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Abstract: A singular graph G, defined when its adjacency matrix is singular, has important applica-
tions in mathematics, natural sciences and engineering. The chemical importance of singular graphs
lies in the fact that if the molecular graph is singular, the nullity (the number of the zero eigen-
value) is greater than 0, then the corresponding chemical compound is highly reactive or unstable.
By this reasoning, chemists have a great interest in this problem. Thus, the problem of character-
ization singular graphs was proposed and raised extensive studies on this challenging problem
thereafter. The graph obtained by conglutinating the starting vertices of three paths Ps1 , Ps2 , Ps3

into a vertex, and three end vertices into a vertex on the cycle Ca1 , Ca2 , Ca3 , respectively, is de-
noted as γ(a1, a2, a3, s1, s2, s3). Note that δ(a1, a2, a3, s1, s2) = γ(a1, a2, a3, s1, 1, s2), ζ(a1, a2, a3, s) =

γ(a1, a2, a3, 1, 1, s), ϕ(a1, a2, a3) = γ(a1, a2, a3, 1, 1, 1). In this paper, we give the necessity and suffi-
ciency that the γ−graph, δ−graph, ζ−graph and ϕ−graph are singular and prove that the probability
that a randomly given γ−graph, δ−graph, ζ−graph or ϕ−graph being singular is equal to 325

512 , 165
256 , 43

64 ,
21
32 , respectively. From our main results, we can conclude that such a γ−graph(δ−graph, ζ−graph,
ϕ−graph) is singular if at least one cycle is a multiple of 4 in length, and surprisingly, the theoretical
probability of these graphs being singular is more than half. This result promotes the understanding
of a singular graph and may be promising to propel the solutions to relevant application problems.

Keywords: adjacency matrix; singular graph; nullity; probability

1. Introduction

This paper considers only finite undirected simple graphs. Let G be a graph with
order n, and the adjacency matrix is defined as: A(G) = (aij)n×n

aij =

{
1 if i ∼ j,
0 others.

where i ∼ j denotes that the vertices i and j are adjacent. Obviously, A(G) is a real
symmetric matrix where all the diagonal elements are 0 and the other elements are 0 or
1 with all real eigenvalues. These n eigenvalues of A(G) are called the eigenvalues of the
graph G and form the spectrum of this graph. The number of nonzero and zero eigenvalues
in the spectrum of G are called the rank and nullity of the graph G, denoted by r(G) and
η(G), respectively, and it is apparent r(G) + η(G) = n.

The graph G is said to be singular if and only if 0 is an eigenvalue of A(G). In other
words, the graph G is singular if and only if η(G) > 0.

In chemistry, for a molecule, we can obtain a molecular graph by representing the
atoms by vertices and the bonds by edges (see [1]). The nullity of a molecular graph has
many important applications (see [1–7]). For example, the nullity of a graph is equal to zero
is a necessary condition for the chemical property stability of the molecule it represents
(see [6]). In 1957, Collatz and Sinogowitz proposed the problem of characterizing all graphs
whose nullity is greater than zero in [2], in other words, the problem of characterizing all
singular graphs, which is a very difficult problem. So far, only some special results are
known (see [8–17]). This problem encourages people to study the structural characteristics
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of singular graphs, and many authors have studied the interaction between the nullity and
the structure of a graph (see [18–22]). A system of linear homogeneous equations Ax = 0
yields non-trivial solutions x 6= 0 when the linear transformation A is not invertible. Such a
matrix A is singular. The solutions have many direct applications, for instance, to networks
in computer science and electrical circuits, to financial models in economics, to biological
models in genetics and bioinformatics as well as to the understanding of non-bonding
orbitals in carbon unsaturated molecules [23–25]. The nullity of a graph is also important
in mathematics because it is relevant to the rank of the adjacency matrix. Recent studies
have also shown that singular graphs are related to other fields of mathematics, such as
the representation theory of finite groups [26–29] combinatorial mathematics, algebraic
geometry and so on (see [26,30–32]).

