
Citation: Chen, C.; Guo, W.;

Wang, Z.; Yang, Y.; Wu, Z.; Li, G. An

Energy-Efficient Method for

Recurrent Neural Network Inference

in Edge Cloud Computing. Symmetry

2022, 14, 2524. https://doi.org/

10.3390/sym14122524

Academic Editors: Liangmin Wang,

Keyang Cheng and Haiqin Wu

Received: 22 October 2022

Accepted: 25 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Energy-Efficient Method for Recurrent Neural Network
Inference in Edge Cloud Computing
Chao Chen 1,†, Weiyu Guo 2,†, Zheng Wang 1,* , Yongkui Yang 1,* , Zhuoyu Wu 3 and Guannan Li 4,5,6

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 Artificial Intelligence Thrust, Information Hub, Hong Kong University of Science and Technology,

Guangzhou 511458, China
3 Department of Engineering, Durham University, Lower Mountjoy, South Rd., Durham DH1 3LE, UK
4 Marine Robot Engineering Research Center, Huzhou Institute of Zhejiang University, Huzhou 313000, China
5 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS),

Shenyang 110016, China
6 Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
* Correspondence: zheng.wang@siat.ac.cn (Z.W.); yk.yang@siat.ac.cn (Y.Y.)
† These authors contributed equally to this work.

Abstract: Recurrent neural networks (RNNs) are widely used to process sequence-related tasks such
as natural language processing. Edge cloud computing systems are in an asymmetric structure, where
task managers allocate tasks to the asymmetric edge and cloud computing systems based on compu-
tation requirements. In such a computing system, cloud servers have no energy limitations, since
they have unlimited energy resources. Edge computing systems, however, are resource-constrained,
and the energy consumption is thus expensive, which requires an energy-efficient method for RNN
job processing. In this paper, we propose a low-overhead, energy-aware runtime manager to process
tasks in edge cloud computing. The RNN task latency is defined as the quality of service (QoS) re-
quirement. Based on the QoS requirements, the runtime manager dynamically assigns RNN inference
tasks to edge and cloud computing systems and performs energy optimization on edge systems using
dynamic voltage and frequency scaling (DVFS) techniques. Experimental results on a real edge cloud
system indicate that in edge systems, our method can reduce the energy up to 45% compared with
the state-of-the-art approach.

Keywords: recurrent neural network; energy optimization; machine learning; edge computing; deep
learning; artificial neural network; LSTM neural network; GRU neural network

1. Introduction

With the rapid growth of big data and artificial intelligence (AI), researchers have
developed artificial neural networks (ANN) for fast and effective data mining [1–4]. The re-
current neural network (RNN) is a particularly important ANN, and it is widely used to
process temporal sequence tasks such as speech recognition, text generation and biometric
authentication [5–8].

Edge cloud computing systems are in an asymmetric structure which consists of cloud
servers and edge devices, as shown in Figure 1. RNN tasks are processed in edge cloud
computing systems, where the training of RNNs is performed on symmetric cloud servers
with various accelerators [9,10] and the inference of short tasks can be performed on edge
nodes, taking into account the factors of latency, security, etc.

However, it is worth mentioning that cloud servers and edge devices have different
energy requirements. On the one hand, cloud servers have no energy limitations because
they are connected to the electrical grid, which provides unlimited energy resources. On the
other hand, edge devices have low energy consumption requirements because they use
batteries for computing and are thus constrained in energy resources.

Symmetry 2022, 14, 2524. https://doi.org/10.3390/sym14122524 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122524
https://doi.org/10.3390/sym14122524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2855-9570
https://orcid.org/0000-0003-1159-3115
https://doi.org/10.3390/sym14122524
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122524?type=check_update&version=1

Symmetry 2022, 14, 2524 2 of 14

Cloud Servers Edge Devices

User Task

Unlimited

Energy

Resources

Constrained

Energy

Resources

Figure 1. The topology of cloud edge computing systems.

In order to minimize energy consumption and task latency in asymmetric structures,
some inference tasks are performed on edge systems, while others are processed on remote
servers [11–16]. On the one hand, edge systems that are close to users can reduce task
latency by avoiding task transmission to servers. On the other hand, remote cloud servers
help process large and complex inference tasks.

At present, some researchers adopt input-independent task allocation strategies be-
tween asymmetric cloud and edge computing systems, while others take advantage of
data characteristics and perform input-dependent optimizations such that tasks with short
estimated processing times can be executed on edge systems [15–18]. It is worth mention-
ing that when dealing with tasks on edge systems, various techniques can be applied to
minimize energy consumption while meeting quality of service (QoS) requirements, which
refer to task latency in this paper.

