
Citation: Yanagi, K. Refined

Hermite–Hadamard Inequalities and

Some Norm Inequalities. Symmetry

2022, 14, 2522. https://doi.org/

10.3390/sym14122522

Academic Editors: Nicusor Minculete

and Shigeru Furuichi

Received: 15 October 2022

Accepted: 21 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Refined Hermite–Hadamard Inequalities and Some
Norm Inequalities
Kenjiro Yanagi

Department of Mathematics, Josai University, 1-1, Keyakidai, Sakado 350-0295, Japan; yanagi@yamaguchi-u.ac.jp

Abstract: It is well known that the Hermite–Hadamard inequality (called the HH inequality) refines
the definition of convexity of function f (x) defined on [a, b] by using the integral of f (x) from a to
b. There are many generalizations or refinements of HH inequality. Furthermore HH inequality
has many applications to several fields of mathematics, including numerical analysis, functional
analysis, and operator inequality. Recently, we gave several types of refined HH inequalities and
obtained inequalities which were satisfied by weighted logarithmic means. In this article, we give
an N-variable Hermite–Hadamard inequality and apply to some norm inequalities under certain
conditions. As applications, we obtain several inequalities which are satisfied by means defined by
symmetry. Finally, we obtain detailed integral values.
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1. Introduction

A function, f : [a, b] ⊂ R→ R, is said to be convex on [a, b] if the inequality

f (
x + y

2
) ≤ f (x) + f (y)

2
(1)

holds for all x, y ∈ [a, b]. If the inequality (1) reverses, then f is said to be concave on [a, b].
Let f : [a, b] ⊂ R→ R be a convex function on an interval [a.b]. Then,

f (
a + b

2
) ≤ 1

b− a

∫ b

a
f (t)dt ≤ f (a) + f (b)

2
. (2)

This double inequality is known in the literature as the Hermite–Hadamard integral in-
equality for convex functions. It has many applications in different areas of pure and
applied mathematics. For some references about this latter point, we can consult [1–10].
Recently, we obtained the following two refined Hermite–Hadamard inequalities in order
to obtain inequalities stronger than (2).

Theorem 1 ([11]). Let f (x) be a convex function on [a, b]. Then, for any m, n ∈ N∪ {0}

f (
a + b

2
) ≤ L(1)

f ,n(a, b)

≤ 1
b− a

∫ b

a
f (t)dt =

∫ 1

0
f ((1− t)a + tb)dt (3)

≤ L(2)
f ,m(a, b) ≤ f (a) + f (b)

2
,

where

L(1)
f ,n(a, b) =

1
2n

2n

∑
k=1

f ((1− 2k− 1
2n+1 )a +

2k− 1
2n+1 b)
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and

L(2)
f ,m(a, b) =

1
2m+1 { f (a) + f (b) + 2

2m−1

∑
k=1

f ((1− k
2m )a +

k
2m b)}.

Theorem 2 ([11]). Let f (x) be a convex function on [a, b]. Then, for any v ∈ [0, 1] and
m, n ∈ N∪ {0},

f (
a + b

2
) ≤ r(1)f ,v,n(a, b)

≤ 1
b− a

∫ b

a
f (t)dt =

∫ 1

0
f ((1− t)a + tb)dt (4)

≤ r(2)f ,v,m(a, b) ≤ f (a) + f (b)
2

,

where

r(1)f ,v,n(a, b)

=
1
2n

2n

∑
k=1
{v f ((1− (2k− 1)v

2n+1 )a +
(2k− 1)v

2n+1 b)}

+
1
2n

2n

∑
k=1
{(1− v) f ((1− v− (2k− 1)(1− v)

2n+1 )a + (v +
(2k− 1)(1− v)

2n+1 b)}

and

r(2)f ,v,m(a, b)

=
1

2m+1 {v f (a) + (1− v) f (b) + f ((1− v)a + vb)}

+
1

2m

2m−1

∑
k=1
{v f ((1− kv

2m )a +
kv
2m b)

+(1− v) f ((1− v− k(1− v)
2m )a + (v +

k(1− v)
2m )b)}.