It is well known that a graph G is singular if and only if the determinant det(A(G))
of its adjacency matrix A(G) equals 0. However, only a few studies describe singular
graphs from the perspective of the determinant and also very limited literature studies
the necessity and sufficiency of the singular of a class of graph. In this paper, by using the
determinant of the adjacency matrix, we give the necessity and sufficiency that γ−graph,
δ−graph, ζ−graph and ϕ−graph are singular, and the probability values of these graph
singulars are given.

For the positive integer n, Kn, Pn and Cn denote the complete graph, the path and
the cycle on n vertices, respectively. The graph obtained by conglutinating three starting
vertices of three paths Ps1 , Ps2 , Ps3 into a vertex, and three end vertices into a vertex
on the cycle Ca1 , Ca2 , Ca3 , respectively, is denoted as γ(a1,a2,a3,s1,s2,s3) (see Figure 1).
Note that δ(a1,a2,a3,s1,s2) = γ(a1,a2,a3,s1,1,s2) (see Figure 2), ζ(a1,a2,a3,s) = γ(a1,a2,a3,1,1,s)
(see Figure 3) and ϕ(a1,a2,a3) = γ(a1,a2,a3,1,1,1) (see Figure 4). Let G ∪ H denote the union
of G and H. The undefined concepts and notations will follow [7]. In this paper, we give
the necessity and sufficiency that γ−graph, δ−graph, ζ−graph and ϕ−graph are singular
and prove that the probability that a randomly given γ−graph, δ−graph, ζ−graph or
ϕ−graph being singular is equal to 325

512 , 165
256 , 43

64 , 21
32 , respectively.
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Figure 1. Graph γ(a1, a2, a3, s1, s2, s3).
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Figure 2. Graph δ(a1, a2, a3, s1, s2).
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Figure 3. Graph ζ(a1, a2, a3, s).
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Figure 4. Graph ϕ(a1, a2, a3).

We call a1, a2, a3 three a, and call s1, s2, s3 three s. The main conclusions are the follow-
ing two theorems:

Theorem 1. G = γ(a1, a2, a3, s1, s2, s3) (see Figure 1) is singular if and only if one of the follow-
ing holds:

(i) There is at least one cycle whose length is a multiple of 4;
(ii) There are exactly three even cycles, and at least two s are odd or three s are even;
(iii) There are exactly two even cycles, and two s connected with these two even cycles are odd;
(iv) There is exactly one even cycle, and the s connected with this even cycle is even, and the

length of two odd cycles is not congruent with respect to module 4 and the parity of two s connected
with these two odd cycles is the same.

From Theorem 1, it is easy to derive the following corollaries:

Corollary 1. G = δ(a1, a2, a3, s1, s2) (see Figure 2) is singular if and only if one of the follow-
ing holds:

(i) There is at least one cycle whose length is a multiple of 4.
(ii) There are exactly three even cycles, and at least one s is odd.
(iii) There are exactly two even cycles:
(1) The middle cycle is an even cycle, and the s connected with another even cycle is odd;
(2) The middle cycle is an odd cycle, and two s are odd.
(iv) There is exactly one even cycle at each end, and the s connected with this even cycle is

even, the length of two odd cycles is not congruent with respect to module 4 and the s connected
with another odd cycle is odd.

Corollary 2. G = ζ(a1, a2, a3, s) (see Figure 3) is singular if and only if one of the following holds:
(i) There is at least one cycle whose length is a multiple of 4.
(ii) There are exactly three even cycles.
(iii) There are exactly two even cycles, and two even cycles have a common vertex or the s

connected with two even cycles is odd.
(iv) There is exactly one even cycle that has no common vertex with the other two cycles, s is

even and the length of two odd cycles is not congruent with respect to module 4.
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Corollary 3. G = ϕ(a1, a2, a3) (see Figure 4) is singular if and only if one of the following holds:
(i) There is at least one cycle whose length is a multiple of 4;
(ii) There are at least two even cycles.

Theorem 2. The probability that a randomly given γ−graph, δ−graph, ζ−graph or ϕ−graph
being singular is equal to 325

512 , 165
256 , 43

64 , 21
32 , respectively.

