (11→ G)}. (3)

Note that other relations also exist [21]. Table 1 shows eight possible permutations of
complementary DNA encoding and decoding.

Second, applying a DNA level procedure. As reversibility is required, in this work, ad-
dition and subtraction are the inverse operations of choice, which are performed according
to Table 2. In the last phase, a DNA sequence is converted into a bit stream.

The stated approach requires a DNA sequence of the same length as the image-
generated DNA sequence in order to finish the encryption process. This work generates a
PRNG seed-based bit stream, which is subsequently transformed into a DNA sequence.
Given the two sequences (image and seed), the aforementioned processes may be carried
out, with addition being used for encryption and subtraction for decryption. Figure 3
illustrates an example DNA sequence.

Table 1. Eight rules of complementary DNA encoding and decoding).

Rule 1 2 3 4 5 6 7 8

A 00 00 11 10 01 10 01 11
T 11 11 00 01 10 01 10 00
G 10 01 10 11 00 00 11 01
C 01 10 01 00 11 11 00 10

Table 2. Simple arithmetic operations on DNA bases (here, {Addition, Subtraction}).

A T C G

A {A,A} {T,G} {C,C} {G,T}
T {T,T} {C,A} {G,G} {A,C}
C {C,C} {G,T} {A,A} {T,G}
G {G,G} {A,C} {T,T} {C,A}
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Figure 3. 3D plot of a DNA sequence.

2.2. Lorenz S-Box

An S-box is a vital non-linear component of any image encryption system. This is
because it takes advantage of Shannon’s property of confusion [42]. For the formation of
the S-box, a PRNG building approach is applied. In other words, a random sequence is
initially produced (using a seed since reconstruction is required), and then employed as a
sequential selection factor until the S-box is completely constructed. For the production
of PRNG sequences, the Lorenz system is used. The Lorenz system is a mathematical
model for atmospheric convection. It was developed in 1963 by Edward Lorenz [43]. The
mathematical model for this system is defined by the following three partial differential
equations (where σ, ρ, and β are provided as seeds):

dx
dt

= σ(y− x), (4)

dy
dt

= x(ρ− z)− y, (5)

dz
dt

= xy− βz. (6)

The Lorenz system is numerically solved, resulting in a 3D geometry, as shown in
Figure 4. Next, the x, y, and z coordinates of each point in the solution are flattened into
a single 1D array, which is then turned into a bitstream using the median of the list as a
threshold. Finally, each 8-bits are used to form a decimal number φ ∈ [0, 255]. For example,
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using the values σ = 10, β = 8/3, and ρ = 28, we obtain the first eight bits in the generated
bitstream as {1, 1, 1, 0, 0, 1, 0, 0}, which we convert into a decimal value of 228, as shown in
the first entry of the S-box in Table 3.

Figure 4. 3D plot of the numerical solution of the Lorenz system of partial differential equations.

Given a series S of 256 numbers (unsorted and containing repeated numbers), the
S-box is constructed in constant time using the procedures of Algorithm 1.

Algorithm 1 Generate S-box given S and L

1. L = [0− 255]
2. n = 0
3. i = Sn%Length(L)
4. append L[i] to S-box
5. delete L[i] from L
6. n = n + 1
7. if n <= 256 : GoTo(2)

As an example, given seed values of σ = 10, ρ = 28, and β = 8/3, the generated S-box
is as shown in Table 3.
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Table 3. Lorenz system based S-box using the values σ = 10, β = 8/3, and ρ = 28.

228 251 73 62 161 206 233 5 76 37 165 78 41 154 212 3

201 81 39 158 218 40 159 84 69 163 86 42 167 94 46 170

89 7 31 32 49 189 95 14 186 97 51 181 250 202 43 152

54 191 249 50 196 134 52 188 103 85 209 105 44 79 112 58

254 109 68 219 111 227 204 117 92 220 121 235 210 174 55 102

182 122 20 179 100 229 119 96 242 123 57 231 60 87 234 127

59 238 171 126 2 156 66 246 101 63 248 135 64 255 211 147

19 215 116 9 140 70 15 131 125 21 142 185 98 237 74 27

160 77 34 222 82 80 199 88 203 178 13 35 177 99 75 180

38 36 29 113 114 184 108 128 200 53 124 141 166 143 198 129

150 22 173 67 33 213 172 223 149 197 214 195 194 240 130 253

148 151 232 176 137 244 252 132 4 6 56 18 12 192 47 30

153 93 104 205 8 65 168 216 90 175 190 72 187 17 136 239

25 118 164 139 183 83 221 224 241 245 236 247 10 115 208 207

71 26 225 133 45 107 1 138 23 24 144 146 243 162 16 157

193 120 48 217 28 155 0 106 61 11 145 226 110 169 230 91

2.3. The Logistic Map

The logistic map, as a 1D chaotic function, is a nonlinear deterministic system. It
contains a variety of attributes, including strong sensitivity to initial conditions (used
for seed effect modeling), and deterministic behavior (used for sequence reconstruction).
Chaotic sequences generated by dynamical functions are pseudo-random sequences with
very complicated and difficult to anticipate features. Therefore, chaotic systems may
increase an encryption system’s security. In the third stage of the proposed encryption
approach, we make use of the logistic map, expressed mathematically as in (1), where two
variables govern the function’s behaviour. The first variable is the scale factor, α ∈ [3.7, 4],
representing the rate of change of the returned data. The second variable is the initial value
X0 ∈ [0, 1], determining the starting point of the graph.

2.4. Proposed Cryptosystem

The encryption procedure may be broken down into three (distinct) subroutines since
it uses a 3-stage encryption approach. Each of the subroutines receives its own individual
set of parameters (an image and a seed) and produces mostly only one result (encrypted
image). In addition, each one is equipped with a reverse subroutine, which is essential
for the decryption process. In Sections 2.4.1 and 2.4.2, the sequential procedures of both
encryption and decryption processes are demonstrated, respectively.

2.4.1. Encryption Procedure

The encryption procedure, as mentioned, is divided into three stages. Each stage
represents the interaction between the input image, and the seed-based key involved, in
order to result in the final output, which is the encrypted image. Moreover, each stage is
performed over multiple steps. For elaboration, this procedure can be enumerated in the
following steps:

1. Stage 1: DNA Encoding Based on a Tan Logistic Map.

(a) As a start, the input image, I of dimensions M × N, is converted into a 1D
bit-stream to produce I1D, alongside calculating the length of this bit-stream:

BitStreamLength = M× N × 24 (7)
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(b) Given a seed for the Tan variation of the logistic map, which consists of values
for both X0 and α, a sequence of numbers is generated (Seqtan) using (2), which
is equal in length to the bit-stream length.