In Section 2, we try to obtain an N-variable Hermite–Hadamard inequality. As applications
we obtain several inequalities satisfied by arithmetic mean, geometric mean, logarithmic
mean, harmonic mean, and so on. These means have the properties of symmetry. In
Section 3, we obtain some norm inequalities. In Section 4, we obtain integral values of the
Hermite–Hadamard inequality under some norm conditions.

2. N-Variable Hermite–Hadamard Inequality

We need the following result.

Lemma 1. Let x1, x2, . . . , xN ∈ R or x1, x2, . . . , xN ∈ X, where X is a linear space. Then,

N

∑
i=1

xi =
1

N − 1 ∑
i<j

(xi + xj).
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Proof.

N

∑
i=1

xi =
1
2

{
N

∑
i=1

xi +
N

∑
j=1

xj

}
=

1
2N

N

∑
i=1

N

∑
j=1

(xi + xj)

=
1

2N

{
2

N

∑
i=1

xi + ∑
i 6=j

(xi + xj)

}

=
1
N

N

∑
i=1

xi +
1

2N

{
∑
i<j

(xi + xj) + ∑
i>j

(xi + xj)

}

=
1
N

N

∑
i=1

xi +
1
N ∑

i<j
(xi + xj).

Then,

(1− 1
N
)

N

∑
i=1

xi =
1
N ∑

i<j
(xi + xj).

That is
N

∑
i=1

xi =
1

N − 1 ∑
i<j

(xi + xj).

We have the following N-variable Hermite–Hadamard inequality.

Theorem 3. Let f (x) be a convex function on R and let x1, x2, . . . , xN ∈ R. Then, for any
m, n ∈ R∪ {0},

f (
1
N

N

∑
i=1

xi) ≤
2

N(N − 1) ∑
i<j

L(1)
f ,n(xi, xj)

≤ 2
N(N − 1) ∑

i<j

∫ 1

0
f ((1− t)xi + txj)dt

≤ 2
N(N − 1) ∑

i<j
L(2)

f ,m(xi, xj)

≤ 1
N

N

∑
i=1

f (xi).

Proof. By Lemma 1 and the convexity of f (x),

f (
1
N

N

∑
i=1

xi) = f (
1

N(N − 1) ∑
i<j

(xi + xj)) = f (
2

N(N − 1) ∑
i<j

xi + xj

2
)

≤ 2
N(N − 1) ∑

i<j
f (

xi + xj

2
).
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By (3),

2
N(N − 1) ∑

i<j
f (

xi + xj

2
)

≤ 2
N(N − 1) ∑

i<j
L(1)

f ,n(xi, xj)

≤ 2
N(N − 1) ∑

i<j

∫ 1

0
f ((1− t)xi + txj)dt

≤ 2
N(N − 1) ∑

i<j
L(2)

f ,m(xi, xj) ≤
2

N(N − 1) ∑
i<j

f (xi) + f (xj)

2

By using Lemma 1 again, we have the last inequality.

When f (x) = − log x, we have the following corollary.

Corollary 1. Let f (x) = − log x and let xi > 0 (1 ≤ i ≤ N). We suppose that xi 6= xj for i 6= j.
Then,

− log
1
N

N

∑
i=1

xi ≤
2

N(N − 1) ∑
i<j

{
xi log xi
xj − xi

−
xj log xj

xj − xi
+ 1

}
≤ − 1

N

N

∑
i=1

log xi.

That is

1
N

N

∑
i=1

xi ≥ exp

{
2

N(N − 1) ∑
i<j
{ xi log xi

xi − xj
+

xj log xj

xj − xi
− 1}

}
≥
(

N

∏
i=1

xi

)1/N

.

When f (x) = ex, we have the following corollary.