Example 1. From Theorem 1, Corollaries 1–3, we know that the graph G = γ(a1, a2, a3, s1, s2, s3)
(δ(a1, a2, a3, s1, s2), ζ(a1, a2, a3, s) or ϕ(a1, a2, a3)) is singular if the length of a cycle on the graph
G is a multiple of 4. The smallest singular graph of the number of vertices in γ−(δ−, ζ−, ϕ−)
graphs is γ(4, 3, 3, 2, 2, 2)(δ(3, 4, 3, 2, 2), ζ(3, 3, 4, 2), ϕ(4, 3, 3)), and it has 11 (10, 9, 8) vertices
(see Figure 5). The smallest non-singular graphs of the number of vertices in γ−(δ−, ζ−, ϕ−)
graphs is γ(3, 3, 3, 2, 2, 2)(δ(3, 3, 3, 2, 2), ζ(3, 3, 3, 2), ϕ(3, 3, 3)), and it has 10 (9, 8, 7) vertices
(see Figure 6). From Theorem 2, we were surprised to find that more than half of the γ−(δ−, ζ−,
ϕ−) graphs were singular.

Figure 5. The smallest singular graph of the number of vertices in γ−(δ−, ζ−, ϕ−): γ(4, 3, 3, 2, 2, 2),
δ(3, 4, 3, 2, 2), ζ(3, 3, 4, 2) and ϕ(4, 3, 3).

Figure 6. The smallest non-singular graphs of the number of vertices in γ−(δ−, ζ−, ϕ−):
γ(3, 3, 3, 2, 2, 2), δ(3, 3, 3, 2, 2), ζ(3, 3, 3, 2) and ϕ(3, 3, 3).

2. Some Lemmas

Lemma 1 ([11]). Let G = G1 ∪G2 ∪ · · · ∪Gt, where Gi(i = 1, 2, . . . , t) is a connected component

of the graph G, then η(G) =
t

∑
i=1

η(Gi). Equivalently, G is non-singular if and only if each

Gi(i = 1, 2, . . . , t) is non-singular.
A vertex with degree 1 is called a pendant vertex, and a vertex adjacent to the pendant vertex

is called a quasi-pendant vertex.

Lemma 2 ([11]). Let G have a pendant vertex, and H is the graph obtained by deleting the pendant
vertex and the quasi-pendant vertex from G, then η(G) = η(H).

According to Lemma, H is the graph obtained by deleting the pendant vertex and the
quasi-pendant vertex from G when G contents pendant or quasi-pendant vertex, in fact,

the adjacency matrix A(G) of G is congruent to
[

0 1
1 0

]
⊕ A(H), where A(H) is the

adjacency matrix of H and ⊕ is the direct sum of matrices. From this, it is easy to know
that r(G) = r(H) + 2, η(G) = η(H).

A graph G is singular if and only if the determinant detA(G) = 0; however, the de-
terminant of the adjacency matrix is related to a so-called spanning elementary sub-
graph on this graph. The subgraph of the graph G whose every component is an isolated
edge or a cycle is called an elementary subgraph or Sachs subgraph of G. An elemen-
tary subgraph of G containing all vertices is called a spanning elementary subgraph or
spanning Sachs subgraph. The spanning elementary subgraph composed only of isolated
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edges is called the perfect matching of graph G. Of course, a graph with the perfect
matching must have an even number of vertices.

Lemma 3 ([11]). Let G be a graph with n vertices and its adjacency matrix be A(G), then

det(A(G)) = (−1)n ∑
H∈H

(−1)p(H)2c(H),

whereH denotes the set of all spanning Sachs subgraphs of graph G, p(H) denotes the number of
components in graph H and c(H) denotes the number of cycles in graph H.