In this paper, we propose a low-cost runtime manager to assign tasks between asym-
metric edge and cloud computing systems. Our proposed manager dynamically allocates
tasks based on their predicted running times using a regression task model and QoS re-
quirements. It then leverages dynamic voltage and frequency scaling (DVFS) techniques
to perform energy optimization on edge systems. The experimental results on a real edge
cloud system reveal that our method can reduce the energy by up to 45% compared with
existing approaches on edge systems.

The rest of this paper is organized as follows. Section 2 introduces the background of
the work, and our motivation is demonstrated in Section 3. Section 4 explains the related
works, the methodology is presented in Section 5, the evaluation is performed in Section 6,
and Section 7 concludes the paper.

2. Background

The RNN is a type of artificial neural network that is widely adopted to tackle sequence-
related tasks such as speech recognition and natural language processing. The node con-
nections of RNNs form a directed or undirected graph, which provides the internal states
to deal with variable-length sequences of inputs.

In traditional feedforward neural networks (e.g., CNNs), the current output is inde-
pendent of previous outputs. The RNN leverages feedback structures. This way, the RNN
saves the output of a particular layer and feeds this back to the input in order to predict
the output of the layer; that is, prior outputs can be utilized by memory units (i.e., hidden
layers) for the current output.

An example of an RNN architecture is illustrated in Figure 2. Figure 2a displays a
rolled RNN, where xi and yi represent the input and output at time step i, respectively.
Hidden layers are used to model memory units using a hidden state hi such that data can
be persisted into the system. This shows that hidden layers exhibit feedback structures.
They send prior information to the current state, which affects the output yi for a given
input xi.

Figure 2b unrolls the RNN from Figure 2a. We can see that the current hidden state
of the hidden layers depends on previous information and the current input (i.e., hi =

Symmetry 2022, 14, 2524 3 of 14

f (hi−1, xi)). The current output yi is determined by the current input xi and state hi
(i.e., yi = g(hi) = g(f (hi−1, xi))). It is clear that the prior state can affect the current output.
For example, the final output y2 depends on the hidden state h2, which is affected by the
prior state h1. Therefore, to obtain the final result of an RNN model, the computation of
previous states must be accomplished. Aside form that, the unrolled architecture indicates
that the computational time increases linearly with the number of hidden states.

Output Layer

Hidden Layers

Input Layer

(a)

ix

iy

ix

iy

0x

0y

0x

0y

1x

1y

1x

1y

2x

2y

2x

2y

0x

0y

1x

1y

2x

2y

(b)

ih 0h 1h 2h

Figure 2. The architecture of an RNN (a) Rolled RNN, (b) Unrolled RNN.

3. Motivation

When dealing with RNN inference task allocations in edge cloud computing systems,
existing approaches [15,16] leverage input-dependent methods to dynamically allocate
tasks among different computing devices.

It is worthwhile to mention that the running time of an RNN inference task is almost
linearly proportional to that of the input length. Thus, state-of-the-art approaches allocate
the tasks to edge and cloud devices based on the input length. The tasks of short lengths are
executed on edge systems, while others are on cloud servers such that the overall energy
consumption can be reduced by utilizing the energy-efficient task processing capabilities of
edge systems.

Nonetheless, we note that existing input-dependent approaches [15,16] do not take
into account task latency, which we define as the QoS requirements. Modern CPUs allow
for dynamic voltage and frequency scaling, which make it feasible to save system energy
using DVFS techniques without QoS violations.

We adopt an edge device (as described in Section 6.1) and measure its energy con-
sumption using a multimeter for a fixed input, as listed in Table 1. From the table, we can
see that when lowering the frequency, the energy consumption decreases, and the running
time increases accordingly. The energy consumption reduces by 41% when varying the
frequency from 1.5 GHz to 0.6 GHz. Therefore, we conclude that DVFS can help save
energy in an RNN inference task.

Table 1. RNN task energy consumption using DVFS techniques.

Frequency (GHz) Power (W) Time (ms) Energy (mJ)

1.5 1.43 48 68.64
1.0 0.91 65 59.15
0.6 0.40 101 40.40

4. Related Work

Numerous methods have been proposed to deal with inference tasks in edge and
cloud computing systems [19–23]. To efficiently run deep learning (DL) tasks, researchers
have proposed various hardware accelerators and interconnections in edge devices. Be-
labed et al. [24] developed an energy-efficient DL accelerator using FPGAs. Xia et al. [25]

Symmetry 2022, 14, 2524 4 of 14

leverage FPGAs to process lightweight CNN models. Liu et al. [26] designed FPGA acceler-
ation with a systolic array, matrix tiling, fixed-point precision and parallelism for compact
MobileNet models. Xu et al. [27] implement FPGA acceleration for computer vision DL
tasks that effectively reduced the response time and energy consumption.