(c) Forming the Keytan, the median (mid) of the sequence is generated, and each
element is compared against this median value, converting the sequence into
a bit-stream (comparing with the median value assures producing an equal
number of 0’s and 1’s in the bit-stream, without sacrificing the PRNG aspect.)
This step is performed as per the following equations:

C(n) =

{
1, n > mid
0, otherwise

(8)

Keytan =
BitSteamLength⋃

i=0

C(Seqtan) (9)

(d) Both bit-streams I1D and Keytan are converted into DNA-streams using (3),
generating I1D,DNA and KeytanDNA, respectively.

(e) Both DNA-streams are then added, using Table 2, generating I1D,tanDNA, then
converted back into a bit-stream, as per the following equation:

I1D,tanDNA = AddDNA(I1D,DNA, KeytanDNA) (10)

2. Stage 2: S-box Application.

(a) Given a seed for the S-box, which consists of the Lorenz system inputs, σ, β,
and ρ, the Lorenz system is calculated (as in Figure 4), then converted into a
1D sequence using (11) (as in Figure 5) of length 2048 (to form 256 numbers, 8
bits each).

Lorenz1D = {P1, P2, . . . , PM} → {x1, y1, z1, x2, y2, z2, . . . , xM, yM, zM}. (11)

(b) As performed with the tan sequence, the median value will be utilized in
combination with (8) in order to convert the Lorenz 1D sequence into a bit-
stream. Then, each 8 bits are further converted to decimal, resulting in a list
S ∈ [0, 255], and |S| = 256.

(c) List S is provided as input to Algorithm 1, producing the S-box. Finally, the
S-box is applied as:

I1D,tanDNA,S−box = S− box(I1D,tanDNA) (12)

3. Stage 3: Logistic Map Encoding.

(a) Given a seed for the logistic map (Section 2.3), which consists of values for
both X0 and α, a sequence of numbers is generated (Seqlog) using (1), which is
equal in length to the bit-stream length of the image (BitSteamLength).

(b) As performed with the tan sequence (Stage 1, step c), the median value will
be utilized in combination with (8) in order to convert the sequence into a
bit-stream, generating Keylog.

(c) The produced bit-stream, alongside the one produced the by the end of Stage
2 (I1D,tanDNA,S−box), an XOR operation is performed as follows:

I1D,tanDNA,S−box,log = I1D,tanDNA,S−box ⊕ Keylog, (13)

After performing the 3 stages, reshaping I1D,tanDNA,S−box,log back into a 2D image (of
dimensions M× N) results in the encrypted image I′. Figure 6 demonstrates a flowchart
for the encryption procedure.
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Figure 5. The first 100 points from the 1D array obtained from the 3D coordinates of the Lorenz
system solution for the values σ = 10, β = 8/3 and ρ = 28.

Figure 6. Flowchart of the proposed image encryption algorithm.

2.4.2. Decryption Procedure

As the reverse of the encryption procedure, decryption can be regarded as the proce-
dure of unraveling encryption layers in order to retrieve the input image back. Hence, the
previously mentioned steps are to be performed in a regressive order (as order of stages),
in an inverse manner (as inverse of each performed process). Therefore, the decryption
process starts with the encrypted image I′, alongside the seeds (Seedtan, SeedS−box and
Seedlog). Since the process of generating keys out of seeds is performed exactly the same
way as in the encryption process (Keytan using Seedtan, S− box using Seeds−box, and Keylog
using Seedlog), the decryption steps elaborated next are discussed in terms of keys instead
of seeds. The decryption process is procedure as follows:

1. Stage 3: Logistic Map Encoding.

(a) Image I′ of dimensions M× N, is converted into a 1D bit-stream to reproduce
I1D,tanDNA,S−box,log.
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(b) Given I1D,tanDNA,S−box,log, and Keylog, to retrieve I1D,tanDNA,S−box, an XOR
operation is performed, as follows:

I1D,tanDNA,S−box = I1D,tanDNA,S−box,log ⊕ Keylog. (14)

2. Stage 2: S-box Application.

(a) Given S− box, the inverse S− box is calculated, namely S− box−1.
(b) The inverse S-box is applied as:

I1D,tanDNA = S− box−1(I1D,tanDNA,S−box) (15)

3. Stage 1: DNA Encoding Based on a Tan Logistic Map.

(a) The bit-stream I1D,tanDNA is first converted into a DNA sequence using (3).
(b) In order to retrieve I1D, KeytanDNA is to be subtracted from I1D,tanDNA using

Table 2, as shown in the following equation:

I1D = SubtractedDNA(I1D,tanDNA, KeytanDNA) (16)

Finally, I1D is to be reshaped back into a 2D image (of dimensions M× N) resulting in
the input image I. Figure 7 demonstrates a flowchart for the decryption procedure.

Figure 7. Flowchart of the proposed image decryption algorithm.

3. Numerical Results and Performance Evaluation

An encryption algorithm’s performance is evaluated by how well it can withstand
various visual, statistical, entropy, differential and brute-force attacks. In this section, the
suggested image encryption algorithm’s numerical findings are presented and discussed
along with a comparison to counterpart algorithms from the literature. The various analyses
were run on Wolfram Mathematica® v.13.1. The utilized computer had the following
specifications: 2.9 GHz Intel® CoreTM i9, 32 GB. For the sake of these tests, values used
as keys for the experimental encryption process are assigned as follows: σ = 10, β = 8/3,
ρ = 28 and X0 = 0.5. Multiple images that are commonly used in image processing
applications and experimentation were utilized, all of dimensions of 256× 256, unless
otherwise stated. The performed tests are:

• Visual and Histogram Analysis (Section 3.1).
• Mean Squared Error (Section 3.2).
• Peak Signal to Noise Ratio (Section 3.3).
• Mean Absolute Error (Section 3.4).
• Information Entropy (Section 3.5).
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• Fourier Transformation Analysis (Section 3.6).
• Correlation Coefficient Analysis (Section 3.7).
• Differential Attack Analysis (Section 3.8).
• The National Institute of Standards and Technology Analysis (Section 3.9).
• Key Space Analysis (Section 3.10).
• Histogram Dependency Tests (Section 3.11).
• Execution Time Analysis (Section 3.12).
• S-Box Performance Analysis (Section 3.13).

