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Abstract: Blood vessels are harmed in diabetic retinopathy (DR), a condition that impairs vision.
Using modern healthcare research and technology, artificial intelligence and processing units are used
to aid in the diagnosis of this syndrome and the study of diagnostic procedures. The correct assess-
ment of DR severity requires the segmentation of lesions from fundus pictures. The manual grading
method becomes highly difficult and time-consuming due to the wide range of the morphologies,
number, and sizes of lesions. For image segmentation, traditional fuzzy clustering techniques have
two major drawbacks. First, fuzzy memberships based clustering are more susceptible to outliers.
Second, because of the lack of local spatial information, these techniques often result in overseg-
mentation of images. In order to address these issues, this research study proposes an outlier-based
skimpy regularization fuzzy clustering technique (OSR-FCA) for image segmentation. Clustering
methods that use fuzzy membership with sparseness can be improved by incorporating a Gaussian
metric regularisation into the objective function. The proposed study used the symmetry information
contained in the image data to conduct the image segmentation using the fuzzy clustering technique
while avoiding over segmenting relevant data. This resulted in a reduced proportion of noisy data
and better clustering results. The classification was carried out by a deep learning technique called
convolutional neural network (CNN). Two publicly available datasets were used for the validation
process by using different metrics. The experimental results showed that the proposed segmenta-
tion technique achieved 97.16% and classification technique achieved 97.26% of accuracy on the
MESSIDOR dataset.

Keywords: diabetic retinopathy; outliers; oversegmentation; spatial information; skimpy regularization;
fuzzy clustering algorithm; deep learning technique

1. Introduction

Data of human internal organs can be collected quantitatively using a variety of
medical imaging techniques. In vivo or non-invasive data collection is possible using
these methods [1–3]. When studying and diagnosing the disorders of living tissue, these
procedures are preferred. Photographs with visible spectrum and multispectral imaging
are the most commonly used modalities for imaging tissues in the human body, as they
are capable of enhancing the spectral resolution and provide relevant information about
its composition [4,5]. MRI and tomographic procedures are two examples of advanced
mathematical techniques that can be utilised to study the internal parts of the body. Some
of the numerous potential imaging patterns for collecting quantitative information about
organs include the techniques outlined above [6]. Despite the large variety of imaging
methods, the number of image processing methods is greater than the number of imaging
approaches. With reference to medical pictures’ structural segmentation and characteriza-
tion [7], this is a very relevant and wide-ranging field [8]. The segmentation of anatomical
structures such as blood veins and organs is implied in the medical environment. Methods
to describe an object’s properties are designed to provide a set of measures that may be
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used to emphasise its characteristics. As a result of these measurements, tissues, diseased
and healthy states, and so on can be identified [9,10].

Ophthalmological and cardiovascular illnesses such as glaucoma and diabetes can be
quickly identified by quantitatively analysing the retinal fundus pictures which have been
extensively used [11,12]. This is a critical part of the quantitative analysis of retinal fundus
pictures, which entails extracting clinically important parameters such as the length, density,
and so on, from the segmented vascular tree that has been analysed. Another application is
to create mosaic images of the retina using the segmented vascular tree. Other examples
were given in [13]. Human error and processing time are two of the many drawbacks
of segmenting the vascular tree manually in retinal pictures. In circumstances where the
vessels are complicated and the quantity of photos is large, human error is more likely to
occur, affecting the early diagnosis and treatment assessment of retinal illnesses [14].

There are many different types of vessels in the retina, and recognising and localising
them are essential to distinguishing them from other retinal anatomical components, such as
aberrant lesions, the macula, and the optic disc. Non-invasive fundus imaging techniques
and the valuable information provided by the vasculature structure allow the detection and
diagnosis of a wide variety of retinal pathologies. Fuzzy clustering methods, which are
currently popular, face two problems when used for image segmentation. The first problem is
that fuzzy memberships are non-sparse, which makes these algorithms vulnerable to outliers.
This also makes them vulnerable to oversegmentation. We used a unique regularisation to
obtain sparse fuzzy memberships and then propose the OSR-FCA for image segmentation to
address these issues. As a result, non-homogenous interference, may effectively be decreased.
The structure of this report is as follows: Section 2 begins with a discussion of the research
works that are directly linked to our topic. In Section 3, we go over the proposed algorithm
and its benefits. In addition, in Section 4, we perform experiments and analyse the outcomes.
Section 5, our final section, concludes this report.