Another approach is to optimize DL models for inference acceleration. Zhou et al. [28]
developed a lightweight CNN model for edge computing. Kim et al. [29] optimized DL
models for hardware-specific characteristics using TVM. Li et al. [30] proposed dynamic
filter pruning together with a model transformation method to reduce the computational
complexity. Matsubara et al. [31] used knowledge distillation to build compressed models
for edge devices. Kim and Deka [32] optimized configurations for DL models to work
on tensor processing units. Li et al. [33] took advantage of a greedy-based filter pruning
technique to optimize DL models.

In addition, researchers utilized collaborative edge cloud systems for DL tasks.
Zhou et al. [34] explored various accelerators and guided accelerator selection for tasks.
Gong et al. [35] dealt with private and public data on edge and cloud devices, respectively.
Feng et al. [36] proposed a blockchain-enabled technique that optimizes offloading tasks
between edge devices and servers. Liu et al. [37] presented a framework that offloads
computation from unmanned aerial vehicles (UAVs) to devices based on optimal decisions
and resource management policies. Kennedy et al. [38] proposed a framework to offload
DL tasks to virtualized GPUs. Kuang et al. [39] minimized task latency while meeting the
requirements of power and energy.

Note that current methods mainly focus on feedforward networks such as CNNs,
and few collaborative methods study recurrent networks. Pagliari et al. [15] managed
RNN inference task mappings between edge and cloud systems using an input-dependent
method, and they extended the method to a collaborative mapping engine to support an ar-
bitrary number of devices and interconnections [16]. Nonetheless, for RNN inference tasks,
existing approaches map tasks based on the length of an input sequence. We propose a
technique combining the input sequence and DVFS that minimizes the energy consumption
of edge devices while meeting the QoS requirements of RNN tasks.

5. Methodology

Motivated by the energy reduction observations with DVFS in Section 3, we propose
an energy-aware runtime manager that takes advantage of DVFS techniques to consume
less energy and meet the QoS requirements of RNN tasks. The workflow of the runtime
manager is shown in Figure 3. In the Task Model phase, we first collect the running time at
various operating frequencies for different input lengths. Then, we perform data training
to build the regression model snd predict the running time in various operating conditions.

Data Collection

Training Sequence

Regression Model

Runtime Manager

Data Training

Task Model

Energy Model

Input Sequence

DVFS Technique

with QoS

Allocation Strategy

Task Allocation

Cloud Server

QoS

Figure 3. The workflow of the proposed energy-aware runtime manager.

Symmetry 2022, 14, 2524 5 of 14

In the Task Allocation phase, we establish the energy model using the predicted
running time together with the power consumption. The allocation strategy is then applied
to perform task allocations between edge and cloud devices. It takes into account the
QoS requirement to make sure that tasks are properly assigned to cloud servers and edge
devices. When operating on edge devices, DVFS techniques are applied to edge computing
systems to minimize energy consumption while meeting QoS requirements.

5.1. Task Model

When dealing with different RNN tasks, we need to build a performance model to
estimate the running time of RNN tasks. With the task model, one can predict the running
time of each task, which helps determine task allocation strategies afterward.

To build a task model, we first collected data from the training sequences. We adopted
n different lengths of input sequences, and each length of input sequences was repeated
m times to measure the variations. Note that due to DVFS, there existed different CPU
operating frequencies. Suppose that there were p frequency modes. Thus, we obtained
n× m× p sets of input sequences, and the jth time repetition of the ith length of input
sequences for the kth frequency is denoted by di,j,k, which yields the running time ti,j,k.
Therefore, we obtained data tuples < di,j,k, ti,j,k >, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p in the
data collection.

We used the collected data for training to obtain the task model. Since the running
time of an RNN inference task is almost linearly proportional to that of the the input length,
we built a linear performance model as follows:

Tk(d) = ak · d + bk + ck (1)

where Tk is the predicted running time of the RNN task, d is the length of the input sequence,
ak is the proportional coefficient between the input length and running time, bk is the bias
coefficient, ck is the overhead time to switch frequencies and subscript k denotes the kth
operating frequency, as described in Section 6.2.

To obtain the coefficients of Equation (1), we employed the linear least squares regres-
sion method using data collection < di,j,k, ti,j,k >. Then, we obtained

ak =
m · n · Σi,j(di,j,k · ti,j,k)− Σi,jdi,j,k · Σi,jti,j,k

m · n · Σi,jd2
i,j,k − (Σi,jdi,j,k)2

(2)

bk =
Σi,jti,j,k − ak · Σi,jdi,j,k

m · n (3)

With Equations (2) and (3), we obtained the regression model at the kth operating
frequency, which was used for task allocation. We obtained a task model T of all frequencies
as follows:

T = {Tk|1 ≤ k ≤ p} (4)

5.2. Task Allocation

From the observations in Section 3, we found that the frequency affects the task energy.
To reduce the energy consumption of edge cloud computing systems, we first built an
energy model at the kth operating frequency:

Ek = Tk · Pk (5)

where ek is the task energy, Tk is the running time of the inference task and Pk is the power
at the kth operating frequency. Then, we obtained the energy model of all frequencies
as follows:

E = {Ek|1 ≤ k ≤ p} (6)

Symmetry 2022, 14, 2524 6 of 14

Then, we designed a task allocation strategy as follows:

S(d, q) =

{
Edge if ∃Tk ∈ T, Tk(d) ≤ q
Cloud otherwise

(7)

where S is the task allocation strategy function, d is the input data sequence and q is the
QoS requirement (i.e., the maximum allowable task latency). If the QoS requirement can be
met on edge devices, the task allocation strategy executes the task on the edge. Otherwise,
it sends the task to the cloud server for execution.