Corollary 2. Let f (x) = ex. We suppose that xi 6= xj for i 6= j. Then,

exp{ 1
N

N

∑
i=1

xi} ≤
2

N(N − 1) ∑
i<j

exj − exi

xj − xi
≤ 1

N

N

∑
i=1

exi .

When f (x) = x−1, we have the following corollary.

Corollary 3. Let f (x) = x−1 and let xi > 0 (1 ≤ i ≤ N). We suppose that xi 6= xj for i 6= j.
Then, (

1
N

N

∑
i=1

xi

)−1

≤ 2
N(N − 1) ∑

i<j

log xj − log xi

xj − xi
≤ 1

N

N

∑
i=1

x−1
i .

That is

1
N

N

∑
i=1

xi ≥

 2
N(N − 1) ∑

i<j

(
xj − xi

log xj − log xi

)−1
−1

≥
(

1
N

N

∑
i=1

x−1
i

)−1

.
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When f (x) = x2, we have the following corollary.

Corollary 4. Let f (x) = x2. Then,(
1
N

N

∑
i=1

xi

)2

≤ 2
3N(N − 1) ∑

i<j
(x2

j + xjxi + x2
i ) ≤

1
N

N

∑
i=1

x2
i .

3. Some Norm Inequalities

We put a = 0 and b = 1 in (2). Then, we have

f (
1
2
) ≤

∫ 1

0
f (t)dt ≤ f (0) + f (1)

2
.

Furthermore by (3), we have

f (
1
2
) ≤ 1

2n

2n

∑
k=1

f (
2k− 1
2n+1 ) ≤

∫ 1

0
f (t)dt

≤ 1
2m+1 { f (0) + f (1) + 2

2m−1

∑
k=1

f (
k

2m )} ≤ f (0) + f (1)
2

.

Now, we suppose that F(x) is a convex and monotone increasing function on [0, ∞). We
put f (t) = F(‖(1− t)x + ty‖), where x, y ∈ X and X is a Banach space with norm ‖ · ‖.
Then, f (t) is convex on [0, 1]. Because for any t, s ∈ [0, 1] and for any α, β ≥ 0 satisfying
α + β = 1,

f (αt + βs) = F(‖x + (αt + βs)(y− x)‖)
= F(‖α(x + t(y− x)) + β(x + s(y− x))‖)
≤ F(α‖x + t(y− x)‖+ b‖x + s(y− x)‖)
≤ αF(‖x + t(y− x)‖) + βF(‖x + s(y− x)‖)
= α f (t) + β f (s).

Then, we have

Theorem 4. Let F(x) is a convex and monotone increasing function on [0, ∞). Let X be a Banach
space. We put f (t) = F(‖(1− t)x + ty‖), where x, y ∈ X. Then, for any x1, x2, . . . , xN ∈ X and
for any m, n ∈ N∪ {0}, we have

F(‖ 1
N

N

∑
i=1

xi‖)

≤ 2
N(N − 1) ∑

i<j

1
2n

2n

∑
k=1

F(‖(1− 2k− 1
2n+1 )xi +

2k− 1
2n+1 xj‖)

≤ 2
N(N − 1) ∑

i<j

∫ 1

0
F(‖(1− t)xi + txj‖)dt

≤ 2
N(N − 1) ∑

i<j

1
2m+1 {F(‖xi‖) + F(‖xj‖)

+2
2m−1

∑
k=1

F(‖(1− k
2m )xi +

k
2m xj‖)}

≤ 1
N

N

∑
i=1

F(‖xi‖).
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Proof. By Lemma 1 and the convexity and monotonicity of F(x),

F(‖ 1
N

N

∑
i=1

xi‖) = F(‖ 1
N(N − 1) ∑

i<j
(xi + xj)‖)

= F(‖ 2
N(N − 1) ∑

i<j

xi + xj

2
‖) ≤ F(

2
N(N − 1) ∑

i<j
‖

xi + xj

2
‖)

≤ 2
N(N − 1) ∑

i<j
F(‖

xi + xj

2
‖).

