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Abstract: Software packages that use optimization to predict the motion of dynamic systems are
powerful tools for studying human movement. These “predictive simulations” are gaining popularity
in parameter optimization studies for designing assistive devices such as exoskeletons. The cost
function is a critical component of the optimization problem and can dramatically affect the solution.
Many cost functions have been proposed that are biologically inspired and that produce reasonable
solutions, but which may lead to different conclusions in some contexts. We used OpenSim Moco
to generate predictive simulations of human walking using several cost functions, each of which
produced a reasonable trajectory of the human model. We then augmented the model with motors
that generated hip flexion, knee flexion, or ankle plantarflexion torques, and repeated the predictive
simulations to determine the optimal motor torques. The model was assumed to be planar and
bilaterally symmetric to reduce computation time. Peak torques varied from 41.3 to 79.0 N·m for the
hip flexion motors, from 48.0 to 94.2 N·m for the knee flexion motors, and from 42.6 to 79.8 N·m
for the ankle plantarflexion motors, which could have important design consequences. This study
highlights the importance of evaluating the robustness of results from predictive simulations.

Keywords: assistive device; cost function; human movement; musculoskeletal model; objective
function; optimal control; optimization; predictive simulation; sensitivity; walking

1. Introduction

Musculoskeletal modeling and simulation are powerful tools for studying the biome-
chanics of human movement. Simulations can complement the knowledge gained from
experiments by providing estimates of variables that are difficult or impossible to mea-
sure directly. For example, experimental studies have directly measured the whole-body
metabolic energy expended during steady-state walking over a range of speeds [1], but
simulations are required to examine how metabolic energy consumption is distributed
between the phases of gait [2] and throughout the body [3]. Simulations also enable one
to study the effect of changes in parameters that cannot easily be isolated or adjusted
experimentally, such as the effect of tendon compliance on metabolic energy expenditure
during running [4]. Finally, simulations can reveal fundamental principles that govern
movement, such as the neural control strategies involved in reaching [5], maintaining
balance [6], and locomotion [7].

Many studies gain deeper insight into measurements of human movement by generat-
ing inverse kinematic and inverse dynamic simulations from experimental data [8]. For
example, Arnold et al. [9] generated simulations from experimental data to estimate the
lengths and velocities of muscle fibers during walking, thereby revealing how the force-
generation capacity of our muscles varies over the gait cycle. An emerging application
of musculoskeletal models and the simulation of movement is in the design optimization
of wearable assistive devices such as exoskeletons and soft exosuits, which apply forces
to the body to make movement safer or more economical. For example, inverse dynamic
simulations were used to understand how assistive devices can be designed to reduce the
metabolic energy consumed during running [10] and during walking while carrying a
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heavy load [3]. These simulations suggested that assistive devices should not merely aim
to mimic net biological joint moments during unassisted movement: such a design strategy
would generally fail to minimize metabolic energy expenditure as it would ignore, among
other things, the necessary activity of muscles that span both assisted and unassisted
joints. The simulation results of Uchida et al. [10] were experimentally validated by Lee
et al. [11], who used the simulations to tune the actuation profile for their soft exosuit, one
of the first assistive devices to reduce the metabolic energy consumed during running.
Despite the utility of inverse dynamic simulations, they are fundamentally limited because
they track experimental data and, therefore, they assume that the joint kinematics and
ground reaction forces do not change when an assistive device is worn. Some studies have
suggested that assistive devices may not change joint kinematics substantially [12,13] or
that kinematics may change initially but will ultimately return to normal following an
adaptation period [14]. However, many studies have reported large, persisting differences
in kinematics between assisted and unassisted gait [15–17].

The limitations of inverse dynamic analyses can be addressed using simulations that
predict human movement without tracking experimental data [18,19]. These “predictive
simulations” use numerical optimization to determine the actuation signals (e.g., net joint
torques or the excitations of individual muscles) that must be applied to a model of the
musculoskeletal system in order to achieve the best possible performance at a defined
task. The quantities that must be determined are called design variables and may include
parameters of the musculoskeletal model, parameters of an assistive device, gains of
neuromuscular or device controllers, actuation signals, applied forces, initial conditions, or
other quantities. The desired task is encoded into a cost function (or objective function), a
mathematical function of the design variables that describes the nature of the solution being
sought. An optimizer determines a set of values for the design variables that minimizes
the cost function, while also satisfying one or more constraint equations. The constraint
equations describe any equalities or inequalities that must be satisfied for the solution to
be considered valid, such as obeying Newton’s laws of motion and respecting bounds
on the design variables. If the cost function has been judiciously designed, the desired
movement (e.g., a human-like walking gait at a desired speed) will emerge as the solution
to the optimization problem.