By Lemma 3, if a graph has no spanning Sachs subgraph, then it is singular. A spanning
Sachs subgraph of a tree can only be a perfect matching. According to this, it is easy to
know that a tree is singular if and only if it does not have a perfect matching. For a cycle
Cn, if n is odd, its spanning Sachs subgraph has only Cn, so Cn is singular if and only if
det(A(Cn)) = (−1)n+1 × 2 = 0, but that is impossible. If n is even, its spanning Sachs
subgraph has Cn and two perfect matchings, so Cn is singular if and only if det(A(Cn)) =
(−1)n[(−1)1 × 2 + (−1)

n
2 × 2] = 0, if and only if 4|n. The proof of our main result is

derived from Lemma 3.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. |V(G)| = a1 + a2 + a3 + s1 + s2 + s3 − 5. According to the number
of even numbers in {a1, a2, a3} ⇒ the number of even numbers in {s1, s2, s3} (combined
with the symmetry of graph γ(a1, a2, a3, s1, s2, s3)), the following four cases are classified.

Case 1 There are three a that are even.
Subcase 1.1 There are three s that are even, where G has no spanning Sachs subgraph,

G is singular.
Subcase 1.2 There are exactly two s that are even. Suppose that s1, s2 are even,

s3 is odd. Where the spanning Sachs subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪
Ca3 ∪

s1+s2+s3−5
2 P2 (one); the spanning Sachs subgraph of G with two cycles is: Ca1 ∪

Ca2 ∪
a3+s1+s2+s3−5

2 P2 (two), Ca1 ∪Ca3 ∪
a2+s1+s2+s3−5

2 P2 (two), Ca2 ∪Ca3 ∪
a1+s1+s2+s3−5

2 P2

(two); and the spanning Sachs subgraph of G with one cycle is: Ca1 ∪
a2+a3+s1+s2+s3−5

2 P2 (four),
Ca2 ∪

a1+a3+s1+s2+s3−5
2 P2 (four), Ca3 ∪

a1+a2+s1+s2+s3−5
2 P2 (four); there are 8 perfect matchings.

By Lemma 3, G is singular if and only if

(−1)
s1+s2+s3−5

2 +3 × 23 + (−1)
a3+s1+s2+s3−5

2 +2 × 23 + (−1)
a2+s1+s2+s3−5

2 +2 × 23

+(−1)
a1+s1+s2+s3−5

2 +2 × 23 + (−1)
a2+a3+s1+s2+s3−5

2 +1 × 23 + (−1)
a1+a3+s1+s2+s3−5

2 +1 × 23

+(−1)
a1+a2+s1+s2+s3−5

2 +1 × 23 + (−1)
a1+a2+a3+s1+s2+s3−5

2 × 8 = 0,

multiply both sides by (−1)
a1+a2+a3+s1+s2+s3−5

2 , and we obtain

(−1)
a1+a2+a3

2 +3 + (−1)
a1+a2

2 +2 + (−1)
a1+a3

2 +2 + (−1)
a2+a3

2 +2

+(−1)
a1
2 +1 + (−1)

a2
2 +1 + (−1)

a3
2 +1 + 1 = 0,

if and only if

((−1)
a1
2 − 1)((−1)

a2
2 − 1)((−1)

a3
2 − 1) = 0,

if and only if 4|a1, 4|a2 or 4|a3.
Subcase 1.3 There is exactly one s that is even. Suppose that s1 is even, s2, s3 are odd,

where G has no spanning Sachs subgraph, G is singular.
Subcase 1.4 There is no s that is even, where G has no spanning Sachs subgraph, G

is singular.
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Case 2 There are exactly two a that are even. Suppose that a1, a2 are even and a3
is odd.

Subcase 2.1 There are three s that are even. Where there is no spanning Sachs
subgraph of G with three cycles; the spanning Sachs subgraph of G with two cycles is:
Ca1 ∪Ca2 ∪

a3+s1+s2+s3−5
2 P2 (one); the spanning Sachs subgraph of G with one cycle is: Ca1 ∪

a2+a3+s1+s2+s3−5
2 P2 (two), Ca2 ∪

a1+a3+s1+s2+s3−5
2 P2 (two); there are 4 perfect matchings.