When executing tasks on edge devices, we applied DVFS techniques to dynamically
adjust the processor frequency to minimize energy consumption as follows:

argmin
Ek

f (Ek) = {Ek|Ek ∈ E, Tk ≤ q} (8)

We selected the lowest operating frequency that met the QoS requirements to save
energy. Note that when we varied the CPU frequencies from the ith operating frequency to
the kth operating frequency, the overhead time in Equation (1) was computed as follows:

ck =

{
0 if i = k
C otherwise

(9)

where C is a constant, as described in Section 6.2.2.
After frequency variation using DVFS techniques, we updated the energy model using

the latest data. We updated the coefficients in Equation (1) using online data such that the
model always reflected the current characteristics of the edge device.

6. Experimental Results
6.1. Experimental Set-Up

To evaluate the effectiveness of our proposed method, without loss of generality, we
used a server with Intel processors and a Raspberry Pi board device to emulate the cloud
server and the edge device of an edge cloud computing system, respectively. Note that our
method can be applied to a system with multiple cloud servers and edge devices, where
each RNN task is allocated accordingly. In this paper, our experimental system set-up was
as follows:

• An ARM Cortex-A72@1.5 GHz, 4 GB RAM to denote an edge computing device;
• A Dual Intel Xeon E5-2630@2.40 GHz, 128 GB RAM plus an NVIDIA 3080Ti GPU

to represent a cloud computing server.

We used Python 3.6 to build an RNN model and implement the proposed task allo-
cation strategy. In addition, we applied a multimeter to measure the power throughout
the experiments.

Figure 4 displays the experimental set-up of the edge computing device, where the
Raspberry Pi development board was used as the edge computing device, a multimeter
was adopted for power measurement, and the screen was used to show the working status
of the edge device, such as the task latency and system status.

Symmetry 2022, 14, 2524 7 of 14

Raspberry Pi

Board

Screen

Multimeter

Figure 4. Experimental set-up of the edge computing device.

6.2. Task Model
6.2.1. Linear Coefficients

We first performed experiments to determine the task model’s linear coefficients
in Equation (1) (i.e., ak and bk). The input length and running time results at different
operating frequencies are scattered in Figure 5, where each input length was measured five
times to evaluate the time variation. From Figure 5, we applied the linear least squares
regression method in Equations (2) and (3) to obtain the coefficients of ak and bk, respectively.
The computed coefficients are displayed in Table 2.

Table 2. RNN task energy consumption using DVFS techniques.

k Frequency (GHz) ak bk

1 0.6 0.4629 8.133

2 0.7 0.3966 8.2

3 0.8 0.3498 8.4133

4 0.9 0.3113 8.1733

5 1.0 0.2854 7.4533

6 1.1 0.2591 7.8

7 1.2 0.2434 6.5333

8 1.3 0.2297 5.12

9 1.4 0.2175 5.3467

10 1.5 0.1998 6.88

In Figure 5, the dotted linear line is displayed for each frequency. We observe that for a
fixed frequency, the running time was linearly proportional to the input length. There were
some points that exhibited offsets from the linear line, such as the case of an input length of
300 in Figure 5j, but those points are not far away from the linear line. There was a linear
relationship between the input length and its running time, because for each input data
point, all hidden states were calculated, which resulted in a fixed processing time. As the
input length increased linearly, the running time accumulated linearly as well.

As the frequency increased from 0.6 GHz to 1.5 GHz, the running time decreased
accordingly, and this makes sense since higher frequencies lead to higher computing capa-
bilities. The line slope ak decreased from 0.4629 to 0.1998 from 0.6 GHz to 1.5 GHz, and this
indicates that when the input length increased by 100, the running time increment reduced
from 46.29 ms to 19.98 ms, and the system performance was improved at higher frequencies.