Predictive simulations enable one to study scenarios that would be time-consuming
or otherwise onerous to explore using experiments. For example, hypothetical designs
for prostheses can be evaluated and optimized without constructing physical prototypes,
recruiting study participants, or conducting data collection sessions in the lab [20,21].
Predictive simulations do not track experimental data and, therefore, they do not assume
that the joint kinematics and ground reaction forces remain unchanged during device-
assisted gait; however, the solution that is found depends on the cost function that is
specified. Defining the cost function may be straightforward in some applications—for
example, in an optimal control problem where a robot must jump as high as possible.
Unfortunately, the cost functions governing human movement are not known precisely. It
is known that humans tend to prefer walking in metabolically economical ways [22]; hence,
metabolic energy expenditure (specifically, the cost of transport or the energy consumed per
distance traveled) often appears as a term in the cost function for predictive simulations of
gait [2,18–20,23–30]. Other commonly used terms include the minimization of muscle effort
or work [24,26,28,30–37], fatigue [35,36,38], ligament strain [29,30], joint torque [28,39],
joint load [25], head motion [19,29,30], asymmetry [34,35], and the derivative of ground
reaction force [30,33]—each of which can be justified biologically. Many combinations
and relative weightings of these cost function terms have been used in the literature to
generate predictive simulations of gait with realistic joint kinematics and other features.
However, when predictive simulations are used to optimize the design of assistive devices,
it is unknown whether the resulting designs are sensitive to the selected cost function.

In this study, we explore the robustness of assistive devices that have been designed
using predictive simulations. The simulations are generated in OpenSim Moco using a
planar, bilaterally symmetric musculoskeletal model with 18 muscles. OpenSim Moco
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provides users with an interface for posing optimal control problems and employs the direct
collocation method to improve the computational efficiency of solving them. OpenSim
Moco has been used to generate predictive simulations of a variety of human movements,
including healthy and atypical walking [40], squat-to-stand [40], cycling [41], single-leg
landing [42], running [43], and reaching [44]. We first generate predictive simulations of
walking using six plausible cost functions, each of which produces a realistic gait pattern.
We then augment the musculoskeletal model with motors that generate hip flexion, knee
flexion, or ankle plantarflexion torques, where the torques generated by the assistive devices
are optimized along with the muscle forces and motion of the model. We demonstrate that,
although many cost functions produce similar joint kinematics during gait, they may result
in dramatically different conclusions about the design of an assistive device. This study
highlights the importance of evaluating the sensitivity of predictive simulations to the cost
function that is specified.

2. Methodology

All simulations were performed in OpenSim Moco [40] version 1.1.0. The simulation
workflow comprised three steps:

1. Find an initial guess for the predictive simulations. An optimization problem was
solved to track measured joint kinematics and ground reaction forces with a muscu-
loskeletal model.

2. Generate predictive simulations of unassisted gait. Simulations were generated
using six cost functions, using the solution from step 1 as the initial guess for each
optimization problem.

3. Generate predictive simulations of assisted gait. Assistive devices were added to the
model bilaterally at the hip, knee, or ankle. Simulations were generated using the
same six cost functions as in step 2, again using the solution from step 1 as the initial
guess for each optimization problem.

These steps are described in detail below.