The inequalities, from the first to the third, are given by (3). Furthermore, the last inequality
is given by Lemma 1.

We take examples of F(x).

Example 1. (1) F(x) = xp, where p ≥ 1.
(2) F(x) = ex.
(3) F(x) = cosh(x) = ex+e−x

2 .
(4) F(x) = (x + 1) log(x + 1).

4. Calculations of the Detailed Integral Values

We need the following two lemmas in order to prove some theorems.

Lemma 2. Let ‖ · ‖ be the Hilbert norm on a Hilbert space H. Then, for any x, y ∈ H we have∫ 1

0
‖(1− t)x + ty‖2dt =

1
6
{‖x‖2 + ‖y‖2 + ‖x + y‖2}

Proof. ∫ 1

0
‖(1− t)x + ty‖2dt =

∫ 1

0
‖x + t(y− x)‖2dt

= ‖x‖2 +
1
2
〈x, y− x〉+ 1

2
〈y− x, x〉+ 1

3
‖y− x‖2

= ‖x‖2 +
1
2
〈x, y〉 − 1

2
‖x‖2 +

1
2
〈y, x〉 − 1

2
‖x‖2 +

1
3
‖y− x‖2

=
1
2
〈x, y〉+ 1

2
〈y, x〉+ 1

3
〈y− x, y− x〉

=
1
2
〈x, y〉+ 1

2
〈y, x〉+ 1

3
(‖y‖2 − 〈y, x〉 − 〈x, y〉+ ‖x‖2)

=
1
3
‖x‖2 +

1
3
‖y‖2 +

1
6
〈x, y〉+ 1

6
〈y, x〉

=
1
6
‖x‖2 +

1
6
‖y‖2 +

1
6
‖x + y‖2.
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Lemma 3. Let ‖ · ‖ be the Hilbert norm on a Hilbert space H. Then, for any x, y ∈ H we have∫ 1

0
‖(1− t)x + ty‖dt =

∫ 1

0

√
‖x + t(y− x)‖2dt

=
∫ 1

0

√
δ2

yxt2 + 2νyxt + ‖x‖2dt

=
1
2

{
νyx(‖y‖ − ‖x‖) + δ2

yx‖y‖
δ2

yx

}

+
1
2

{(
‖x‖2

δyx
−

ν2
yx

δ3
yx

)
log

νyx + δ2
yx + ‖y‖δyx

νyx + ‖x‖δyx

}

=
1
2

{
(Re〈x, y〉 − ‖x‖2)(‖y‖ − ‖x‖) + δ2

yx‖y‖
δ2

yx

}

+
1
2

{(
‖x‖2

δyx
− (Re〈x, y〉 − ‖x‖2)2

δ3
yx

)
log
‖y‖2 − R〈x, y〉+ ‖y‖δyx

Re〈x, y〉 − ‖x‖2 + ‖x‖δyx

}
,

where δyx = ‖y− x‖ and νyx = Re〈x, y− x〉.

Proof. Since ∫ 1

0

√
‖y− x‖2t2 + 2Re〈x, y− x〉t + ‖x‖2dt

= ‖y− x‖
∫ 1

0

√
t2 +

2Re〈x, y− x〉
‖y− x‖2 t +

‖x‖2

‖y− x‖2 dt

= ‖y− x‖
∫ 1

0

√
(t +

Re〈x, y− x〉
‖y− x‖2 )2 − (Re〈x, y− x〉)2

‖y− x‖4 +
‖x‖2

‖y− x‖2 dt,

we may obtain the integral value of
∫ 1

0

√
(t + a)2 + b2dt, where

a =
Re〈x, y− x〉
‖y− x‖2

and

b2 = − (Re〈x, y− x〉)2

‖y− x‖4 +
‖x‖2

‖y− x‖2 .

