
Citation: Xu, X.; Lu, L.; Liu, Q.

Solution Set of the Yang-Baxter-like

Matrix Equation for an Idempotent

Matrix. Symmetry 2022, 14, 2510.

https://doi.org/10.3390/sym14122510

Academic Editors: Qing-Wen Wang,

Juan Luis García Guirao and Sergei D.

Odintsov

Received: 24 October 2022

Accepted: 22 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Solution Set of the Yang-Baxter-like Matrix Equation for an
Idempotent Matrix
Xiaoling Xu 1, Linzhang Lu 2,3,* and Qilong Liu 2

1 College of Mathematics and Data Science (Software College), Minjiang University, Fuzhou 350108, China
2 School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China
3 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
* Correspondence: llz@gznu.edu.cn or lzlu@xmu.edu.cn

Abstract: Given a complex idempotent matrix A, we derive simple, sufficient and necessary condi-
tions for a matrix X being a nontrivial solution of the Yang-Baxter-like matrix equation AXA = XAX,
discriminating commuting solutions from non-commuting ones. On this basis, we construct all the
commuting solutions of the nonlinear matrix equation.
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1. Introduction

Nonlinear matrix equations arise in many scientific and engineering fields. Seeking
their solutions is a difficult task [1]. In this paper, we are interested in solving the nonlinear
matrix equation of the form

AXA = XAX (1)

where A is a given nonzero complex matrix. Matrix Equation (1) is called the Yang-Baxter-
like matrix equation (see [2–9]), termed YBME for short, since it originates from physics.
Matrix Equation (1) has the same form as the well-known Yang–Baxter equation, which first
arose in two independent papers by Yang [10] and Baxter [11]. Recently, Kumar et al. [12]
investigated new solution sets for the Yang-Baxter-like matrix equation by using a class of
generalized outer inverses of a matrix. Jiang et al. [13] proposed a zeroing neural network
dynamical system approach for solving the time-varying Yang–Baxter matrix equation.

It is evident that YBME (1) is a symmetric matrix equation concerning a known
matrix A and an unknown matrix X. Although YBME (1) looks simple in format, it is not
easy to solve for a general matrix A since it is equivalent to solving a quadratic system
of n2 equations in n2 variables. So far, only for a few matrices with a special structure
(f.g. [2–6]) can all commutable solutions of Equation (1) be obtained, i.e., solutions
satisfying AX = XA.

In this paper, our aim is to find all solutions of YBME (1) with an idempotent matrix
A, that has already been provided in [5]. However, the idea of our approach is novel. We
do not need to use and compute the Jordan canonical form of A as in some previous works,
such as [2–9]. Our analysis and method to construct the solution set are based on simple
sufficient and necessary conditions that we derive for a matrix to be a nontrivial solution of
YBME (1). In particular, we construct all commuting solutions.

The rest of the paper is organized as follows. In Section 2, we present some properties
of the idempotent matrices. In Section 3, we first derive simple sufficient and necessary con-
ditions for a matrix being a nontrivial (commuting, non-commuting) solution of YBME (1),
and then analyze and construct the set that contains all the (commuting, non-commuting)
solutions of YBME (1). Finally, in Section 4, we provide an example.
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2. Preliminaries

In this section, we first provide some properties of the idempotent matrices that are
needed for our analysis later.

Let A be an n× n idempotent matrix with rank r, satisfying A2 = A and rank(A) = r.
We assume that 0 < r < n to avoid the two trivial cases A = 0 or A = I. In fact, when
A = 0, YBME (1) is zero. When A = I, YBME (1) reduces to X2 = X, whose solution is any
idempotent matrix. That is to say, if we denote the set of all the solutions of the matrix for
equation X2 = X as

SX2=X = {X ∈ Cn×n|X2 = X}, (2)

we know that SX2=X is the set of all the idempotent matrices of order n.
It is widely known that any square matrix A with rank r has the spectral decomposition

in the form
A = UVT = u1vT

1 + · · ·+ urvT
r , (3)

where U = [u1, · · ·, ur] and V = [v1, · · ·, vr] are of full rank. For notational convenience, in
the following, we will denote

Ũ = [ur+1, . . . , un], Ṽ = [vr+1, . . . , vn], (4)

where ur+1, . . . , un and vr+1, . . . , vn form the basis of the null space of UH and VH , respec-
tively. Therefore, we have UHŨ = 0 and VHṼ = 0.

Lemma 1. Let A = UVH , where U and V are two n× r (r < n) complex matrices of full column
rank; then, A is a singular idempotent matrix if and only if VHU = I.

Proof. Since A2 = U(VHU)VH , A = UVH . Thus, A is an idempotent matrix if and only if
VHU = I.