Symmetry 2022, 14, 2524 8 of 14

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

T
im

e
(m

s)
Input Length

(a)

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(b)

0

50

100

150

200

250

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(c)

0

50

100

150

200

250

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(d)

0

50

100

150

200

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(e)

0

50

100

150

200

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(f)

0

50

100

150

200

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(g)

0

50

100

150

200

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(h)

0

50

100

150

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(i)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Input Length

(j)
Figure 5. Input length and running time of RNN tasks at different operating frequencies. (a) Input
length and running time at 0.6 GHz. (b) Input length and running time at 0.7 GHz. (c) Input length
and running time at 0.8 GHz. (d) Input length and running time at 0.9 GHz. (e) Input length and
running time at 1.0 GHz. (f) Input length and running time at 1.1 GHz. (g) Input length and running
time at 1.2 GHz. (h) Input length and running time at 1.3 GHz. (i) Input length and running time at
1.4 GHz. (j) Input length and running time at 1.5 GHz.

6.2.2. Overhead Coefficient

In addition to linear coefficients, we also needed to determine the overhead coefficient
ck in Equation (1). We applied DVFS techniques and switched operating frequencies under
different conditions, as shown in Table 3.

Symmetry 2022, 14, 2524 9 of 14

Table 3. The overhead of switching operating frequencies. The first column and the first row denote
the target frequency and source frequency, respectively. The value of the table represents the switching
time from the source frequency to the target frequency in ms.

Target
Source 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.6 0 9.43 8.59 8.03 7.69 7.37 7.14 7 6.82 6.67
0.7 10.01 0 8.12 7.76 7.3 6.91 6.63 6.35 6.2 6
0.8 10.03 8.83 0 7.56 7.14 6.92 6.54 6.26 6.08 5.81
0.9 10 8.69 8.01 0 7.03 6.76 6.43 6.19 5.99 5.79
1.0 9.89 8.65 8.06 7.39 0 6.77 6.44 6.15 5.92 5.69
1.1 9.92 8.58 7.94 7.4 6.99 0 6.35 6.05 5.82 5.61
1.2 9.79 8.51 7.95 7.43 7.01 6.73 0 6.07 5.85 5.74
1.3 9.93 8.68 8.05 7.46 7.02 6.67 6.5 0 5.85 6.02
1.4 9.77 8.57 7.87 7.31 6.82 6.46 6.16 5.95 0 5.62
1.5 9.87 8.62 7.94 7.4 6.88 6.54 6.23 5.99 5.71 0

The target frequency and source frequency are used as headers, and the switching
from each source frequency to each target frequency is displayed. We can see that the
switching overhead time was zero if the source and target frequency were the same because
there was no need to change frequencies in this case. Otherwise, it took approximately
5–10 ms to finish the frequency switching. Therefore, we set up a lookup table for ck such
that for every instance of frequency switching, we could find the precise overhead value.

It is worth mentioning that on the one hand, if the source frequency is higher, it takes
less time to finish the switching. For example, when switching to a 0.7 GHz target frequency
from a 0.6 GHz source frequency, it took 10.01 ms, while the switching time decreased to
6 ms from a 1.5 GHz source frequency. There was a 4.01 ms switching time difference in
this case.

On the other hand, if the target frequency is higher, it also spends less time switching.
When either the source frequency or target frequency is higher, it is faster to finish the
frequency switching because the CPU operates in higher frequencies, and it accomplishes
tasks more quickly.

However, when the target frequency is high, the time difference is not as large as
when the source frequency is high. For example, when the source frequency was 1.4 GHz,
the switching time difference was 1.11 ms between the target frequencies of 0.6 GHz and
1.5 GHz. This was much smaller than the time difference value of 4.01 ms when the source
frequency was high.

6.3. Energy Consumption

We tested different lengths of inputs and compared the edge energy consumption
of our proposed method with that of the state-of-the-art approach by Pagliari et al. [15].
Similarly, the method of Pagliari [15] maps RNN tasks among cloud and edge devices such
that the execution time and energy consumption requirements can be met. The method
comparison is summarized in Table 4.

Table 4. Methodology comparison.

Method Input
Dependence

Cloud Edge
Allocation

Energy Opti-
mization

QoS Re-
quirement DVFS

Pagliari [15] Yes Yes Yes No No
Our Method Yes Yes Yes Yes Yes

We used q = 200 ms as the QoS latency requirement. The results are shown in Figure 6.

Symmetry 2022, 14, 2524 10 of 14

0

50

100

150

200

250

200 300 400 500 600

E
n
er

g
y
 (

m
J)

Input Length

Pagliari Ours

Figure 6. Energy consumption comparison on edge devices for separate input lengths.

In Figure 6, the x-axis represents separate input lengths from 200 to 600, and the y-axis
denotes the energy consumption for each input length in mJ. We can see that compared
with the method of Pagliari, our proposed method could effectively reduce the energy
consumption of edge devices for each input length. It reduced the energy consumption
from 36% to 45% for different input lengths and by up to 45% for the input length of 300.