2. Related Works

Ali Hatamizadeh et al. [15] presented trainable deep active contours (TDACs) to be
implemented in the image segmentation framework to solve the accuracy issue using the
Vaihingen and Bing hut datasets. In addition, a modern hybrid method was proposed,
but we noticed some points that could limit its applicability, such as the dependence on
pre-trained convolutional neural networks. Moreover, they left the area open for further
enhancement in the accuracy of CNN-based image segmentation. Eventually, the studies
presented in this section mostly focused on enhancing the accuracy of the segmented retinal
images. As a result, this paper focuses on the trainable filter algorithm, which was adapted
to very powerful and common datasets, DRIVE and HRF, to achieve the highest accuracy
results of up to 99.12% and 98.78%, respectively.

A new segmentation algorithm was developed by Jin et al. [16] and consisted of three
major stages: Hessian feature edges are used to extract all black linear outlines in a retinal
fundus image, and this approach was used for parameter initialization. Second, the images
were divided into (N) localization areas (R), and the impact of each pixel was used to create
an image of the retina fundus, which was then used to build the snake energy function
on the image representation, so that the snake’s location could be identified between the
vicinity of vessel edges and real ones. Third, the DRIVE dataset was used to validate
the suggested approach, and the findings demonstrated that the proposed methodology
performed exceptionally well, with an accuracy of up to 95.21%, a sensitivity of 75.08%,
and a specificity of 96.56%.

For the segmentation and localisation of the optic disc (OD) and fovea centres, Hasan [17],
offered an end-to-end encoder-decoder model called DRNet. To account for the loss of spatial
information due to the encoder pooling, a skip connection was suggested, which was called
the residual skip connection. Instead of concatenating, the suggested skip connection does
not directly concatenate the features. A variety of public datasets, DRISHTI-GS and DRIVE
for OD segmentation and HRF for OD centre location, were used to test DRNet’s ability to
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correctly segment the OD. In this case, only a small amount of data was used for training
and testing.

With the adapted U-Net architecture of [18,19], which is based on residual networks
and initialised based on the resizing of convolution nearest neighbour, it provides an
alternative to the standard U-Net design. The suggested architecture for microaneurysm
and hard exudate segmentation was trained and tested on two publicly available datasets,
IDRiD and e-ophtha, yielding a dice score of 0.9998 for each. For microaneurysm segmen-
tation, the network performed flawlessly on the e-ophtha dataset with a 99.98% accuracy
rating, 99.88% sensitivity, and 99.8% specificity.

Segmentation and classification of DR may be aided by machine learning (ML). This
investigation used 2D retinal fundus images. For the study, a total of 2500 RF datasets
(size 256 × 256) were generated by the five DR phases, which totalled 500 RF datasets each.
Research presented here presents the concept of “region-growing automation”, a new way
of automatically creating regions based on clustering. The classification accuracy rates
for texture analysis employing histogram (H) and run-length matrix (RLM) features were
77.67%, 80%, 89.87%, and 96.33% for various ML classifiers. Data fusion was employed to
build a hybrid-feature dataset that was more accurate in classifying. Four feature selection
procedures were used to select the 13 best features from the 245 pieces of hybrid feature
data in each image. We used these classifiers to sort out features that had been fine-tuned
using a 10-fold cross-validation approach, and their classification accuracy ranged from
98.53% to 99.73% for SMO, 99.66% to 99.73% for LMT, and 99.73% to 99.73% for SLg.