According to Lemma 1, we easily verify that

SX2=X = {I} ∪ {0} ∪ Sid, (5)

where

Sid = {X = UVH |U, V ∈ Cn×r, rank(U) = rank(V) = r, VHU = I, 1 ≤ r ≤ n− 1.}. (6)

Now, we begin to find solutions of YBME (1) with an idempotent matrix.

Lemma 2. Let A = UVH be an n × n idempotent matrix with rank r, and let E be a r × r
matrix, then X = UEVH is a (commuting) solution of YBME (1) if and only if E is an ( r× r )
idempotent matrix.

Proof. Let X = UEVH , notice that VHU = I. Thus we have

XAX = UEVHUVHUEVH = UE2VH , AXA = UVHUEVHUVH = UEVH .

So, X is a solution of YBME (1) if and only if E2 = E, i.e., E is an idempotent matrix.
Further, since XA = UEVHUVH = UEVH , AX = UVHUEVH = UEVH , X commutes
with A.

Lemma 3. Let A = UVH be an n × n idempotent matrix with rank r, then for any
(n− r)× (n− r) matrix F, X = ṼFŨH is a commuting solution of YBME (1).

Proof. In fact, let X = ṼFŨH , notice that UHŨ = 0 and VHṼ = 0, so we have

XA = ṼFŨHUVH = 0, AX = UVHṼFŨH = 0.



Symmetry 2022, 14, 2510 3 of 6

So, X is a commuting solution of YBME (1).

3. All the Solutions

In this section, we find all the solutions X of YBME (1) with an idempotent matrix
based on simple sufficient and the necessary conditions for a matrix being a nontrivial
(commuting, non-commuting) solution. We first provide a lemma.

Lemma 4. If A = UVH where U and V are two n× r complex matrices of full rank such that
VTU = I, then the two matrices

P = [U, Ṽ], Q = [V, Ũ] (7)

are nonsingular.

Proof. To show the matrix P = [U, Ṽ] is nonsingular, we only need to show that the linear
system Pz = Ux + Ṽy = 0 only has a zero solution. In fact, since VHU = I and VHṼ = 0,
we have VH Pz = VHUx + VHṼy = VHUx = x = 0. The linear system Pz = 0 becomes
Ṽy = 0. Further, since Ṽ is of full column rank, we derive from Ṽy = 0 that y = 0. So,
Pz = 0 has only a zero solution; thus, P is nonsingular. Similarly, we can show that Q
is nonsingular.

Since P and Q, defined in (7), are nonsingular, we can easily show that for an arbitrary
n× n matrix X, there is an n× n matrix Z such that

X = PZQH = [U, Ṽ]

[
Z1 Z2
Z3 Z4

][
VH

ŨH

]
, (8)

where Z1, Z2, Z3 and Z4 are r× r, r× (n− r), (n− r)× r and (n− r)× (n− r) matrices,
respectively. Now, we present our main results.

Theorem 1. Let A = UVH be an n× n idempotent matrix with rank r, and X = PZQH , defined
in (8), an n× n complex matrix. Then, X is a solution of YBME (1) if and only if Z1, Z2, and Z3
satisfy the following equations simultaneously:

Z2
1 = Z1, Z1Z2 = 0, Z3Z1 = 0, Z3Z2 = 0. (9)

Proof. Notice that VHU = I, ŨHU = 0 and ṼHV = 0, in a simple calculation lead to

XAX = XUVHX = P
[

Z1
Z3

]
[Z1, Z2]QH = P

[
Z2

1 Z1Z2
Z3Z1 Z3Z2

]
QH

and AXA = UVHXUVH = UZ1VH . Thus,

XAX− AXA = XUVHX−UVHXUVH = P
[

Z2
1 − Z1 Z1Z2
Z3Z1 Z3Z2

]
QH .

Notice that P and Q are nonsingular; therefore, X is a solution of YBME (1) if and only
if Z1, Z2 and Z3 satisfy (9).

In light of the previous result, note that the matrix Z4 is completely arbitrary. In terms
of Theorem 1, we can obtain all the solutions of YBME (1) by solving (9) for the matrices Zi
(i = 1, 2, 3). Denote the solution set of (9) as

SZ(Z1, Z2, Z3) = {(Z1, Z2, Z3)|Z1, Z2, Z3 satis f y (9)},
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or equivalently,

SZ(Z1, Z2, Z3) = {(Z1, Z2, Z3)|Z1 ∈ SZ2
1=Z1

, Z1Z2 = 0, Z3Z1 = 0, Z3Z2 = 0}.

In the following, we derive the set SZ(Z1, Z2, Z3) using the set SZ2
1=Z1

= {I} ∪ {0} ∪ Sid.
(i) If Z1 = I, then all the solutions of (9) are (I, 0, 0).
(ii) If Z1 = 0, then all the solutions of (9) are {(0, Z2, Z3))|Z3Z2 = 0}.
(iii) If Z1 ∈ Sid, then we can assume that Z1 = EFHk where E, and F are two r× s matrices
of full column rank such that FHE = I, s = 1, 2, . . . , r− 1.