3.1. Visual and Histogram Analysis

In Figures 8–12 (including sub-figures), a number of input plain images, their en-
crypted forms along with their respective histograms, are shown. It is evident that the
encrypted images’ pixels are asymmetric. This results in the encrypted images being dis-
torted to a high level, to the extent that all visual features in an input (plain) image being
totally absent from the encrypted one.

Moreover, histograms of the encrypted images are demonstrated as well. As the
histogram of an image displays the frequency distribution of the pixels, the histogram of
an encrypted image must be homogeneous to have a reliable encryption method. The core
reason behind that is that a uniform histogram distribution reveals that each of the image’s
gray levels has a probability that is essentially equivalent. Therefore, the image will be
more robust to statistical attacks as a result.

(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 8. Mandrill image and histogram comparison before and after encryption.
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(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 9. Tree image and histogram comparison before and after encryption.

(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 10. Sailboat image and histogram comparison before and after encryption.
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(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 11. House image and histogram comparison before and after encryption.

(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 12. House2 image and histogram comparison before and after encryption.
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3.2. Mean Squared Error

The Mean Squared Error (MSE) is one of the most common tools used in evaluating the
similarity between two sets of numbers (in the most general form). As a variant of the Sum
of Squared Differences (SSD), the same properties are inherited. For further elaboration,
given two sets S and S′ of same size n, the SSD is calculated as follows:

SSD =
n

∑
i=1

(Si − S′i)
2. (17)

In light of this representation, there are three main operations performed: subtraction,
squaring and summing. Subtraction is mandatory as the operation desired revolves around
detecting differences. Consequently, subtraction, as a mathematical operation, produces
two results: direction and magnitude. As global difference (as over the whole set) is
required, differences in opposing directions are to be added up (instead of cancelling each
other out). Performing that, the importance of directional differences among corresponding
individual elements in both lists is neglected. Mathematically, either absolute values
(retaining the magnitude) or squared values (amplifying the magnitude) are used in order to
remove the polarity, which is the main difference between the Sum of Absolute Differences
(SAD) and the Sum of Squared Differences (SSD). Finally, summation allows all individual
elements in the list to contribute (equally) to the final result, achieving a calculation of the
global perspective.

In case of the MSE, the mathematical representation is modified to the following:

MSE =
∑M−1

i=0 ∑N−1
j=0 (I(i,j) − I′(i,j))

2

M× N
. (18)

Given two images I and I′ of dimensions M× N, as images rectangular areas, two-
dimensional summing is required. (Each dimension of the summation is starting at 0
(i = 0 and j = 0), and ending by M− 1 and N − 1 assuming the image (as a 2D array) is
zero-indexed.) What can be perceived as a considerable alteration to the SSD is the division
by the image dimensions. Such a step is performed in order to facilitate the comparison
between MSE values in which image pairs’ dimensions are different. For example, I1 and
I′1 are both of size 256× 256 with Mean Squared Error MSE1 (both images must be of the
same size). Comparing MSE1 to MSE2 which is calculated for I2 and I′2 of dimensions
512× 512 is meaningful as both values are normalized with respect to images’ scales. This
entails that MSE can be preserved as the average error (in terms of SSD) per pixel, given
two images.

In the scope of this work, MSE is evaluated for input images and their encrypted
counterparts. In such a case, the ideal value for a well-performing encryption technique
is expected to be high. In other words, as the target of encryption is to distort the visual
attributes of images, the similarity should be minimal, resulting in a maximal error factor.
Table 4 shows the computed MSE values for various input image examples, alongside
showcasing how these values stand in comparison to other encryption techniques in the
literature, demonstrating comparable results.

It is common practice to report MSE and Peak Signal to Noise Ratio (PSNR) values
together when analyzing image encryption algorithms. This is because the computation of
PSNR is based on the value of MSE. However, the authors of [39,40] only provide PSNR
values in their respective works, with no mention of MSE values. This explains why Table 4
displays columns of N/A under the headings of [39,40].
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Table 4. MSE values comparison with the literature.

Image Proposed Scheme [16] [17] [18] [26] [39] [40]

Lena 9112.1 8926.96 10,869.73 4859.03 8888.88 N/A N/A
Mandrill 8573.38 8290.84 10,930.33 6399.05 8295.21 N/A N/A
Peppers 10,298.7 10045.1 N/A 7274.44 10,092.3 N/A N/A
House 8427.04 8351.64 N/A N/A N/A N/A N/A
House2 9374.65 N/A N/A N/A N/A N/A N/A

Girl 12,450.9 N/A N/A N/A N/A N/A N/A

3.3. Peak Signal to Noise Ratio

Based on the MSE discussed in Section 3.2, PSNR, given a signal, aims at relating the
error margin (represented by MSE), with respect to the peak value in the signal. In the
scope of this work, the peak signal value is evaluated as the maximum pixel intensity in a
given image. Accordingly, given image I, PSNR is equated as:

PSNR = 10 log
( I2

max
MSE

)
, (19)

such that Imax is the maximum pixel intensity in I. Due to the fact that MSE is SSD based (which
indicates that MSE is calculated to a squared order of magnitude), Imax is necessarily squared.

As shown in (19), PSNR in inversely proportional to MSE. Such mathematical rep-
resentation steers the preference of the PSNR to be the inverse of the preference of MSE,
hence a minimal value is more ideal. Table 5 presents the calculated values for the proposed
cryptosystem as well as those of counterpart algorithms from the literature. In terms of
MSE and PSNR, the proposed cryptosystem is shown to be superior to [16,18,26,39,40], but
inferior to [17].

Table 5. PSNR values comparison with the literature.

Image Proposed Scheme [16] [17] [18] [26] [39] [40]

Lena 8.53462 8.6237 7.7677 11.3 8.64233 8.5674 8.617
Mandrill 8.79929 8.9448 7.7447 10.10 8.94253 10.0322 8.9695
Peppers 8.00296 8.11128 N/A 9.55 8.94253 N/A 8.1156
House 8.87405 8.91309 N/A N/A N/A N/A 8.935
House2 8.41125 N/A N/A N/A N/A N/A 8.5343

Girl 7.17879 N/A N/A N/A N/A N/A 7.282

3.4. Mean Absolute Error

Building on the argument presented in Section 3.2, an alternate technique to Sum of
Squared Differences, SSD, would be Sum of Absolute Differences, SAD. In such alternative,
the task of eliminating the polarity of the per-pixel error is performed by the absolute
operation instead of the square one. Therefore, parallel to the SSD equation (Equation (17)),
SAD is equated as:

SAD =
n

∑
i=1
|Si − S′i |. (20)

As discussed before in Section 3.2, the role of squaring, beside eliminating polarity,
is to amplify the magnitude. On the other hand, using the absolute instead maintains
the linearity of the behaviour of the error distribution among pixels, which is accordingly
maintained in the global perspective of the whole image.