Segmentation of lesions was improved by Wan [20]. It is called EAD-Net because it
is constructed on a CNN and can be broken down into encoder, attention, and decoder
modules. After normalisation, the fundus pictures were subjected to automated feature
extraction and pixel-by-pixel label prediction. Based on AUPR (area under precision-recall
curve) scores comparable to those on the IDRiD dataset, our technique attained a sensitivity
of 92.77%, a specificity of 99.98%, and an accuracy of 99.97% on the e-ophtha EX dataset.
Most characteristics, including sensitivity and F1-Score, have improved by around 10% in
our EAD-Net, which is superior to the original U-net.

By employing a multi-level set segmentation method, SVM with selective character-
istics, and genetic algorithm, Kandhasamy [21] developed a novel diagnostic approach
for determining the DR severity. The suggested system used mathematical morphological
processes in order to cluster data. This was followed by segmenting the clusters using
a multi-level set segmentation technique that used terms such as mean, median, etc., to
detect the primary regions of the retina. The support vector machine classifier used the
retrieved features to determine the severity of the condition. Sensitivity and specificity
were used to evaluate and compare this method. They showed 97.14% of sensitivity, 100%
of specificity, and 99.3% of accuracy on average. The results showed that the suggested
approach was well-suited for early detection of diabetic retinopathy.

The author of [22] presented the viewpoint-based weighted kernel fuzzy clustering
(VWKFC) method. For starters, they introduced the kernel-based hypersphere density
initialization (KHDI) approach, which used the kernel distance instead of the Euclidean
distance. An original density radius was also proposed. Second, they defined the weight
information granule, which has two sub-components. To lessen the impact of irrelevant
features, a feature weight matrix was supplied. Additionally, by giving each data point
a weight based on its representation in the sample, the impact of noise and outliers on
clustering may be mitigated. Third, the density perspective was the KHDI data point with
the highest local density. Then, VWKFC method was built, proving its convergence, by
combining the kernel mechanism, density perspectives, weight information granules, and
a maximum entropy regularisation.

The author of [23] created two new clustering techniques by including sparsity into
the standard fuzzy framework. Departure-sparse fuzzy c-means was the name of the first
method (DSFCM). The second technique, deviation-sparse fuzzy c-means with neighbour
information constraint (DSFCM N), was presented for use in cases when spatial correlation
is present. This article made three main contributions. At first, the clustering procedure
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used theoretical values of data, which were derived from the measured values. The
resulting cluster centres could be more precise than those obtained using the standard
fuzzy c-means method. Second, DSFCM and DSFCM N were able to detect noise and
outliers by imposing sparsity on the discrepancies between observed and predicted values.
Finally, the estimation of the variances between measured values and theoretical values of
data would be more trustworthy with the constraint of neighbour knowledge than only
examining the data itself.

3. Proposed Methodology

The proposed study avoided oversegmenting important data by utilising the symme-
try information present in the image data to conduct image segmentation using the fuzzy
clustering technique. The research work contains of three major steps such as preprocessing,
segmentation, and classification, where these steps are briefly explained in the following
sections. Figure 1 shows the working flow of the proposed methodology.

Figure 1. Overall workflow of the proposed segmentation model.

3.1. Pre-Processing

Using computer-aided segmentation of retinal pictures and visual assessment, prepro-
cessing techniques aims to improve disease detection probability. Colour fundus images from
the two datasets are scaled to 128 by 128 pixels in the first step of the process. These images
are made up of a red, green, and blue fundus pictures. Because of the high contrast between
the blood vessels and the backdrop and the best contrast between the optic disc and the
retinal tissue, the green channel of the RGB image is employed for preprocessing. The veins
of the choroid are clearly visible in the red channel. The retinal vesicles are clearly apparent,
although the green channel has less contrast. Then, the images are changed to greyscale to
speed up processing. Localization of the optic disc will be completed using the greyscale
image. Noise and lack of retinal morphological information make the blue channel unsuitable
for detection.