Together with energy consumption, we plotted the task latency in Figure 7. We can see
that for all input sequences, the task latency met the specified QoS requirement (i.e., Tk ≤ q).
When the input length was small (i.e., 200 and 300), the latency of such a task was very
small, and the QoS could be readily met using the lowest frequency. However, as the input
length increased, using the lowest frequency did not meet the QoS requirement. Therefore,
the operating frequency varied accordingly to meet the QoS demands.

100

110

120

130

140

150

160

170

180

190

200

200 300 400 500 600

L
at

en
cy

 (
m

s)

Input Length

Figure 7. Task latency using the proposed method on edge devices.

Compared with the start-of-the-art method, our method was able to significantly
reduce energy consumption, because our method slowed down the task execution while
making sure that the QoS latency requirement was satisfied. This way, the processor runs
tasks at low frequencies, and thus a large amount of energy is saved.

Apart from fixed input lengths, we use mixed different lengths for the input (from 200
to 600 with an interval of 100) and applied our method for energy optimization, as shown
in Figure 8, where the x-axis represents the mixed task number that includes random input
lengths and the y-axis denotes the energy consumption in mJ. We found that for tasks with

Symmetry 2022, 14, 2524 11 of 14

randomly mixed input lengths, our approach consumed 37% less energy on average (from
34% to 39%) compared with the method of Pagliari.

0

5,000

10,000

15,000

20,000

25,000

30,000

20 50 100 200

E
n
er

g
y
 (

m
J)

Task Number

Pagliari Ours

Figure 8. Energy consumption comparison on edge devices using mixed input lengths for the
RNN model.

In addition to the normal RNN model, we also compared our approach with that of
Pagliari using two specialized versions of RNN (i.e., long short-term memory (LSTM) and
gated recurrent unit (GRU)). The results are displayed in Figures 9 and 10, where the x-axis
represents the mixed task number that includes random input lengths (from 100 to 250
with an interval of 50) and the y-axis denotes the energy consumption in mJ. We found
that for the LSTM model, our approach consumed 26% less energy on average—from 25%
to 27%—compared with the method of Pagliari, and for the GRU model, our approach
consumed 28% less energy on average—from 27% to 31%—compared with the method
of Pagliari.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

20 50 100 200

E
n
er

g
y
 (

m
J)

Task Number

Pagliari Ours

Figure 9. Energy consumption comparison for edge devices using mixed input lengths for the
LSTM model.

Symmetry 2022, 14, 2524 12 of 14

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

20 50 100 200

E
n

er
g
y
 (

m
J)

Task Number

Pagliari Ours

Figure 10. Energy consumption comparison for edge devices using mixed input lengths for the
GRU model.

7. Conclusions

In this paper, we presented an energy-aware runtime manager that assigns RNN
inference tasks to edge cloud systems. Our approach performs energy optimizations based
on QoS requirements when processing tasks in edge systems. It decreases the operating
frequency for tasks with short input lengths, and the experimental results reveal that it
can reduce the energy consumption by up to 45% in edge devices compared with the
state-of-the-art approach. Based on the successful experience of this paper, we conclude
that we can improve the energy consumption of various projects by specifying the QoS
requirement and slowing down the operating frequency using DVFS techniques. In the
future, we plan to extend our manager to more neural network inference tasks.

Author Contributions: Conceptualization, C.C. and W.G.; methodology, C.C.; software, C.C., W.G.,
Z.W. (Zhuoyu Wu) and Y.Y.; validation, Z.W. (Zheng Wang); data curation, G.L.; writing—original
draft preparation, C.C.; writing—review and editing, W.G. and Y.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Key-Area Research and Development Program of Guang-
dong Province (grant number 2019B010155003), National Natural Science and Foundation of China
(NSFC 61902355), the Guangdong Basic and Applied Basic Research Foundation (grant number
2020B1515120044) and the joint fund of Science & Technology Department of Liaoning Province and
State Key Laboratory of Robotics (2021-KF-22-12).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,

105, 2295–2329. [CrossRef]
2. Sahlol, A.T.; Abd Elaziz, M.; Tariq Jamal, A.; Damaševičius, R.; Farouk Hassan, O. A Novel Method for Detection of Tuberculosis

in Chest Radiographs Using Artificial Ecosystem-Based Optimisation of Deep Neural Network Features. Symmetry 2020, 12, 1146.
[CrossRef]

3. Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote
sensing studies—part 1: Literature review. Remote Sens. 2021, 13, 2450. [CrossRef]

4. Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied
for prediction of plant leaf diseases. Sensors 2021, 21, 4749. [CrossRef]

http://doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.3390/sym12071146
http://dx.doi.org/10.3390/rs13132450
http://dx.doi.org/10.3390/s21144749

Symmetry 2022, 14, 2524 13 of 14

5. Ackerson, J.M.; Dave, R.; Seliya, N. Applications of recurrent neural network for biometric authentication & anomaly detection.
Information 2021, 12, 272.