Upon such variation in the core function, MAE is represented mathematically as:

MAE =
∑M−1

i=0 ∑N−1
j=0 |I(i,j) − I′(i,j)|
M× N

, (21)
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for two images I and I′. As per this work (similar to the MSE scenario), MAE is evaluated
for input images and their encrypted images. Moreover, for a well-performing encryption
technique, MAE value is preferred to be maximal. Table 6 presents the numerical results of
performing the MAE test on three images (Lena, Peppers, and Mandrill) in comparison
to counterpart algorithms from the literature. As the numerical results demonstrate, the
proposed algorithm fares comparably to them.

Table 6. MAE analysis of the Lena, Peppers and Mandrill images.

Image Proposed Scheme [26] [17] [44] [39]

Lena 78.3564 77.3752 87 77.35 77.96
Peppers 82.3273 81.7740 N/A 74.71 N/A
Mandrill 81.913 75.1659 92 73.91 67.85

3.5. Information Entropy

In the domain of gray-scale images, information entropy is employed to measure the
randomness of the distribution of gray pixel values of an image. According to Shannon’s
theory, information entropy is calculated as:

H(m) =
M

∑
i=1

p(mi) log2
1

p(mi)
, (22)

where p(mi) refers to the probability of occurrence of symbol m, while M represents the
total number of bits for each symbol. With respect to images, as a gray scale image has 256
different values [0− 255], which are 28 different possible permutations, the entropy value
of an encrypted image at greatest evaluations approaches 8. Therefore, information entropy
can be used to evaluate the degree of randomness of encrypted images. Entropy values
of the proposed algorithm for the the images displayed and tested in this paper, along
with counterpart algorithms from the literature are displayed in Table 7. The computed
entropy values for the various images are very close to the ideal value of 8, which means
that the proposed algorithm is resistant to entropy attacks. Furthermore, the differences
across entropy values of the various cryptosystems is shown to be diminutive.

Table 7. Entropy values for encrypted images.

Image Proposed [16] [17] [45] [18] [26] [39] [40]

Lena 7.9856 7.999 7.999 7.997 7.996 7.997 7.9972 7.999
Mandrill 7.9905 7.999 7.999 7.999 N/A 7.996 7.9969 7.9991
Peppers 7.9951 7.999 7.9991 N/A 7.997 7.9969 N/A 7.9991
House 7.9577 7.999 N/A N/A N/A N/A N/A 7.999
House2 7.9847 N/A N/A N/A N/A N/A N/A 7.999

Girl 7.9789 N/A N/A N/A N/A N/A N/A N/A

3.6. Fourier Transformation Analysis

In order to showcase the co-relation among pixels before and after encryption, the
application of the Fourier transformation (for both images) is utilized, more accurately,
for Discrete Fourier Transform (DFT). The main aim is, in the frequency domain, visual
features such as edges and regions (which are not easily definable in the spatial domain)
separate into different frequency ranges. This facilitates visual analysis and comparisons
of images. Such separation takes place as a result of the interaction between the pixels in
the spatial image with the increasing frequencies of the sine and cosine waves. Aiming
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towards transforming a spatial domain image into the frequency domain, the following
Fourier transformation equation is used:

F(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)e−i2π( ki
N + li

N ), (23)

such that f (a, b) is the image representation in the spatial domain, with the exponential
term being the basis function that corresponds to each point F(k, l) in the Fourier space.

Interpreting a Fourier transformation of an image (presented as 2D data), two main
regions of high relevance are to be looked at [46]. The first region is the middle area of
the 2D grid of the Fourier transformed image. The main significance of this area is that it
represents the amount of pixels with high similarity in values on the pixel level. Therefore,
if a Fourier transformation image is generated out of an image with large regions (flat, same
color areas), it is expected for the middle area to contain high values.

The second region is the center row, column and alongside diagonals of the Fourier
transformed image. This is due to their representation of vertical, horizontal, and diagonal
edges in the input image, respectively. (The Fourier image is considered to be a transposed
matrix of the input image.) Thus, if the input image includes only vertical edges, the Fourier
transformed image is expected to have a bright middle row, and vice versa. The rest of the
Fourier transformed image represents the other features existing in the input image.

Conclusively, for a naturally looking image with wide regions and profound edges
(Peppers in this example), the resulting Fourier transformed image contains a bright plus
sign at its center, as observed in Figure 13b. On the other hand, on a distorted (encrypted)
image, an equal description of values in the Fourier transformed image is expected due to
the lack of profound regions or edges, as shown in Figure 13e.
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3.7. Correlation Coefficient Analysis

In this evaluation method, the consistency of a single image is evaluated. The aim of
such evaluation method is to assess (or provide an estimated coefficient for) the cohesion
of near-proximity pixels. In other words, correlation coefficient analysis, in the domain of
images, aims at calculating the percentage of the uniform regions with respect to the edge
transitions. Hence, in a normal image case, a relatively high correlation coefficient value is
expected, as it consists more of regions than edges (in terms of pixel count). On the other
hand, as high distortion is aimed for in encrypted images, a smaller correlation coefficient
is anticipated for it.

For mathematical evaluation, the correlation coefficient is calculated through the
following equations:

ρ(x, y) =
cov(x, y)√
σ(x)

√
σ(y)

, (24)

where:

cov(x, y) =
1
N

N

∑
i=1

(xi − µ(x))(yi − µ(y)), (25)

σ(x) =
1
N

N

∑
i=1

(xi − µ(x))2, (26)

µ(x) =
1
N

N

∑
i=1

(xi). (27)

Starting by the mean average of each distribution as in (27), two distribution behaviours
are measured. The first behaviour is the dispersion (using (26)), which represents the uncer-
tainty of the distribution. The second behaviour is the covariance (using (25)), which evaluates
the linear direction similarity. Combining both mathematical phenomenons results in reaching
an evaluation for the correlation coefficient, represented in (24).