By Lemma 3, G is singular if and only if

(−1)
a3+s1+s2+s3−5

2 +2 × 22 + (−1)
a2+a3+s1+s2+s3−5

2 +1 × 22

+(−1)
a1+a3+s1+s2+s3−5

2 +1 × 22 + (−1)
a1+a2+a3+s1+s2+s3−5

2 × 4 = 0,

multiply both sides by (−1)
a1+a2+a3+s1+s2+s3−5

2 × 1
4 , and we obtain

(−1)
a1+a2

2 +2 + (−1)
a1
2 +1 + (−1)

a2
2 +1 + 1 = 0,

that is
(−1)

a1+a2
2 − (−1)

a1
2 − (−1)

a2
2 + 1 = 0,

if and only if

((−1)
a1
2 − 1)((−1)

a2
2 − 1) = 0,

if and only if 4|a1 or 4|a2.
Subcase 2.2 There are exactly two s that are even.
Subcase 2.2.1 Suppose that s1, s2 are even, s3 is odd. Where the spanning Sachs

subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪ Ca3 ∪
s1+s2+s3−5

2 P2 (one); the spanning
Sachs subgraph of G with two cycles is: Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (two), Ca2 ∪ Ca3 ∪

a1+s1+s2+s3−5
2 P2 (two); and the spanning Sachs subgraph of G with one cycle is: Ca3 ∪

a1+a2+s1+s2+s3−5
2 P2 (four); there is no perfect matching.

By Lemma 3, G is singular if and only if

(−1)
s1+s2+s3−5

2 +3 × 23 + (−1)
a2+s1+s2+s3−5

2 +2 × 23

+(−1)
a1+s1+s2+s3−5

2 +2 × 23 + (−1)
a1+a2+s1+s2+s3−5

2 × 23 = 0,

multiply both sides by (−1)
a1+a2+s1+s2+s3−5

2 , and we obtain

(−1)
a1+a2

2 +3 + (−1)
a1
2 +2 + (−1)

a2
2 +2 + 1 = 0,

if and only if

((−1)
a1
2 − 1)((−1)

a2
2 − 1) = 0,

if and only if 4|a1 or 4|a2.
Subcase 2.2.2 Suppose that s1, s3 are even, s2 is odd. Where the spanning Sachs

subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪ Ca3 ∪
s1+s2+s3−5

2 P2 (one); the spanning
Sachs subgraph of G with two cycles is: Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (two), Ca2 ∪ Ca3 ∪

a1+s1+s2+s3−5
2 P2 (two); and the spanning Sachs subgraph of G with one cycle is: Ca3 ∪

a1+a2+s1+s2+s3−5
2 P2 (four); there is no perfect matching.

Similar to Subcase 2.2.1, we obtain G is singular if and only if 4|a1 or 4|a2.
Subcase 2.3 There is exactly one s that is even.
Subcase 2.3.1 Suppose that s1 is even, s2, s3 are odd. Where there is no spanning

Sachs subgraph of G with three cycles; the spanning Sachs subgraph of G with two cycles is:
Ca1 ∪Ca2 ∪

a3+s1+s2+s3−5
2 P2 (one); the spanning Sachs subgraph of G with one cycle is: Ca1 ∪

a2+a3+s1+s2+s3−5
2 P2 (two), Ca2 ∪

a1+a3+s1+s2+s3−5
2 P2 (two); there are 4 perfect matchings.
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Similar to Subcase 2.1, we obtain G is singular if and only if 4|a1 or 4|a2.
Subcase 2.3.2 Suppose that s3 is even, s1, s2 are odd. Where there is no spanning

Sachs subgraph of G, G is singular.
Subcase 2.4 There is no s that is even. Where there is no spanning Sachs subgraph of