6. Lin, J.C.W.; Shao, Y.; Djenouri, Y.; Yun, U. ASRNN: A recurrent neural network with an attention model for sequence labeling.
Knowl. Based Syst. 2021, 212, 106548. [CrossRef]

7. Anagnostis, A.; Benos, L.; Tsaopoulos, D.; Tagarakis, A.; Tsolakis, N.; Bochtis, D. Human activity recognition through recurrent
neural networks for human–robot interaction in agriculture. Appl. Sci. 2021, 11, 2188. [CrossRef]

8. Rahman, M.M.; Watanobe, Y.; Nakamura, K. A Bidirectional LSTM Language Model for Code Evaluation and Repair. Symmetry
2021, 13, 247. [CrossRef]

9. Du, L.; Du, Y.; Li, Y.; Su, J.; Kuan, Y.C.; Liu, C.C.; Chang, M.C.F. A reconfigurable streaming deep convolutional neural network
accelerator for Internet of Things. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 65, 198–208. [CrossRef]

10. Chen, Y.; Xie, Y.; Song, L.; Chen, F.; Tang, T. A survey of accelerator architectures for deep neural networks. Engineering 2020,
6, 264–274. [CrossRef]

11. Yin, H.; Wang, Z.; Jha, N.K. A hierarchical inference model for Internet-of-Things. IEEE Trans. Multi-Scale Comput. Syst. 2018,
4, 260–271. [CrossRef]

12. Thomas, A.; Guo, Y.; Kim, Y.; Aksanli, B.; Kumar, A.; Rosing, T.S. Hierarchical and distributed machine learning inference beyond
the edge. In Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff,
AB, Canada, 9–11 May 2019; pp. 18–23.

13. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]

14. Eshratifar, A.E.; Esmaili, A.; Pedram, M. Bottlenet: A deep learning architecture for intelligent mobile cloud computing services.
In Proceedings of the 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Lausanne,
Switzerland, 29–31 July 2019; pp. 1–6.

15. Pagliari, D.J.; Chiaro, R.; Chen, Y.; Vinco, S.; Macii, E.; Poncino, M. Input-dependent edge-cloud mapping of recurrent neural
networks inference. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
20–24 July 2020; pp. 1–6.

16. Pagliari, D.J.; Chiaro, R.; Macii, E.; Poncino, M. CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks.
IEEE Trans. Comput. 2020, 70, 1626–1639.

17. Tann, H.; Hashemi, S.; Bahar, R.I.; Reda, S. Runtime configurable deep neural networks for energy-accuracy trade-off. In
Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

18. Jahier Pagliari, D.; Panini, F.; Macii, E.; Poncino, M. Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural
Networks. In Proceedings of the GLSVLSI ’19, 2019 on Great Lakes Symposium on VLSI, Tysons Corner, VA, USA, 9–11 May
2019; Association for Computing Machinery: New York, NY, USA, 2019; p. 69–74. [CrossRef]

19. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

20. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
21. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019,

107, 1537–1562. [CrossRef]
22. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
23. Nabavinejad, S.M.; Baharloo, M.; Chen, K.C.; Palesi, M.; Kogel, T.; Ebrahimi, M. An Overview of Efficient Interconnection

Networks for Deep Neural Network Accelerators. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 268–282. [CrossRef]
24. Belabed, T.; Coutinho, M.G.F.; Fernandes, M.A.C.; Carlos, V.; Souani, C. Low Cost and Low Power Stacked Sparse Autoencoder

Hardware Acceleration for Deep Learning Edge Computing Applications. In Proceedings of the 2020 5th International Conference
on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2–5 September 2020; pp. 1–6. [CrossRef]

25. Xia, M.; Huang, Z.; Tian, L.; Wang, H.; Chang, V.; Zhu, Y.; Feng, S. SparkNoC: An energy-efficiency FPGA-based accelerator
using optimized lightweight CNN for edge computing. J. Syst. Archit. 2021, 115, 101991. [CrossRef]

26. Liu, X.; Yang, J.; Zou, C.; Chen, Q.; Yan, X.; Chen, Y.; Cai, C. Collaborative Edge Computing With FPGA-Based CNN Accelerators
for Energy-Efficient and Time-Aware Face Tracking System. IEEE Trans. Comput. Soc. Syst. 2022, 9, 252–266. [CrossRef]

27. Xu, C.; Jiang, S.; Luo, G.; Sun, G.; An, N.; Huang, G.; Liu, X. The Case for FPGA-Based Edge Computing. IEEE Trans. Mob.
Comput. 2022, 21, 2610–2619. [CrossRef]

28. Zhou, J.; Dai, H.N.; Wang, H. Lightweight Convolution Neural Networks for Mobile Edge Computing in Transportation Cyber
Physical Systems. ACM Trans. Intell. Syst. Technol. 2019, 10, 67. [CrossRef]