As previously mentioned, for a normal image (the input), a high correlation value
is expected. On the other hand, a highly distorted image would result in having a low
correlation coefficient. Table 8 demonstrates performing the correlation coefficient analysis
on three images (Lena, Peppers and Mandrill), for both images, input and encrypted.
Moreover, as the covariance is a directional relation, the three main directions are calculated,
which are horizontal, vertical and diagonal. As shown by the numerical results, the
input image showed a value approaching 1 in all cases, while the encrypted showed a
value approaching 0. Table 9 presents the comparison between the proposed approach
and counterpart algorithms from the literature, which showcases nearly similar results.
Moreover, Tables 10 and 11 show the results of numerical comparison among the proposed
algorithm and its counterparts from the literature, focusing on the color channels separately,
with respect to the three directions for the images Lena and Mandrill, respectively.

Table 8. Correlation coefficients of plain and encrypted images.

Plain Image Encrypted Image

Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Lena 0.96734 0.94821 0.98276 0.003265 −0.00413 0.002451
Peppers 0.95595 0.95371 0.97939 0.004331 0.001856 0.001043
Mandrill 0.92203 0.87049 0.90303 −0.00484 0.003429 0.003522
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Table 9. Correlation coefficients comparison between Input and encrypted Lena images.

Scheme Horizontal Diagonal Vertical

Proposed 0.003265 −0.00413 0.002451
[26] 0.002287 −0.00132 −0.00160
[47] 0.0022 −0.0017 0.0001
[17] 0.0054 0.0054 0.0016
[48] 0.000199 0.003705 −0.000924
[49] 0.0681 0.0128 0.0049
[50] 0.001862 0.003768 0.000710
[51] −0.0082 −0.0012 −0.0128
[52] 0.000546 0.000192 0.000514
[53] −0.0029 −0.0045 −0.0001
[54] 0.0023 −0.0059 0.0029
[39] −0.0061 −0.0018 0.0067

Table 10. Comparison between the three directions of correlation coefficients, for plain and encrypted
Lena images, performed on each color channel separately, with respect to results from the literature.

Channel Direction Plain
Image

Encrypted
Image [55] [56] [57] [26]

Red
Horizontal 0.95722 0.006559 0.001365 0.0021 0.9568 −0.00364
Diagonal 0.93389 −0.00145 0.000232 −0.0026 0.0075 0.00016
Vertical 0.97889 0.002 0.004776 0.0018 −0.0376 0.000697

Green
Horizontal 0.94321 0.00295 0.003294 −0.0006 0.0020 0.000118
Diagonal 0.91931 −0.001739 0.004807 0.0001 −0.0046 0.00177
Vertical 0.97137 0.001745 −0.000579 0.0004 −0.0013 −0.0011

Blue
Horizontal 0.92845 −0.00278 0.002060 −0.005 0.0071 −0.00164
Diagonal 0.90068 0.000744 −0.004043 −0.0104 −0.0009 −0.00523
Vertical 0.95593 0.0051 0.000194 0.001 −0.0423 0.006041

Table 11. Comparison between the three directions of correlation coefficients, for plain and en-
crypted Mandrill images, performed on each color channel separately, with respect to results from
the literature.

Channel Direction Plain
Image

Encrypted
Image [55] [56] [26]

Red
Horizontal 0.94741 −0.00383 0.001391 0.0005 −0.00428
Diagonal 0.90413 0.000245 0.000334 0.0014 −0.00009
Vertical 0.92152 −0.00571 0.004650 0.0059 0.000706

Green
Horizontal 0.87266 −0.00357 −0.008134 0.0078 0.00340
Diagonal 0.79341 0.003297 0.005334 −0.001 0.00282
Vertical 0.83905 0.006606 0.000829 0.0042 −0.0016

Blue
Horizontal 0.92153 0.000063 −0.00889 0.0021 −0.00253
Diagonal 0.87668 −0.00334 0.001710 −0.0114 −0.00635
Vertical 0.91432 0.001022 0.000056 −0.0039 −0.00003

Alongside the numerical analysis provided by (24), directional covariance can be
visualized by the plotting of the co-occurrence matrix. In case of images with natural
visual aspects (more pixels representing homogeneous regions than transitional edges),
values of high similarity tends to co-exist with a higher probability, resulting in a mostly
linear distribution of magnitudes within the matrix. Oppositely, in a highly distorted
(encrypted) image, a more equal distribution of values is expected to take place instead.
For demonstration, this is carried out in Figure 13, where Figure 13c is for the plain image,
while Figure 13f is for its encrypted version. It is clear that the 3D plot for the plain image
is diagonal in nature, unlike that of the encrypted image, which resembles a mountain
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in 3D space, as expected for an encrypted image, signifying random pixel locations. For
further demonstration, focusing on the Papers image, Figures 14–16 show 3D plots of
the co-occurrence matrices for the red, green and blue color channels, respectively. As
demonstrated, pixel correlations are fully distorted on each color level individually.

(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 14. Peppers 3D plot of its co-occurrence matrix before and after encryption for red channel.

(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 15. Peppers 3D plot of its co-occurrence matrix before and after encryption for green channel.
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(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 16. Peppers 3D plot of its co-occurrence matrix before and after encryption for blue channel.

3.8. Differential Attack Analysis

In this section, the quality of image cryptosystems is judged on the grounds of the
direct difference between the input and the encrypted images. In other words, the input
image is directly compared with the encrypted on pixel by pixel, or mean average bases.
Such evaluation is performed in order to calculate a numerical percentage showcasing the
difference in color intensities (per pixel, or as a mean average) taking place as a result of the
encryption process. According to the fact that the lack of similarity among corresponding
pixels within both images is encouraged, such pixel by pixel evaluation is necessarily
performed. Moreover, a more global perspective of the cumulative pixels change rates
among images (presented in the mean averages) is evaluated, which denotes the existence
of general color intensity similarity among these images. In the literature, two tests are
most commonly performed to fulfill these test aspects: NPCR for pixel by pixel comparison,
and UACI for the mean average difference evaluation.