For better contrast and uniformity, histogram equalisation is applied after the greyscale
conversion. Image enhancement techniques are used to transform a greyscale image into a
histogram equalised image. It is used to increase the contrast in images. Instead of working
on complete vision, it focuses on specific sections of the eye, which are referred to as “tiles”.
Using bilinear interpolation, the side-by-side tiles are blended to erase any borders. As
a result of these components, a picture can be divided into dark, bright, or low-contrast
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images. For the grey level image (0–255) and the histogram (0–255), the axis is located at
the sum of pixels in the image, and the horizontal range is from 0 to 1.

Every image processing equipment has the ability to do picture filtering. They remove
noise of images by retaining their fine details. Filter behaviour and data type influence the
selection of a filter. In order to eliminate noise from an image, an algorithm is used to either
remove or reduce the noise in the image. Smoothing near-contrast portions of an image
reduces or eliminates noise, a process known as noise reduction. However, these methods
can provide fine contrasts in dark data. Applying the average filter globally removes the
background from the entire image, which has been treated with increased contrast. Using
this filter to obtain a subtracted image, the model subtracts the greyscale module’s output
from the average filter’s processed image. Figure 2 demonstrates the results of reducing
and enhancing photos with noise reduction.

Figure 2. Output of the Pre-processed image.

3.2. Segmentation

Accordingly, we present a new version of the OSR-FCA in this work. Over-segmentation
and outlier sensitivity can be efficiently overcome with the OSR-FCA suggested and seg-
mentation outcomes improved as a result.

Brief Description of OSR-FCA

It is not possible to produce fuzzy memberships with a small number of members
using the existing FCM algorithms such as DSFCM [23], MalFCM [24], and MEFC [25]. New
regularisation methods are introduced to deal with this problem by incorporating u2

ij as an
additional penalty term. It is our goal to define the objective function of the OSR-FCA

J̃ =
c

∑
i=1

n

∑
j=1

uijΦ(xj|vi ∑
i
) + γ

c

∑
i=1

n

∑
j=1

u2
ij (1)

where Φ(xj|vi ∑i) in order to control the sparsity of membership, the distance function
reflects the distance between xji and vij. The goal function’s resilience to outliers and noise
can be varied by varying the value of γ.

The first term of J will therefore be modest in Equation (1), whereas the second term
will be enormous. As a result, the OSR-FCA takes additional iterations than k-means but
less iterations than FCM to reach the optimal computation. Goal function J is a suitable com-
promise between k-means and FCM. The obtained fuzzy membership is far less significant
than that of FCM. Fuzzy membership values, in contrast to k-means, are not invariably 0 or
1. In addition to that, Φ(xj|vi, ∑i)

Φ(xj|vi ∑
i
) = ln(−ρ(xj|vi, ∑

i
)) (2)

where ρ(xj|vi ∑i) is the Gaussian density distinct as:
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ρ(xj|vi ∑
i
) =

exp(−1
2 (xj − vi)

T ∑−1
i (xj − vi))

(2π)
D
2 |∑i |

1
2

(3)

I is the covariance matrix describing intraclass dispersion for the ith class in D, where
(D) is the dimension of the input data. When we replace Equation (2) with Equation (3),
we obtain:

Φ(xj|vi ∑
i
) =

1
2
((xj − vi)

T
−1

∑
i
(xj − vi) + ln |∑

i
|+ D ln(2π)) (4)

For densely distributed data, the variable ln |i|may have a high negative value, making
the distance metric in Equation (4) diverse from the Mahalanobis distance. Due to the influence
of ln |∑i |, the constraint of non-negative values may not be satisfied by the Φ(xj|vi, ∑i).
Increasingly negative covariance values lead to substantial problems in distance measurement
and misclassification as the value decreases. This problem can be solved.