29. Kim, R.; Kim, G.; Kim, H.; Yoon, G.; Yoo, H. A Method for Optimizing Deep Learning Object Detection in Edge Computing. In
Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Republic of Korea, 21–23 October 2020; pp. 1164–1167. [CrossRef]

30. Li, G.; Ma, X.; Wang, X.; Liu, L.; Xue, J.; Feng, X. Fusion-Catalyzed Pruning for Optimizing Deep Learning on Intelligent Edge
Devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 3614–3626. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2020.106548
http://dx.doi.org/10.3390/app11052188
http://dx.doi.org/10.3390/sym13020247
http://dx.doi.org/10.1109/TCSI.2017.2735490
http://dx.doi.org/10.1016/j.eng.2020.01.007
http://dx.doi.org/10.1109/TMSCS.2018.2821154
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1145/3299874.3317974
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/JETCAS.2020.3022920
http://dx.doi.org/10.1109/ATSIP49331.2020.9231748
http://dx.doi.org/10.1016/j.sysarc.2021.101991
http://dx.doi.org/10.1109/TCSS.2021.3059318
http://dx.doi.org/10.1109/TMC.2020.3041781
http://dx.doi.org/10.1145/3339308
http://dx.doi.org/10.1109/ICTC49870.2020.9289529
http://dx.doi.org/10.1109/TCAD.2020.3013050

Symmetry 2022, 14, 2524 14 of 14

31. Matsubara, Y.; Callegaro, D.; Baidya, S.; Levorato, M.; Singh, S. Head Network Distillation: Splitting Distilled Deep Neural
Networks for Resource-Constrained Edge Computing Systems. IEEE Access 2020, 8, 212177–212193. [CrossRef]

32. Gordienko, Y.; Kochura, Y.; Taran, V.; Gordienko, N.; Rokovyi, O.; Alienin, O.; Stirenko, S. Chapter Nine—“Last mile” optimization
of edge computing ecosystem with deep learning models and specialized tensor processing architectures. In Hardware Accelerator
Systems for Artificial Intelligence and Machine Learning; Advances in Computers; Kim, S., Deka, G.C., Eds.; Elsevier: Amsterdam,
The Netherlands, 2021; Volume 122, pp. 303–341. [CrossRef]

33. Li, G.; Ma, X.; Wang, X.; Yue, H.; Li, J.; Liu, L.; Feng, X.; Xue, J. Optimizing deep neural networks on intelligent edge accelerators
via flexible-rate filter pruning. J. Syst. Archit. 2022, 124, 102431. [CrossRef]

34. Zhou, X.; Canady, R.; Bao, S.; Gokhale, A. Cost-effective hardware accelerator recommendation for edge computing. In
Proceedings of the 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20), Virtual Event, 25–26 June 2020.

35. Gong, C.; Lin, F.; Gong, X.; Lu, Y. Intelligent Cooperative Edge Computing in Internet of Things. IEEE Internet Things J. 2020,
7, 9372–9382. [CrossRef]

36. Feng, J.; Richard Yu, F.; Pei, Q.; Chu, X.; Du, J.; Zhu, L. Cooperative Computation Offloading and Resource Allocation
for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020,
7, 6214–6228. [CrossRef]

37. Liu, Y.; Xie, S.; Zhang, Y. Cooperative Offloading and Resource Management for UAV-Enabled Mobile Edge Computing in Power
IoT System. IEEE Trans. Veh. Technol. 2020, 69, 12229–12239. [CrossRef]

38. Kennedy, J.; Varghese, B.; Reaño, C. AVEC: Accelerator Virtualization in Cloud-Edge Computing for Deep Learning Libraries. In
Proceedings of the 2021 IEEE 5th International Conference on Fog and Edge Computing (ICFEC), Melbourne, VIC, Australia,
10–13 May 2021; pp. 37–44. [CrossRef]

39. Kuang, Z.; Ma, Z.; Li, Z.; Deng, X. Cooperative computation offloading and resource allocation for delay minimization in mobile
edge computing. J. Syst. Archit. 2021, 118, 102167. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3039714
http://dx.doi.org/10.1016/bs.adcom.2020.10.003
http://dx.doi.org/10.1016/j.sysarc.2022.102431
http://dx.doi.org/10.1109/JIOT.2020.2986015
http://dx.doi.org/10.1109/JIOT.2019.2961707
http://dx.doi.org/10.1109/TVT.2020.3016840
http://dx.doi.org/10.1109/ICFEC51620.2021.00013
http://dx.doi.org/10.1016/j.sysarc.2021.102167

	Introduction
	Background
	Motivation
	Related Work
	Methodology
	Task Model
	Task Allocation

	Experimental Results
	Experimental Set-Up
	Task Model
	Linear Coefficients
	Overhead Coefficient

	Energy Consumption

	Conclusions
	References