Number of pixels changing rate (NPCR) represents the percentage evaluation of the
amount of changed pixels. The difference between pixels is performed with a strict equality
perspective. Given two images I1 and I2 (of dimensions M× N), the difference per pixel
D(x, y) (where x and y are the coordinates of the pixel) is calculated as:

D(x, y) =

{
0 I1(x, y) = I2(x, y)
1 Otherwise

∣∣∣∣∣x ∈ [1, M]&y ∈ [1, N] (28)

Accordingly, NPCR is equated as:

NPCR =
∑M

x=1 ∑N
y=1 D(x, y)

M× N
× 100. (29)

As per this representation, a higher percentage denotes larger difference between the
two images. As a large difference is desired, in the literature, 99% is the target NPCR score
for a good encryption technique.

In another perspective, the unified average change intensity (UACI) evaluates the
difference between two images in terms of the mean averages. Mathematically, UACI is
equated as:

UACI =
1

M× N

M

∑
x=1

N

∑
y=1

|I1(x, y)− I2(x, y)|
255

× 100. (30)



Symmetry 2022, 14, 2559 24 of 33

In the literature, a target percentage of more than 33% denotes a strong encryption
technique. (With respect to the color range [0, 255], 33% is approximated to 85 steps of
difference in intensity.)

Table 12 shows the result of performing NPCR and UACI, comparing the input and
the encrypted image generated by the proposed algorithm, using various images as inputs.
(As discussed before, the NPCR is greater than 99.6% and the UACI should also be greater
than 33%.) For these tests, the proposed algorithm is also compared with its counterparts
from the literature, as shown in Tables 13 and 14. As shown, the computed NPCR value
of the proposed algorithm is >99% in all cases. On the other hand, the UACI value did
not meet the optimal value. However, the exception to this case is the Girl image, which
resulted in 32.1283, 36.4526, and 37.4855 for color channels red, green and blue, respectively,
alongside 35.3554 as an overall.

Table 12. NPCR and UACI of different images.

Test Type Image Result

NPCR

Lena 99.647
Peppers 99.6348
Mandrill 99.6124

House 99.6063
House2 99.6155

Girl 99.617

UACI

Lena 29.4651
Peppers 32.1832
Mandrill 29.3973

House 29.3973
House2 30.716

Girl 35.3554

Table 13. NPCR and UACI values of different images’ color channels comparison.

Test Type Image Color Channel Proposed [26] [58]

NPCR

Lena
Red 99.6262 99.6109 99.6355

Green 99.6201 99.6109 99.6256
Blue 99.6948 99.6375 99.6159

Peppers
Red 99.6658 99.6032 99.6307

Green 99.6262 99.6032 99.6250
Blue 99.6124 99.3750 99.6213

Mandrill
Red 99.5605 99.5880 99.6102

Green 99.6353 99.5880 99.6134
Blue 99.6414 99.5880 99.6057

UACI

Lena
Red 33.0311 33.4158 33.4657

Green 30.7273 30.3902 33.4552
Blue 27.6116 33.2420 33.4550

Peppers
Red 28.9610 33.3459 33.4832

Green 33.7841 33.4702 33.4904
Blue 33.8043 33.4357 33.4619

Mandrill
Red 29.5056 33.4273 33.5002

Green 28.0120 33.4635 33.4711
Blue 30.6723 33.7951 33.4951
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Table 14. Average NPCR and UACI of the Lena image comparison.

Scheme NPCR UACI

Proposed 99.65 30.4567
[26] 99.63 30.3432
[40] 99.63 33.48
[17] 99.52 26.7933
[59] 99.61 33.4342
[60] 99.52 26.7933
[39] 99.61 33.5160

3.9. The National Institute of Standards and Technology Analysis

The National Institute of Standards and Technology (NIST) SP 800 analysis is a set of
statistical tests which ensure the necessary cryptographic properties of the random number
sequences are met. The encrypted images’ equivalent binary stream are run through the
NIST analysis. To ensure resilience to cryptographic attacks, the results ought to surpass a
p-value of 0.01. Table 15 shows the outcome of running the analysis. The results reflect the
cryptographic robustness of the proposed scheme, with all the tests’ outcomes larger than
0.01. Hence, we can safely conclude the validity of our proposed cryptosystem.

Table 15. NIST analysis on Lena encrypted image.

Test Name Value Remarks

Frequency 0.504134 Success
Block Frequency 0.715728 Success

Run 0.185355 Success
Long runs of ones 0.897733 Success

Rank 0.368065 Success
Spectral FFT 0.783087 Success

No overlapping 0.979028 Success
Overlapping 0.224884 Success

Universal 0.937934 Success
Linear complexity 0.750498 Success

Serial 0.012139 Success
Approximate Entropy 0.369179 Success

Cumulative sum (forward) 0.252025 Success
Cumulative sum (reverse) 0.338189 Success

3.10. Key Space Analysis

Key space analysis is calculated as the Cartesian product of the domains of the key val-
ues involved in the encryption procedure. Such a step is carried out in order to compute the
amount of unique keys that can be utilized in the encryption procedure, which accordingly
results in creating various possible encryption instances for the same input image. In the
proposed image encryption algorithm, there is a total of seven variables involved in a single
encryption procedure. The first two variables are used (in the first stage Section 2.1) for the
generation of the bit-stream using the tan variation of the logistic map, which is used in
the DNA encoding, namely α and X0. In the second stage (Section 2.2), a Lorenz system is
used for the S-box generation, which demands three variables (σ, ρ and β). Finally, in the
last stage discussed in Section 2.3, two keys are used, which are r and tr(0). As the largest
machine precision is 10−16, the key space is about 107×16 = 10112 ≈ 2372, which exceeds
the threshold earlier proposed in [61] as 2100. This means that our proposed scheme can
resist brute–force attacks. Furthermore, an examination of key space values of related
image encryption schemes from the literature, as in Table 16 indicates that the proposed
scheme utilizes a comparably much larger key space than most of its counterparts. The
only exception here being the work of [39], in which one of the encryption stages relies on
the random movement of a chess piece (Castle), which results in a very large key space.
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Table 16. Key space values comparison.