2.1. Musculoskeletal Model

We used the “2D_gait.osim” model, shown in Figure 1, which is a modified version of
the “gait10dof18musc.osim” model and is provided with OpenSim [45,46]. The model is
planar, bilaterally symmetric, has a mass of 62.0 kg, and has 10 degrees of freedom: the tilt,
horizontal displacement, and vertical displacement of the pelvis relative to the fixed ground
frame; the angle of the lumbar joint between the pelvis and the rigid upper body; and hip
flexion/extension, knee flexion/extension, and ankle plantarflexion/dorsiflexion on each
leg. The musculoskeletal model is actuated by nine muscles on each leg, representing the
main muscles (or muscle groups) that are responsible for producing gait in the sagittal
plane: gluteus maximus, biarticular hamstrings, biceps femoris short head, gastrocnemius,
soleus, iliopsoas, rectus femoris, vasti, and tibialis anterior. Muscle forces are computed
using the “DeGrooteFregly2016Muscle” Hill-type model [47]. An ideal motor at the lumbar
joint is used to represent the combined activity of the torso muscles. The foot–ground
interaction was modeled by two spheres on each foot using the “SmoothSphereHalfSpace-
Force” model [48], which is a differentiable approximation of the Hunt–Crossley contact
model [49]. All parameters were identical to those provided in the “2D_gait.osim” model
except for the stiffness of the contact spheres, which was set to k = 9.4281 × 105 N/m2

following the work of Dorn et al. [19].
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Figure 1. Planar, bilaterally symmetric musculoskeletal model used to generate predictive simulations
in OpenSim Moco.

2.2. Initial Guess for Predictive Simulations

Predictive simulations are generated by solving optimization problems, which require
initial guesses. Due to the complexity of the optimization problems that are solved in
predictive simulations of gait, it is critical to use a good initial guess; otherwise, the
optimization problem can require an unreasonable amount of computational effort. In this
work, an initial optimization problem was solved to track measured joint kinematics and
ground reaction forces. Specifically, the MocoTrack tool in OpenSim Moco was used to
determine the forces that must be applied by the actuators (i.e., the 18 muscles and the
lumbar joint motor) to drive the musculoskeletal model through a similar trajectory and
with similar ground reaction forces as experimental observations. The experimental data
were obtained from the work of Falisse et al. [35] and were low-pass filtered at 6 Hz.

The optimization problem was solved eight times using different cost functions, each
of which comprised several weighted components (called “goals” in OpenSim Moco).
The MocoTrack tool minimized the error between the provided kinematic data and the
corresponding variables (states) in the model. A MocoPeriodicityGoal was used to enforce
kinematic symmetry between the left and right sides of the body, and to ensure the resulting
gait was periodic. The periodicity goal permitted the simulation of only half of a gait cycle
(i.e., from right-leg heel strike to left-leg heel strike), which reduced computation time; a
complete gait cycle was then assembled by duplicating the joint trajectories from the first
half of the gait cycle to the second half, and reflecting them from one leg to the other. A
MocoAverageSpeedGoal was used to enforce an average walking speed of 1.33 m/s, which
was selected to match the experimental data [35]. A MocoContactTrackingGoal was used
to minimize the error between the measured and simulated ground reaction forces in the
vertical and horizontal (fore–aft) directions. A MocoControlGoal was used to minimize the
sum of squared control signals (muscle excitations and lumbar motor actuation) [50]. A
MocoOutputGoal was used to minimize the metabolic energy consumed by the muscles
using a smoothed version of the model of Bhargava et al. [51], normalized by the mass of
the model and the distance traveled. Finally, a second MocoOutputGoal was defined to
minimize the acceleration of the head.

The MocoCasADiSolver was used to solve the tracking problem. The convergence
and constraint tolerances were set to 5 × 10−4 based on the results of a convergence
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analysis (the default values of 1 × 10−3 were insufficient); default values were used for all
other solver settings. The tracking problem was solved eight times to explore the effect
of adjusting the relative weighting of the terms in the cost function. To facilitate this
analysis, each cost function term was first multiplied by a normalization factor equal to the
reciprocal of a representative quantity, thereby normalizing each term to have a value of
approximately 1. Thus, the weights reflected the percentage importance ascribed to each
term. The normalization factors and weights for the tracking problem cost functions (T1 to
T8) are provided in Table 1; all tracking problems were identical except for the weights of
the terms in the cost function. Combinations of weights were selected manually to explore
the range of cost functions that would plausibly be used in studies of this nature. Once all
tracking simulations had been generated, a single solution was selected and used as the
initial guess for all predictive simulations generated in this work.

Table 1. Cost functions used in the tracking problem to find an initial guess for the predictive
simulations. All cost functions included the state-tracking, periodicity, and average speed goals.
(GRF = ground reaction force.)