Φ
′
(xj|vi, ∑

i
) =

{
Φ−min(Φ)min(Φ) < 0
Φ Otherwise

(5)

where Φ
′
(xj|vi ∑i) contents the non-negative restraint of distance. Relieving Φ

′
(xj|vi ∑i)

into Equation (1), the final impartial function is distinct as

J̃
′
=

c

∑
i=1

n

∑
j=1

uijΦ(xj|vi, ∑
i
) + γ

c

∑
i=1

n

∑
j=1

u2
ij (6)

For each example xj, the J̃
′

can be unglued into c subproblems with restraint circum-
stances 0 ≤ uij ≤ 1 and ∑( i = 1)cum=1

ij . Then we obtain

J̃
′
j = min

c

∑
i=1

(uijΦ
′
(xj|vi ∑

i
) + γu2

ij (7)

Through simplification, J̃
′
j can be rewritten as:

J̃
′
j = min‖ uij − hij ‖2 (8)

where hij = −Φ
′
(xj|vi ∑i)/2γ. To solve Equation (8), we use the optimization approach

presented in [26] to achieve different levels of sparsity by adjusting.
To find the clustering centre for the J̃

′
i similar sub-problems can be identified by solving

∂ J̃
′
i

∂vi
= 0

∂ J̃
′
i

∂vi
=

n

∑
j=1

uij

∂
[
(xj − vi)

T ∑−1
i (xj − vi) + ln |∑i |+ D ln(2π)

]
∂vi

 (9)

n

∑
j=1

uij(xj − vi) = 0 (10)

We obtain

vi =
∑n

j=1 uijxj

∑n
j=1 uij

(11)

Furthermore, the solving ∂ J̃
′
i

∂∑i
= 0
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∂ J̃
′
i

∂∑i
=

n

∑
j=1

uij

∂
[
(xj − vi)

T ∑−1
i (xj − vi) + ln |∑i |+ D ln(2π)

]
∂∑i

 (12)

n

∑
j=1

uij

(
(xj − vi)

T
−2

∑
i
(xj − vi) +

−1

∑
i

)
= 0 (13)

The solution yields

∑
i
=

∑n
j=1 uij(xj − vi)

T(xj − vi)

∑n
j=1 uij

(14)

When the FCM technique is used to initialise, the number of iterations is decreased.
Our proposed OSR-FCA procedure can be summarised as follows:

(1) Set the number of clusters c, regularization parameter γ, convergence thresholdη, and
maximum iteration number T.

(2) Initialize the membership U(0), the clustering centres V(0), and the covariance matrix

∑(0) using the FCM algorithm.
(3) Set the loop counter t = 1.
(4) Update U(t), V(t), ∑(t) using Equations (8), (11), and (14) respectively.
(5) Update the objective function J̃(t) using Equation (6).
(6) If max | J̃(t) − J̃(t−1)| ≤ η or t ≥ T stop; otherwise, update t = t + 1 and go to step 4.

Figure 3 shows the sample input images, ground truth, and segmented output images.

Figure 3. Sample output images of the segmentation process.

3.3. Classification Using Deep Learning Network

In a convolutional neural network (CNNs), each processing unit features numerous
weighted inputs and one output, which are combined to perform the convolution of the
input signals with weights and convert result to a type of nonlinearity. Pixel in the input
image corresponds to a specific location in the rectangular layers (grids) where the units
are grouped. CNNs are ideally suited for visual information processing because of their
spatial arrangement of units, as well as their local connectivity of hidden units.

(1) Local Connectivity: For example, the first layer of units receives data solely from
the pixels in their receptive field (RF), which is a narrow rectangle of picture pixels
(for the subsequent layers). Units in a layer are normally spaced apart by a stride.
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The layer’s dimensions are determined by the combined effects of image size, RF
size, and stride. Because the image is 5 × 5 monochromatic (a single-channel image),
just 9 units are needed to cover the entire area of the image with a layer of 3 × 3
units with one-pixel strides. Smaller layers result from greater strides and larger RFs.
Comparing fully-connected traditional networks to those with local connectivity, the
number of weights is drastically reduced. The spatial nature of visual information is
also consistent, and several elements of natural visual systems are mimicked by this
method [27].