Algorithm Key Space

Proposed algorithm 2372

[28] 2256

[29] 2256

[39] 2604

[48] 2187

[62] 2345

[63] 2128

[64] 2312

[65] 2128

[66] 2219

3.11. Histogram Dependency Tests

According to the aim of image encryption (distorting image details in a reversible
manner), all forms of correlation between the plain image and its encrypted version is
to be absent. In such a test scenario, the images (plain and encrypted) are evaluated on
the histogram level. Moreover, these tests are performed on the image as one unit, as
well as on the color channels separately. Therefore, given two histograms of images, the
comparisons performed aims at evaluating the level of the linear dependency between
them. As any dependency (as a form of correlation) test evaluates the level of association
between two variables [67], in a well performing encryption technique, the dependency
level should be as low as possible. Accordingly, calculating the dependency coefficient as
a value in the range [−1, 1], it is desirable to be as close to 0 as possible (where 1 means
strong dependency, and −1 means strong inverse dependency). In other words, given
two distributions, dependency between them is evaluated as the alignment of one with
respect to the other, which is either both are following the same linearity (evaluating
to 1), or following perpendicular linearity (evaluating to −1), or there is no linearity
(evaluating to 0). As mentioned, in the context of this work, the pair distributions of
variables to evaluate are the histograms of both the input and the encrypted images. Out of
many dependency evaluation techniques, in this work, five tests are performed, namely:
Blomqvist β, Goodman-Kruskal γ, Kendall τ, Spearman ρ, and Pearson correlation r [68].

As a medial correlation coefficient, Blomqvist evaluates correlation between two
distributions of variables X and Y, with their medians x and y, respectively, as per the
following Equation:

β = {(X− x)(Y− y) > 0} − {(X− x)(Y− y) < 0}. (31)

Considering the median as a reference point, pairs of elements across the two distribu-
tions of variables are either on the same side of the median (creating a linear correlation),
or not (breaking the linear correlation).

Based on the relative order of succeeding elements in the two distributions of variables, the
Goodman-Kruskal measure of monotonic association is used in a pairwise manner. Transform-
ing the two histograms into one set of pairs in a 1 to 1 formation (containing pairs of the form
(H1(n), H2(n))), comparing two pairs ((H1(i), H2(i)) and (H1(j), H2(j)) for example), they
are either aiding the linear correlation (concordant pairs) or breaking it (discordant pairs). Count-
ing both concordant pairs and discordant pairs provides two counts, nc and nd, respectively.
Given these two counts, Goodman-Kruskal correlation is equated as:

γ =
nc − nd
nc + nd

. (32)
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Based on the same concept of concordant pairs and discordant pairs, Kendall evaluates
correlation with respect to the sample size n, equating τ as follows:

τ =
nc − nd
n(n−1)

2

. (33)

For a rank-based correlation test, Spearman rank correlation test relates the rank of an
element (its position if the list was sorted), with respect to the mean rank value. Spearman
rank correlation is equated as:

ρ =
∑(Rix − Rx)(Riy − Ry)√

∑(Rix − Rx)2 ∑(Riy − Ry)2
, (34)

where x and y are the two evaluated variables, Ril is the rank of element i in list l, and Rl is
the mean of ranks of l.

Finally, Pearson correlation, as the most popular and straightforward correlation
technique, simply relates elements in the distributions directly to their mean averages.
Pearson correlation is equated as:

r = ∑(Xi − X)(Yi −Y)√
∑(Xi − X)2 ∑(Yi −Y)2

, (35)

where X and Y are the means of the distributions X and Y, respectively.
Table 17 shows the results of performing the six tests on various images. As all scores

are approaching 0, there is a very minimal dependency between the input and encrypted
images in terms of histograms over all color channels.

Table 17. Histogram dependency tests for various images.

Image Color β (31) γ (32) τ (33) ρ (34) r (35)

Lena

Red −0.109375 −0.0701499 −0.0682424 −0.102114 −0.101001
Green −0.0589406 −0.0859604 −0.0851644 −0.126553 −0.118587
Blue −0.078125 −0.077486 −0.0733405 −0.105547 −0.116345

Combined 0.0432231 0.0110378 0.0110029 0.0169526 0.0136941

Peppers

Red 0 0.0288035 −0.000855709 0.0436675 0.0261068
Green −0.0755594 −0.0436322 −0.0433383 −0.0637195 −0.0674477
Blue −0.146559 −0.0669877 −0.066303 −0.0992495 −0.112761

Combined 0.125 0.0554493 0.055267 0.0827907 0.00394907

Mandrill

Red −0.0476265 −0.0467586 −0.0464472 −0.0708594 −0.0700444
Green 0.00394524 −0.00409397 −0.00403802 −0.00467083 0.0128912
Blue 0.0711601 0.025111 0.0249474 0.0376744 0.0287206

Combined 0 0.00135451 0.00135127 0.000814718 −0.00796008

House

Red 0 0.0124787 0.0121948 0.0217842 0.0585462
Green −0.0510818 0.00839867 0.00835041 0.0114007 0.0658291
Blue −0.122302 −0.0590104 −0.0567747 −0.081944 −0.077054

Combined 0.0941184 −0.00570442 −0.0056861 −0.0037896 −0.0856705

House2

Red 0.019725 0.0458756 0.0453159 0.0647523 0.058933
Green 0 −0.0115376 −0.0114824 −0.0167042 −0.056937
Blue 0.0591722 0.0672817 0.0664841 0.0960327 0.150064

Combined −0.046875 0.0259157 0.025856 0.0381908 0.051188

Girl

Red 0.0942594 0.0389334 0.0330354 0.0431319 0.00880097
Green −0.0359493 0.0201752 0.0167873 0.0231847 −0.0228
Blue −0.0205128 −0.0861264 −0.0701142 −0.0957639 −0.0820709

Combined 0.015625 0.0153764 0.0147366 0.0201923 −0.0580052

3.12. Execution Time Analysis

Encryption and decryption times are used to determine an algorithm’s complexity
and suitability for real-time applications. Table 18 displays those values for the Lena
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image at various dimensions, N × N, where N ∈ {64, 128, 256, 512, 1024}. Depending on
the image dimensions, the overall encryption and decryption time varies from 0.228822s,
for N = 64, to just under a minute, for N = 1024. In addition, Table 19 presents a
comparison of the encryption time among the proposed algorithm and its counterparts
from the literature. Note that the differences in encryption time depend on numerous
factors, including the algorithm’s complexity, the machine specifications on which the
algorithm is executed (i.e., processing power and accessible memory), and the software
package or programming language used to execute the algorithm. In this work, Wolfram
Mathematica® is employed, while in [39,66,69–71] Mathworks Matlab® was the software
of choice. The average encryption speed for the proposed scheme is 1.015 Mbps.

Table 18. Encryption time, decryption time, and their added values of the proposed scheme for the
Peppers image at various dimensions.