Cost Function
Weight (Normalization Factor)

State Tracking GRF Tracking Control Effort Metabolic Energy Head Acceleration
(0.066756) (0.019305) (0.507614) (0.256410) (0.555556)

T1 0.1 0.1 0.1 0 0.7
T2 0.1 0.3 0.1 0 0.5
T3 0.1 0.5 0.1 0 0.3
T4 0.1 0.7 0.1 0 0.1
T5 0.1 0.1 0.2 0.5 0.1
T6 0.1 0.1 0.2 0.3 0.3
T7 0.1 0.1 0.2 0.1 0.5
T8 0.1 0.3 0.2 0.3 0.1

2.3. Predictive Simulations of Unassisted Gait

Predictive simulations were generated using the musculoskeletal model described
above (Section 2.1). The optimization problem was solved six times using different cost
functions, each of which again comprised several weighted components. A MocoJoint-
ReactionGoal was used to minimize the compressive load in each knee—specifically, to
minimize the squared component of the knee joint reaction force vector that was perpendic-
ular to the tibial plateau, normalized by the weight of the model. A MocoControlGoal was
used to minimize the sum of cubed control signals (muscle excitations and lumbar motor
actuation) [52]. The periodicity, average speed, metabolic cost, and head acceleration goals
described above (Section 2.2) were also used. Note that experimental data were used only
to generate the initial guess for use in the predictive simulations; no experimental data were
tracked when generating the predictive simulations. The normalization factors and cost
function weights for generating the predictive simulations (P1 to P6) are provided in Table 2;
all optimization problems were identical except for the weights of the terms in the cost
function. Combinations of weights were once again selected manually to explore the range
of cost functions that would plausibly be used to generate predictive simulations of walking.
The MocoCasADiSolver was used to generate all predictive simulations. Convergence and
constraint tolerances were again set to 5 × 10−4, and default values were used for all other
solver settings.
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Table 2. Cost functions used to generate predictive simulations. All cost functions included the
periodicity and average speed goals.

Cost Function
Weight (Normalization Factor)

Control Effort Metabolic Energy Head Acceleration Knee Load
(0.507614) (0.256410) (0.555556) (0.002525)

P1 0.5 0 0.5 0
P2 0 0.3 0.7 0
P3 0.7 0 0.3 0
P4 0.1 0.1 0.8 0
P5 0.2 0.2 0.6 0
P6 0.1 0 0.6 0.3

2.4. Predictive Simulations of Device-Assisted Gait

Assistive devices were added to the model bilaterally at the hip, knee, or ankle. The
devices were modeled as motors that applied flexion torques to the hip joints, flexion
torques to the knee joints, or plantarflexion torques to the ankle joints. The “optimal force”
property was set to 100 N·m in all cases, where a control signal of 0.5, for example, would
produce an applied torque of 50 N·m. Predictive simulations were generated using the
same cost functions as in the unassisted predictive simulations (i.e., P1 to P6) and using
the same initial guess in all cases. The torques generated by the assistive devices were
parameterized as piecewise linear functions over time, and were optimized along with the
muscle forces and motion of the model.

2.5. Results Comparison

The tracking simulation results were evaluated by comparing joint kinematics (hip,
knee, and ankle angles) and ground reaction forces (vertical and horizontal components)
over one gait cycle to data measured from a population of healthy adults walking at a
similar speed [35]. Muscle activations were compared to electromyography (EMG) signals
collected during healthy walking [19]. Differences in joint kinematics, ground reaction
forces, and muscle activations among the eight tracking simulations (i.e., using each cost
function T1 to T8) were also evaluated. The unassisted predictive simulation results were
evaluated by comparing the joint kinematics and ground reaction forces to the same
measurements of healthy gait. The cost of transport was also computed for all solutions
(i.e., using each cost function P1 to P6). The device-assisted predictive simulations were
evaluated by comparing joint kinematics, ground reaction forces, cost of transport, and
peak assistive device torques and powers among all solutions for each assistance strategy.
Joint kinematics, ground reaction forces, and assistive device torques and powers were
analyzed only for the right leg since the model was symmetric.