Let Z2 = F̃Y2 and Z3 = Y3ẼH , where Ẽ, F̃ are two r × (r − s) matrices whose
columns form the basis of the null space of EH and FH , respectively. Then, we have
Z1Z2 = 0, Z3Z1 = 0 for the arbitrary (r− s)× (n− r) matrix Y2 and arbitrary (n− r)×
(r− s) matrix Y3. Thus, when Z1 ∈ Sid, we obtain the set of all the solutions of (9) is

{(Z1 = EFH , Z2 = F̃Y2, Z3 = Y3ẼH)|Y3ẼH F̃Y2 = 0}.

So, we find that the set SZ(Z1, Z2, Z3) is

{(I, 0, 0)} ∪ {(0, Z2, Z3))|Z3Z2 = 0} ∪ {(Z1 = EFH , Z2 = F̃Y2, Z3 = Y3ẼH)|Y3ẼH F̃Y2 = 0}. (10)

Corollary 1. Let A = UVH be an idempotent matrix with rank r; then, all the solutions of
YBME (1) can be expressed as X = PZQH in (8), where (Z1, Z2, Z3) ∈ SZ(Z1, Z2, Z3), and Z4
are arbitrary.

For the commuting solutions of YBME (1), we have an optimal result.

Theorem 2. Let A = UVH , where U and V are two n× r complex matrices of full column rank
such that VHU = I. Then, an n× n complex matrix X is a commuting solution of YBME (1) if
and only if

X = UEVH + ṼFŨH , (11)

where E is any r× r idempotent matrix, and F is any (n− r)× (n− r) matrix.

Proof. Sufficiency. Using Lemmas 2 and 3, we easily verify that when E is an idempotent
matrix; for arbitrary F, X = UEVH + ṼFŨH is a commuting solution of YBME (1).

Necessity. Let X = PZQH , where Z is partitioned as in (8). A simple calculation leads
to

0 = XA− AX = U[Z1 − Z1]VH + ṼZ3VH −UZ2ŨH = P
[

0 −Z2
Z3 0

]
QH , (12)

If X commutes with A = UVH , then since P, Q are nonsingular, we obtain Z2 = 0 and
Z3 = 0. Thus,

X = [U, Ṽ]

[
Z1 0
0 Z4

][
VH

ŨH

]
= UZ1VH + ṼZ4ŨH (13)

where Z1 is an r× r matrix, Z4 is an (n− r)× (n− r) matrix.
To prove necessity, we still need to show that if X in (13) is a commuting solution of

YBME (1), Z1 must be an idempotent matrix.
In fact, let X = UZ1VH + ṼZ4ŨH ; we easily verify that XAX = UZ2

1VH , AXA =
UZ1VH . Thus, it is clear that since X is assumed to be a solution of YBME (1), Z1 needs to
be an idempotent matrix. Let E = Z1 and F = Z4, whereby the necessity is proved.

Remark 1. Theorem 2 can be seen as a corollary of Theorem 1, and Lemmas 1 and 2 are corollaries
of Theorem 2.
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4. An Illustration Example

We provide an example to illustrate the process of constructing the solution set of
YBME (1).

Example 1. (see [5]) Let

A =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

.

We easily obtain a spectral decomposition of A: A = UVH with U = 1
3

 1 1
−1 0
0 −1

 and

VH =

(
1 −2 1
1 1 −2

)
. Since VHU = I, we know that A is an idempotent matrix of rank 2.

A simple calculation leads to ŨH = (1, 1, 1) and ṼH = (1, 1, 1).
Using Corollary 1, all the solutions of YBME (1) are

X =
1
3

 1 1 1
−1 0 1
0 −1 1

( E f
gH α

) 1 −2 1
1 1 −2
1 1 1


where α is an arbitrary number, E is a 2× 2 matrix, and f , g are 2-dimensional vectors. (E, f , gH)
is in the set

{(I, 0, 0)} ∪ {(0, f , gH))|gH f = 0} ∪ {(E = abH , f = βb̃, gH = γãH)|βγãH b̃ = 0}.

In the above set, a, b are any two 2-dimensional vectors satisfying bHa = 1. ã, b̃ are two
2-dimensional vectors satisfying aH ã = 0, bH b̃ = 0. β, γ are numbers.

According to Theorem 2, all the commuting solutions of YBME (1) are as follows:

X =
1
3

 1 1
−1 0
0 −1

E
(

1 −2 1
1 1 −2

)
+

 1
1
1

α(1, 1, 1)

where α is an arbitrary complex number, E is any 2× 2 idempotent matrix, that is, E ∈ SE2=E =
{I} ∪ {0} ∪ Sid. Here, more specifically, E ∈ Sid means that E = abH , and a, b are arbitrary
2-dimensional vectors satisfying bHa = 1.
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