(2) Parameter Sharing: In which weights are shared across units in the same tier. It is
possible to create a feature map when the units in a given layer all have the same
vector of weights, but each calculates a separate local feature from the image. As
a result, the derived features are equivariant, significantly reducing the number of
parameters. For example, regardless of the number of units, a layer of units with three
three RFs coupled to single-channel image requires just 10 parameters.

(3) Pooling: Convolution is not the only way to combine the outputs of many units, but
it is the most common one. Most commonly, max-pooling aggregates data so that
each aggregating unit can return its RF’s full potential. Translational invariance is
provided through pooling, which degrades resolution in relation to the prior layer.

(4) Slide RFs across an input image by the number of pixels defined in stride makes
subsequent layers to be smaller, therefore the final grid sent into the fully-connected
is frequently considerably smaller than the initial image. It is common to see multiple
feature maps running in tandem, each extracting a different feature. Several dozens
of feature maps may be required for large networks [28]. If an image has more than
one channel, such as RGB, then distinct feature maps are used to connect the various
channels of information. It is possible to mix data from various maps in the previous
layer in the succeeding layers. If a unit has numerous RFs with different weight
vectors, the composed constitute the excitation of that unit.

3.4. Network Training

An example (picture) is propagated across a network and its weights (signed random
values) are modified in an iterative manner. Batches are used to break up the presentation of
all training instances into smaller units, which are called epochs (256 image patches in our
approach). When a batch is finished, the back-propagated errors made by specific units are
tallied and converted into weight updates. There are a variety of training methods in DL,
and we use the error backpropagation algorithm with dropout as an extension [29]. Dropout
is a somewhat new and less popular algorithm, so we’ll go through it in the following
paragraphs. At least half of the network units are randomly selected and temporarily
“switched off” during training with a dropout. For example, when an example is shown,
those units do not propagate signals (their out-puts are constrained to zero) or participate
in the error backpropagation process. Each batch’s m is drawn from a new collection of
disabled units, resulting in a different network structure. Using this technique, a large
network of units can be reduced to a smaller subnetwork. For the training process to
succeed with each ’handicapped’ sub-network, this presents an extra challenge. Networks
need several alternative data flows to enable decision-making in specific cases in order to
achieve this goal. Increased generalizability can be achieved by making it more robust.

4. Results and Discussion
4.1. Dataset Description

The benchmark MESSIDOR dataset, as the first dataset, is used to identify DR [30].
About 1200 colour fundus photos with suitable annotations are included herein. There
are four types of photos in this dataset. The images are graded based on the presence
or absence of microaneurysms and haemorrhages. The healthy retina can be seen in a
picture that does not show any signs of damage. Stage 1 is depicted in the figure with some
micro-aneurysms. Haemorrhages and small-calibre blood vessels are classified as stage 2,
whereas larger-calibre blood vessels, such as those found in the brain, are classified as stage
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3. A second dataset, the Indian Diabetic Retinopathy Image Dataset (IDRiD), as a second
dataset, was also employed in this study [31]. At a 50-degree FOV, this freely available
dataset contains 516 fundus images labelled with five DR phases. A 10-fold cross-validation
technique is used for experimentation.

4.2. Segmentation Analysis

In this section, the validation for proposed segmentation is discussed along with the
evaluation metrics, which is described as follows:

4.2.1. Evaluation Metrics

An F1 score, accuracy, sensitivity, and specificity, as well as an area under the ROC
curve (AUC) are used to measure performance (AUC). The best model is one in which all
of these indicators are equal to 1. A variety of measures are calculated in this manner:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Sensitivity =
TP

TP + FN
(16)

Speci f icity =
TN

TN + FP
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 = 2× Precision× Recall
Precision + Recall

(20)

where TP is the blood vessel pixel that has been accurately identified. TN is the pixel
in the background that has been accurately identified. FP is the mislabelled pixel in the
background. An incorrectly identified blood vessel pixel goes by the designation of FN.

4.2.2. Discussion

There are two datasets are used for experimentation. Initially, Table 1 presents the
validated analysis of projected perfect in terms of various metrics on MESSIDOR dataset.