3. Results

The joint kinematics, ground reaction forces, and muscle activations for the tracking
simulations are shown in Figures 2 and 3. As shown in Figures 2 and 3, the tracking
simulations capture many salient characteristics of healthy gait. Some differences can be
observed between the tracking simulation results and the measured data; however, some
differences are expected since the model differs from the physical system in many respects.
Most importantly, we note that the joint kinematics, ground reaction forces, and muscle
activations are very similar across all tracking simulations, despite having been generated
using different cost functions. The value of each cost function at the obtained solution is
provided in Table 3. The solution obtained using cost function T4 was selected for use as
the initial guess for all predictive simulations.
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Figure 2. Joint kinematics and ground reaction forces from tracking simulations using cost functions
T1 to T8. (Left) Trajectories of the hip, knee, and ankle joints in the sagittal plane; (right) components
of the ground reaction force (GRF) in the vertical and fore–aft directions. For reference, shaded
regions (“Ref”) indicate gait patterns within one standard deviation of the mean from a population of
healthy adults walking without assistance at similar speeds [35].

Figure 3. Muscle activations from tracking simulations using cost functions T1 to T8. (Left) Uniarticu-
lar muscles on the posterior side of the leg; (center) biarticular muscles; (right) uniarticular muscles
on the anterior side of the leg. For reference, horizontal bars (“EMG”) indicate periods of muscle
activity from EMG data of healthy walking (no data were available for the rectus femoris, iliopsoas,
or biceps femoris short head) [19].
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Table 3. Each component of each cost function used in the tracking problem, evaluated at the
obtained solution. Normalized values (in parentheses) have been multiplied by the normalization
factor provided in Table 1. All optimizations converged to the specified tolerance. (GRF = ground
reaction force.)

Cost Function
Component Value (Normalized)

State Tracking GRF Tracking Control Effort Metabolic Energy Head Acceleration

T1 17.25 (1.15) 49.00 (0.95) 1.89 (0.96) — 1.74 (0.97)
T2 15.21 (1.02) 43.21 (0.83) 2.18 (1.10) — 2.00 (1.11)
T3 20.12 (1.34) 57.15 (1.10) 1.77 (0.90) — 1.63 (0.91)
T4 19.89 (1.33) 56.47 (1.09) 2.24 (1.14) — 2.06 (1.15)
T5 18.22 (1.22) 51.75 (1.00) 1.55 (0.79) 3.69 (0.95) 1.43 (0.79)
T6 21.03 (1.40) 59.71 (1.15) 1.88 (0.96) 3.74 (0.96) 1.73 (0.96)
T7 20.00 (1.34) 56.81 (1.10) 1.26 (0.64) 3.87 (0.99) 1.16 (0.64)
T8 22.75 (1.52) 64.60 (1.25) 2.00 (1.01) 4.00 (1.03) 1.84 (1.02)

The joint kinematics and ground reaction forces for the predictive simulations of unas-
sisted gait are shown in Figure 4. The most substantial difference between the predictive
simulation results and the data measured from a population of healthy adults is that the
knee flexion angle remains relatively constant during mid- to late stance, which contributes
to producing a relatively flat vertical ground reaction force profile during stance. The
knee is also slightly flexed at heel strike. Similar knee kinematics and ground reaction
forces have been reported in other recent predictive simulations of gait [29,30,35]. With
the exception of the results using cost function P6, we note very similar results among all
predictive simulations despite having been generated using different cost functions. In a
computational study seeking to predict the relative effectiveness of various assistive de-
vices, any one of these solutions could conceivably be selected as the “baseline” simulation
against which each hypothetical assistance condition would be compared. The value of
each cost function at the obtained solution and the corresponding cost of transport are
provided in Table 4. The cost of transport varies from 3.39 J/kg/m (using cost function P2)
to 5.08 J/kg/m (using P3).

Table 4. Each component of each cost function used to generate predictive simulations of unassisted
gait, evaluated at the obtained solution, and the corresponding cost of transport. Normalized values
(in parentheses) have been multiplied by the normalization factor provided in Table 2. All cost
function values have been multiplied by 100 to improve clarity. All optimizations converged to the
specified tolerance. (COT = cost of transport.)