Image Dimensions tEnc [s] tDec [s] tAdd [s]

64× 64 0.094082 0.13474 0.228822
128× 128 0.377145 0.515267 0.892412
256× 256 1.52554 2.05997 3.5855
512× 512 6.05749 8.24135 14.2988

1024× 1024 24.8238 34.2197 59.0435

Table 19. Encryption time comparison for various schemes of the Lena image having dimensions
256× 256.

Scheme tEnc [s] Machine Specifications (CPU and RAM)

Proposed scheme 1.42545 2.9 GHz Intel® CoreTM i9, 32 GB
[39] 2.7236 2.7 GHz Intel® CoreTM i7, 8 GB
[66] 3.45 N/A
[69] 1.1168 3.4 GHz Intel® CoreTM i7, 8 GB
[70] 1.112 3.4 GHz Intel® CoreTM i3, 4 GB
[71] 4.98 2.5 GHz AMD®, 4 GB

3.13. S-Box Performance Analysis

As a stable component, which is almost always at the core of any image encryption
technique, also, as it holds the responsibility towards implementing Shannon’s property of
confusion in a cryptosystem, an S-box should be evaluated in isolation from the total perspective
of the whole encryption process. There are five tests most commonly performed in order to
evaluate the confusion capability of an S-box. The first test is nonlinearity [72], which represents
the measure of how many bits in the truth table of a Boolean function need to be changed
in order to approach the closest affine function (optimal value of 120, with most commonly
achieved of 112). The second test is linear approximation probability (LAP) [73], which identifies
the probability of bias for a given S-box (optimal value of 0.0625). Third test is a differential
approximation probability (DAP) [74], which is a technique that examines the impact of specific
variations in inputs and its effect on encrypted output (optimal value of 0.0156). Fourth, are
the bit independence criterion (BIC) [75], which evaluates the relation between encryption
procedures and the repeated patterns in the encrypted output (optimal value of 112). Finally,
strict avalanche criterion (SAC) [75], which calculates the rate of change in the encrypted output
with respect to the change in the input on a bit by bit level (optimal value of 0.5).

In commonly used methods for S-box generation, the procedure followed in the
process of S-box generation takes the evaluation methods into consideration. In this
work, as demonstrated in Section 2.2, a PRNG approach is followed, which introduces
some advantages alongside some disadvantages. The main advantage is that the overall
encryption process requires more keys, increasing the overall key space, resulting in more
resistance to attacks. On the other hand, as per the keys provided to the S-box generation
process, the evaluation scores for each S-box generation scenario is not fixed. As per
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that, the relation between various keys in the key space and encrypting strengths of the
generated S-boxes is to be correlated, as a future work.

Evaluating an S-box generated using keys: σ = 10, β = 8/3, and ρ = 28 (shown in
Table 3) utilizing the aforementioned evaluation methods results in the findings presented
in Table 20. As the evaluations demonstrate, not all optimal values were met. More
precisely, while nonlinearity and SAC showed near optimal scores, DAP scored average,
and LAP was far from optimal. For better reference, Table 21 shows scores comparison
with popular S-boxes in the literature, which represent acceptable scores overall. These
shortcomings are a natural result of the mechanism we adopted for the S-box generation,
which is completely random, with full disregard to major S-box design criteria, which
aim at avoiding fixed points and short ring cycles [76,77]. On the other hand, they can be
regarded as trade-offs to increasing the key space of the overall encryption process, due to
the addition of the new three tunability parameters (σ, ρ and β of the Lorenz system). In
other words, instead of having a fixed (well-performing) S-box as one of the encryption
stages, a randomly-generated S-box will allow for increasing the number of encrypted
images per a single input plain image. In the case of the proposed work, the factor of
increase in encrypted images per a single input plain image is 219, as thoroughly discussed
in Section 3.10.

Table 20. Evaluation for S-box generated using keys: σ = 10, β = 8/3, and ρ = 28 (shown in Table 3).

Evaluation Method Optimal Score Scored of Proposed Scheme

Nonlinearity 112 106
SAC 0.5 0.5019
BIC 112 112
LAP 0.0625 0.1328
DAP 0.0156 0.0391

Table 21. Comparison between proposed S-box (σ = 10, β = 8/3, ρ = 28) and those provided in
the literature.

S-Box Nonlinearity SAC BIC LAP DAP

Proposed 106 0.5019 112 0.1328 0.0391
AES [13] 112 0.5058 112 0.0625 0.0156

Khan et al. [17] 111 0.5036 110 0.0781 0.0234
APA [78] 112 0.4987 112 0.0625 0.0156
Gray [79] 112 0.505 111.46 0.0664 0.0156

Zahid et al. [80] 107 0.497 103.5 0.1560 0.0390
Farwa et al. [81] 103.5 0.5065 103.3 0.1328 0.0468

Aboytes et al. [82] 112 0.4998 112 0.0625 0.0156
Hayat et al. [83] 100 0.5007 104.1 0.0390 0.1250

Nasir et al., (S4) [84] 112 0.5 112 0.0625 0.0156

4. Conclusions and Future Works

This research work proposed a 3-stage image encryption scheme. DNA encoding,
along with a tan variant of the logistic map, were made use of in the first stage of encryption.
An S-box based on the numerical solution of the Lorenz differential equations and a
linear descent algorithm was developed for the second stage, and utilized to carry out
bit confusion. Finally, the logistic map in its original form was utilized to produce an
encryption key for the third stage of encryption. Performance of the proposed image
cryptosystem was evaluated utilizing commonly used metrics from the literature, as well
as newly adopted ones. The computed values reflect a secure and robust cryptosystem
that is resistant to visual, statistical, entropy, differential, known plain text and brute-force
attacks. This has been validated through comparison with the performance of counterpart
schemes from the literature. The proposed cryptosystem was shown to exhibit comparable
performance to them, if not superior at times. Future works could: (a) attempt to replace the
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utilized 1D chaotic function with a higher-dimensional one. While this would invariably
improve the security even more, it is expected that it might affect the computational
complexity, and thus the execution time of the algorithm; and (b) optimize the generated
S-box design, to achieve better values in all of the evaluation metrics. While the proposed
S-box design did not score optimal values in all metrics, this was compensated in the
proposed cryptosystem as a whole, due to the other two encryption stages. Furthermore, a
future work could replace the utilization of the Lorenz system for the construction of the
S-box. The reason behind such a recommendation is that the Lorenz system is a continuous
one, with its computation heavily depending on the numerical method adopted in solving
it. A better choice would be any discrete chaotic function.
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