In the analysis of accuracy, the existing FCM such as multi-scale, multi-path, and
multi-output fusion achieved nearly 97% where proposed segmentation model achieved
97.16%. However, the existing FCM techniques achieved low sensitivity, i.e., 81% to 82%
and proposed model achieved 83.70% of sensitivity. The reason for better performance is
that outliers are effectively removed by using the proposed model, where existing FCM
are unable to handle the outliers due to non-sparsity fuzzy memberships. By using this
process, the OSR-FCA model achieved 98.70% of specificity, 83.21% of F-Measure, and
98.80% of AUC on first dataset. Table 2 shows the comparative analysis on second dataset
called IDRiD dataset.
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Table 1. Comparative analysis of proposed segmentation model on MESSIDOR dataset.

Model Name Sensitivity Speficity F1 Accuracy AUC

Multi-scale, multi-path FCM 0.8259 0.9841 0.8295 0.9703 0.9870
Multi-scale, multi-output fusion FCM 0.8063 0.9866 0.8286 0.9708 0.9871

Basic FCM 0.8196 0.9848 0.8286 0.9703 0.9870
Multi-scale FCM 0.8115 0.9860 0.8290 0.9707 0.9873
Multi-path FCM 0.8118 0.9858 0.8287 0.9706 0.9871

Multi-output fusion FCM 0.8192 0.9850 0.8293 0.9705 0.9870
Multi-path, multi-output fusion FCM 0.8320 0.9828 0.8304 0.9701 0.9873

Proposed OSR-FCA system 0.8370 0.9870 0.8321 0.9716 0.9880

Table 2. Validation Analysis of Proposed Segmentation model on IDRiD dataset.

Model Name F1 Accuracy Sensitivity Specificity AUC

Basic FCM 0.8288 0.9703 0.8198 0.9848 0.9870
Multi-scale FCM 0.8288 0.9703 0.8198 0.9848 0.9870
Multi-path FCM 0.8299 0.9702 0.8298 0.9837 0.9873

Multi-output fusion FCM 0.8294 0.9702 0.8269 0.9840 0.9873
Multi-scale, multi-path FCM 0.8242 0.9697 0.8111 0.9849 0.9861

Multi-scale, multi-output fusion FCM 0.8255 0.9689 0.8392 0.9814 0.9866
Multi-path, multi-output fusion FCM 0.8321 0.9706 0.8325 0.9838 0.9880

Proposed OSR-FCA system 0.8420 0.9726 0.8428 0.9852 0.9990

The existing FCM such as basic model, multi-scale, and multi-path achieved 97% of
accuracy, multipath, multi-scale, and multi-output fusion FCM achieved 96% of accuracy
and finally the proposed model achieved 97.26% of accuracy. In the analysis of AUC, all
the existing FCM techniques achieved 98%, where the proposed model achieved 99.90% of
AUC. The specificity of proposed model is 98.52%, sensitivity is 84.28%, and F1-measure of
OSR-FCA model is 84.20% on second dataset. Figure 4 presents the graphical representation
of proposed model in terms of various metrics on two publicly available dataset.

Figure 4. Graphical representation of proposed segmentation model on two datasets.

4.3. Classification Analysis
Performance Measure

An accurate, sensitive, precise, and high-kappa-index performance metric is one that
measures results and outcomes on a regular basis in order to create trustworthy information
on the effectiveness of an approach. Equations (17)–(20) provide the kappa index and the
general formula for detecting retinal blood.
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Sensitivity =
TP

TP + FN
× 100 (21)

Speci f icity =
TN

TN + FP
× 100 (22)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (23)

Kappa Index =
Accuracy− AccuracyT

1− AccuracyT
(24)

False positive (FP), true negative (TN), true positive (TP), and false negative (FN)
are all denoted here. According to Tables 3 and 4, a proposed classifier’s performance on
two datasets is compared to existing methods in terms of metrics. Figure 5 provides the
graphical representation of proposed model on first dataset.