Cost Function
Component Value (Normalized)

COT (J/kg/m)
Control Effort Metabolic Energy Head Acceleration Knee Load

P1 3.98 (2.02) — 5.99 (3.33) — 3.99
P2 — 25.84 (6.63) 5.70 (3.16) — 3.39
P3 6.56 (3.33) — 7.00 (3.89) — 5.08
P4 7.82 (3.97) 12.45 (3.19) 3.88 (2.16) — 4.69
P5 3.99 (2.03) 21.48 (5.51) 2.86 (1.59) — 4.10
P6 4.72 (2.40) — 3.34 (1.86) 5.90 (0.01) 4.88
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Figure 4. Joint kinematics and ground reaction forces from predictive simulations of unassisted
gait using cost functions P1 to P6. (Left) Trajectories of the hip, knee, and ankle joints in the sagittal
plane; (right) components of the ground reaction force (GRF) in the vertical and fore–aft directions.
For clarity, the fore–aft GRF component for P6 is not shown. For reference, shaded regions (“Ref”)
indicate gait patterns within one standard deviation of the mean from a population of healthy adults
walking without assistance at similar speeds [35].

The joint kinematics and ground reaction forces for the predictive simulations of
device-assisted gait are shown in Figure 5 for hip flexion assistance, in Figure 6 for knee
flexion assistance, and in Figure 7 for ankle plantarflexion assistance. Changes in joint
kinematics were predicted when the devices were present, with the magnitude of the
changes depending on both the assistance strategy and the cost function. With hip flexion
assistance, all simulations predicted a relatively constant knee joint angle throughout stance
and a shorter stance phase than typical unassisted gait. Knee flexion assistance had the
effect of increasing the knee flexion angle during stance, decreasing the ankle dorsiflexion
angle during midstance, and reducing the stance phase duration. Ankle plantarflexion
assistance generally increased the ankle dorsiflexion angle throughout the gait cycle.
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Figure 5. Joint kinematics and ground reaction forces from predictive simulations of gait with hip
flexion assistance using cost functions P1 to P6. (Left) Trajectories of the hip, knee, and ankle joints in
the sagittal plane; (right) components of the ground reaction force (GRF) in the vertical and fore–aft
directions. For reference, shaded regions (“Ref”) indicate gait patterns within one standard deviation
of the mean from a population of healthy adults walking without assistance at similar speeds [35].

Although the joint kinematics were relatively insensitive to the cost function, the
torques generated by the assistive devices varied substantially among cost functions, as
shown in Figure 8. For example, with the exception of cost function P3, all predictive
simulations with hip flexion assistance had very similar joint trajectories (left column in
Figure 5); however, the predicted device torques were dramatically different (Figure 8,
top). The differences among the solutions predicted by different cost functions are further
examined in Table 5. The predicted reduction in the cost of transport varied from 0.18
to 0.85 J/kg/m in absolute value, or from 5.4% to 17.4% of the cost of transport for the
corresponding unassisted simulation. Peak assistive torques varied from 41.3 to 79.0 N·m
and peak positive power varied from 143.1 to 299.6 W, which could lead to substantially
different design requirements if predictive simulations are used to estimate specifications
for physical components.

Similar results were observed with knee flexion assistance and ankle plantarflexion
assistance, as shown in Tables 6 and 7, respectively. With knee flexion assistance, the
predicted reduction in the cost of transport varied from 0.13 to 0.75 J/kg/m in absolute
value, or from 3.8% to 15.3% of the cost of transport for the corresponding unassisted
simulation; peak assistive torques varied from 48.0 to 94.2 N·m and peak positive power
varied from 74.7 to 355.6 W. With ankle plantarflexion assistance, the predicted reduction
in the cost of transport varied from 0.14 to 0.69 J/kg/m in absolute value, or from 3.4% to
14.2% of the cost of transport for the corresponding unassisted simulation; peak assistive
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torques varied from 42.6 to 79.8 N·m and peak positive power varied from 67.5 to 124.2 W.
Despite these differences, we note that all cost functions except P2 predicted the largest
savings in the cost of transport with hip flexion assistance and the smallest savings with
ankle plantarflexion assistance. These trends agree with the results of Dembia et al. [3] and
reinforce the recommendation to explore devices that assist hip flexion if one is seeking to
reduce the cost of transport.