Then, ∫ 1

0

√
(t + a)2 + b2dt

=
∫ a+1

a

√
s2 + b2ds

=

[
1
2
(s
√

s2 + b2 + b2 log |s +
√

s2 + b2|)
]a+1

a

=
1
2

{
(a + 1)

√
(a + 1)2 + b2 + b2 log |a + 1 +

√
(a + 1)2 + b2|

}
−1

2

{
a
√

a2 + b2 + b2 log |a +
√

a2 + b2|
}

.

Since √
(a + 1)2 + b2 =

‖y‖
‖y− x‖ ,

√
a2 + b2 =

‖x‖
‖y− x‖ ,
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we obtain the result.

Corollary 5. Let ‖ · ‖ be the Hilbert norm on a Hilbert space H and let F(x) = x2. Then, for any
x1, x2, . . . , xN ∈ H we have

‖ 1
N

N

∑
i=1

xi‖2 ≤ 1
3N

{
N

∑
i=1
‖xi‖2 +

1
N − 1 ∑

i<j
‖xi + xj‖2

}
≤ 1

N

N

∑
i=1
‖xi‖2.

Proof. It is clear from Lemma 2.

Corollary 6. Let ‖ · ‖ be the Hilbert norm on a Hilbert space H and let F(x) = x. Then, for any
x1, x2, . . . , xN ∈ H we have

‖
N

∑
i=1

xi‖

≤ 1
N − 1 ∑

i<j

{
(µij − ‖xi‖2)(‖xj‖ − ‖xi‖) + δ2

ji‖xj‖
δ2

ji

}

+
1

N − 1 ∑
i<j

{(
‖xi‖2

δji
−

(µij − ‖xi‖2)2

δ3
ji

)
log
‖xj‖2 − µij + ‖xj‖δji

µij − ‖xi‖2 + ‖xi‖δji

}

≤
N

∑
i=1
‖xi‖,

where δji = ‖xj − xi‖ and µij = Re〈xi, xj〉.

Proof. It is clear from Lemma 3.

Corollary 7. Let ‖ · ‖ be the Hilbert–Schmidt norm on all of the Hilbert–Schmidt class operators
and let F(x) = x2. Then for any positive Hilbert–Schmidt operators A1, A2, . . . , AN we have

‖ 1
N

N

∑
i=1

Ai‖2 ≤ 1
3N

{
N

∑
i=1
‖Ai‖2 +

1
N − 1 ∑

i<j
‖Ai − Aj‖2

}
≤ 1

N

N

∑
i=1
‖Ai‖2.

Proof. It is clear from Lemma 2.

Corollary 8. Let ‖ · ‖ be the Hilbert–Schmidt norm on all of the Hilbert–Schmidt class operators
and let F(x) = x. Then for any positive Hilbert–Schmidt operators A1, A2, . . . , AN we have

‖
N

∑
i=1

Ai‖

≤ 1
N − 1 ∑

i<j

{
(tij − ‖Ai‖2)(‖Aj‖ − ‖Ai‖) + δ2

ji‖Aj‖
δ2

ji

}

+
1

N − 1 ∑
i<j

{(
‖Ai‖2

δji
−

(tij − ‖Ai‖2)2

δ3
ji

)
log
‖Aj‖2 − tij + ‖Aj‖δji

tij − ‖Ai‖2 + ‖Ai‖δji

}

≤
N

∑
i=1
‖Ai‖,

where δji = ‖Aj − Ai‖ and tij = Tr[Ai Aj].
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Proof. It is clear from Lemma 3.

5. Conclusions

Though the Hermite–Hadamard inequality had been given in 2-variable inequality for
convex function, we obtained N-variable Hermite–Hadamard inequality in Theorem 3. Fur-
thermore, we obtained one of norm inequalities as applications of Theorem 4 represented
by an N-variable Hermite–Hadamard inequality. Lastly, we calculated several detailed
integral values of norm inequalities.
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