Table 3. Comparative analysis of proposed classifier with existing techniques on MESSIDOR dataset.

Methodologies Sensitivity Accuracy Specificity Kappa Index
% % % %

RNN 79.33 75.03 78.45 87.60
LSTM 88.95 91.33 86 81.86

Auto-encoder 92.77 95.17 92.24 88.45
Proposed CNN 98.04 97.26 98.17 90.07

Figure 5. Graphical representation of proposed CNN on first dataset.

In the first dataset, the proposed CNN model achieved 97.26% of accuracy, the auto-
encoder, and LSTM models achieved nearly 91% to 95% of accuracy, but the RNN achieved
very low performance, i.e., 75.03% of accuracy. The reason for the poor performance of
RNN is that it is very slow and has complex training procedures. Moreover, it is difficult to
process the longer DR sequences. In the analysis of the Kappa index, all existing techniques
such as RNN, LSTM, and auto-encoder achieved nearly 81% to 88%, where the proposed
CNN model achieved 90.07%. The auto-encoder achieved 92% of sensitivity and specificity,
the RNN achieved nearly 78% of sensitivity and specificity, and the LSTM model achieved
nearly 87% of sensitivity and specificity. However, the proposed CNN model achieved
98.04% sensitivity and 98.17% specificity. Figure 6 presents the graphical representation of
the proposed CNN model on a second dataset called IDRiD in terms of various metrics.
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Table 4. Comparative analysis of proposed classifier with existing techniques on IDRiD dataset.

Methodologies Sensitivity Accuracy Specificity Kappa Index
% % % %

RNN 87.43 92.02 78.14 80.14
LSTM 89.97 92.39 85.90 81.08

Auto-encoder 95.16 94.18 92.17 86.44
Proposed CNN 98.62 98.70 98.83 90.47

Figure 6. Graphical Representation of Proposed CNN on second dataset.

In the second dataset called IDRiD, the RNN achieved 87.43% of sensitivity, 92.02%
of accuracy, 78.14% of specificity, and 80.14% of Kappa index, where LSTM achieved
89.97% of sensitivity, 92.39% of accuracy, 85.90% of specificity, and 81.08% of Kappa index.
The reason for the low performance of LSTM is that it requires more memory to train
all the features for classification. The existing technique, called auto-encoder, achieved
95.16% of sensitivity, 94.18% of accuracy, 92.17% of specificity, and 86.44% of Kappa index.
However, the proposed CNN model achieved 98.62% of sensitivity, 98.70% of accuracy,
98.83% of specificity, and 90.47% of Kappa index. The reason for this better performance is
that outliers are removed during segmentation itself, which can cause overfitting to the
classifier, and this is avoided in the proposed model. From all this experimental analyses,
it is clearly proven that the proposed segmentation model and classifier achieved better
performance than all existing models on two datasets.

5. Conclusions

This research study employs a series of preprocessing, segmentation, and classifying
stages. The first step of the study is to correct and use all of the undesired noise, size variants,
and colour variants in the process. The novelty of the work lies in the segmentation process,
where a novel skimpy fuzzy c-means algorithm is projected in this research work. Current
fuzzy clustering image segmentation techniques have a fundamental shortcoming, and
the proposed OSR-FCA has been used to address this issue. With regard to the OSR-
objective FCA’s function, it includes a regularisation term that helps it achieve scanty
fuzzy clustering because it takes into account both the sparsity of membership and how
fuzzy it is. Furthermore, the research model was able to efficiently merge small regions,
which resulted in outstanding image segmentation. The experimental consequences proved
that the projected OSR-FCA technique achieved 97.16% of accuracy on the first dataset
and 97.26% of accuracy on the second dataset, where the proposed CNN model achieved
97.26% of accuracy on the first dataset and 98.70% of accuracy on the second dataset,
but the existing models achieved nearly 92% to 95% of accuracy on both datasets. The
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proposed results will be improved in future work by developing a new model for DR
image classification.
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