Figure 6. Joint kinematics and ground reaction forces from predictive simulations of gait with knee
flexion assistance using cost functions P1 to P6. (Left) Trajectories of the hip, knee, and ankle joints in
the sagittal plane; (right) components of the ground reaction force (GRF) in the vertical and fore–aft
directions. For reference, shaded regions (“Ref”) indicate gait patterns within one standard deviation
of the mean from a population of healthy adults walking without assistance at similar speeds [35].
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Figure 7. Joint kinematics and ground reaction forces from predictive simulations of gait with ankle
plantarflexion assistance using cost functions P1 to P6. (Left) Trajectories of the hip, knee, and ankle
joints in the sagittal plane; (right) components of the ground reaction force (GRF) in the vertical and
fore–aft directions. For reference, shaded regions (“Ref”) indicate gait patterns within one standard
deviation of the mean from a population of healthy adults walking without assistance at similar
speeds [35].

Table 5. Each component of each cost function used to generate predictive simulations of device-
assisted gait with hip flexion assistance, evaluated at the obtained solution, and the corresponding
cost of transport. Normalized values (in parentheses) have been multiplied by the normalization
factor provided in Table 2. All cost function values have been multiplied by 100 to improve clarity.
Percentage savings in the cost of transport are calculated relative to the cost of transport for the
corresponding unassisted simulation. All optimizations converged to the specified tolerance.

Cost Function
Component Value (Normalized) Cost of Transport

Control Effort Metabolic Energy Head Accel. Knee Load Value (J/kg/m) Savings (%)

P1 3.88 (1.97) — 4.38 (2.43) — 3.74 6.2
P2 — 24.25 (6.22) 6.13 (3.40) — 3.20 5.4
P3 6.13 (3.11) — 2.63 (1.46) — 4.56 10.4
P4 7.35 (3.73) 13.03 (3.34) 8.30 (4.61) — 4.20 10.4
P5 3.89 (1.97) 19.82 (5.08) 6.31 (3.51) — 3.42 16.6
P6 4.41 (2.24) — 6.18 (3.43) 5.93 (0.01) 4.03 17.4
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Figure 8. Device torques from predictive simulations of gait using cost functions P1 to P6. (Top) Hip
flexion assistance; (center) knee flexion assistance; (bottom) ankle plantarflexion assistance.

Table 6. Each component of each cost function used to generate predictive simulations of device-
assisted gait with knee flexion assistance, evaluated at the obtained solution, and the corresponding
cost of transport. Normalized values (in parentheses) have been multiplied by the normalization
factor provided in Table 2. All cost function values have been multiplied by 100 to improve clarity.
Percentage savings in the cost of transport are calculated relative to the cost of transport for the
corresponding unassisted simulation. All optimizations converged to the specified tolerance.

Cost Function
Component Value (Normalized) Cost of Transport

Control Effort Metabolic Energy Head Accel. Knee Load Value (J/kg/m) Savings (%)

P1 4.16 (2.11) — 4.14 (2.30) — 3.81 4.4
P2 — 25.88 (6.64) 5.82 (3.23) — 3.26 3.8
P3 5.82 (2.95) — 2.51 (1.40) — 4.68 8.0
P4 6.73 (3.42) 14.13 (3.62) 6.41 (3.56) — 4.33 7.7
P5 3.66 (1.86) 18.59 (4.77) 5.13 (2.85) — 3.54 13.7
P6 3.13 (1.59) — 5.12 (2.85) 5.97 (0.02) 4.13 15.3
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Table 7. Each component of each cost function used to generate predictive simulations of device-
assisted gait with ankle plantarflexion assistance, evaluated at the obtained solution, and the cor-
responding cost of transport. Normalized values (in parentheses) have been multiplied by the
normalization factor provided in Table 2. All cost function values have been multiplied by 100 to
improve clarity. Percentage savings in the cost of transport are calculated relative to the cost of
transport for the corresponding unassisted simulation. All optimizations converged to the specified
tolerance.

Cost Function
Component Value (Normalized) Cost of Transport

Control Effort Metabolic Energy Head Accel. Knee Load Value (J/kg/m) Savings (%)

P1 4.17 (2.12) — 3.89 (2.16) — 3.85 3.4
P2 — 22.56 (5.78) 5.83 (3.24) — 3.13 7.6
P3 5.12 (2.60) — 2.96 (1.64) — 4.72 7.3
P4 6.33 (3.21) 11.48 (2.94) 6.64 (3.69) — 4.40 6.2
P5 2.57 (1.30) 19.66 (5.04) 4.20 (2.33) — 3.56 13.2
P6 2.33 (1.18) — 7.25 (4.03) 5.98 (0.02) 4.19 14.2

4. Conclusions

In this paper, we explored the potential of using predictive simulations to design
assistive devices. Simulation-guided design offers many benefits, such as reducing the need
to build physical prototypes and conduct time-consuming experiments, and allows device
designers to focus their resources on comparing and optimizing only the most promising
designs. Although predictive simulations are not expected to capture all phenomena
that would be observed experimentally, one must consider the reliability of predictive
simulations when applied to assistive device design—particularly if simulations are being
used to predict absolute quantities (e.g., the cost of transport or peak motor torque) and not
merely to compare the relative performance of different assistance strategies. We generated
predictive simulations of walking in OpenSim Moco using a planar, bilaterally symmetric
musculoskeletal model with 18 muscles. The musculoskeletal model was assumed to walk
with a bilaterally symmetric gait to improve computational efficiency, as this permitted
the simulation of only half of a gait cycle. Predictive simulations of unassisted walking
were generated using six plausible cost functions, each of which produced a realistic gait
pattern that could reasonably be used as the “baseline” simulation against which various
assistance scenarios would be compared. The musculoskeletal model was then augmented
with motors that generated hip flexion, knee flexion, or ankle plantarflexion torques, and
the torques generated by the assistive devices were optimized along with the muscle forces
and the motion of the model.

Although the cost functions that we explored produced predictive simulations with
similar joint kinematics, the predicted savings in the cost of transport and the predicted
torques and powers of the assistive devices were dramatically different. Depending on
the cost function that was used, one could estimate metabolic savings of 5.4–17.4% with
hip flexion assistance, 3.8–15.3% with knee flexion assistance, and 3.4–14.2% with ankle
plantarflexion assistance. Broad ranges were also observed in peak assistive device torques:
41.3–79.0 N·m for the hip flexion actuators, 48.0–94.2 N·m for the knee flexion actuators,
and 42.6–79.8 N·m for the ankle plantarflexion actuators. These differences could lead
to substantially different design requirements when selecting actuators, batteries, and
supporting hardware.

Two important limitations should be noted regarding the generalizability of our
results. First, we used a simplified musculoskeletal model with 18 muscles and studied its
motion in only the sagittal plane. This modeling strategy was chosen to ensure that the
computational effort required to generate the predictive simulations remained relatively
low; however, non-sagittal-plane motions and the muscle activity responsible for generating
these motions were ignored. A more detailed model would be required to study phenomena
such as motion in the frontal plane and selective weakness of muscles that were not
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included in this model. Second, the model was bilaterally symmetric, assistive devices
were added to both legs, and bilateral symmetry was enforced in the model’s kinematics.
The assumption of symmetry permitted the simulation of only half of a gait cycle, again to
reduce computational effort, but this assumption limits the generalizability of the results.
A modeling and simulation strategy that permits asymmetry would be required to study
assistive technologies for individuals with hemiplegia and other conditions that result in
substantial asymmetry.

This study highlights the importance of evaluating the sensitivity of predictive simula-
tions to the cost function and weights that are selected. The absolute values of quantities of
interest were observed to be sensitive to the selected cost function; however, comparisons
between conditions when using a fixed cost function were relatively robust. All cost func-
tions except for P2 predicted the largest reductions in the cost of transport with hip flexion
assistance and the smallest reductions with ankle plantarflexion assistance. To generalize
these results, the analysis should be repeated to study walking under different conditions
(e.g., at different speeds, on slopes, and during load carriage), running at a range of speeds,
and using different musculoskeletal models. Different terms in the cost function could be
explored as well, including penalties for large time derivatives of ground reaction forces,
penalties for large passive joint torques generated by ligaments, and penalties for features
of gait that would cause instability, as these factors may contribute to shaping the gait
patterns observed in nature. Experimental validation over a large population moving in a
large range of scenarios would build confidence in the predictive capability of a given cost
function when used with a given musculoskeletal model.
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