G, G is singular.
Case 3 There is exactly one a that is even. Suppose that a1 is even and a2, a3 are odd.
Subcase 3.1 There are three s that are even. Where there is no spanning Sachs

subgraph of G with three cycles; the spanning Sachs subgraph of G with two cycles is:
Ca1 ∪ Ca2 ∪

a3+s1+s2+s3−5
2 P2 (one), Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (one); the spanning Sachs

subgraph of G with one cycle is: Ca2 ∪
a1+a3+s1+s2+s3−5

2 P2 (two), Ca3 ∪
a1+a2+s1+s2+s3−5

2 P2
(two); there is no perfect matching.

By Lemma 3, G is singular if and only if

(−1)
a3+s1+s2+s3−5

2 +2 × 22 + (−1)
a2+s1+s2+s3−5

2 +2 × 22

+(−1)
a1+a3+s1+s2+s3−5

2 +1 × 22 + (−1)
a1+a2+s1+s2+s3−5

2 +1 × 22 = 0,

multiply both sides by (−1)
s1+s2+s3

2 , and we obtain

(−1)
a3−5

2 + (−1)
a2−5

2 − (−1)
a1+a3−5

2 − (−1)
a1+a2−5

2 = 0,

if and only if

((−1)
a1
2 − 1)((−1)

a2−5
2 + (−1)

a3−5
2 ) = 0,

if and only if 4|a1, or a2 6≡ a3 (mod 4).
Subcase 3.2 There are exactly two s that are even.
Subcase 3.2.1 Suppose that s1, s2 are even, s3 is odd. Where the spanning Sachs

subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪ Ca3 ∪
s1+s2+s3−5

2 P2 (one); the spanning
Sachs subgraph of G with two cycles is: Ca2 ∪ Ca3 ∪

a1+s1+s2+s3−5
2 P2 (two); the spanning

Sachs subgraph of G with one cycle is: Ca1 ∪
a2+a3+s1+s2+s3−5

2 P2 (one); there are 2 per-
fect matchings.

By Lemma 3, G is singular if and only if

(−1)
s1+s2+s3−5

2 +3 × 23 + (−1)
a1+s1+s2+s3−5

2 +2 × 23

+(−1)
a2+a3+s1+s2+s3−5

2 +1 × 2 + (−1)
a1+a2+a3+s1+s2+s3−5

2 × 2 = 0,

multiply both sides by (−1)
a1+a2+a3+s1+s2+s3−5

2 , and we obtain

−(−1)
a1+a2+a3

2 × 4 + (−1)
a2+a3

2 × 4− (−1)
a1
2 + 1 = 0,

if and only if

((−1)
a1
2 − 1)((−1)

a2+a3
2 × 4 + 1) = 0,

if and only if 4|a1.
Subcase 3.2.2 Suppose that s2, s3 are even, s1 is odd. Where the spanning Sachs

subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪ Ca3 ∪
s1+s2+s3−5

2 P2 (one); the spanning
Sachs subgraph of G with two cycles is: Ca2 ∪ Ca3 ∪

a1+s1+s2+s3−5
2 P2 (two); there is no

spanning Sachs subgraph of G with one cycle; there is no perfect matching.
By Lemma 3, G is singular if and only if

(−1)
s1+s2+s3−5

2 +3 × 23 + (−1)
a1+s1+s2+s3−5

2 +2 × 23 = 0,

if and only if 4|a1.
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Subcase 3.3 There is exactly one s that is even.
Subcase 3.3.1 Suppose that s1 is even, s2, s3 are odd. Where there is no spanning

Sachs subgraph of G with three cycles; the spanning Sachs subgraph of G with two cycles is:
Ca1 ∪ Ca2 ∪

a3+s1+s2+s3−5
2 P2 (one), Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (one); the spanning Sachs

subgraph of G with one cycle is: Ca2 ∪
a1+a3+s1+s2+s3−5

2 P2 (two), Ca3 ∪
a1+a2+s1+s2+s3−5

2 P2
(two); there is no perfect matching.

Similar to Subcase 3.1, we obtain G is singular if and only if 4|a1 or a2 6≡ a3 (mod 4).
Subcase 3.3.2 Suppose that s3 is even, s1, s2 are odd. Where there is no spanning

Sachs subgraph of G with three cycles; the spanning Sachs subgraph of G with two cycles
is: Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (one); the spanning Sachs subgraph of G with one cycle is:

Ca3 ∪
a1+a2+s1+s2+s3−5

2 P2 (two); there is no perfect matching.
By Lemma 3, G is singular if and only if

(−1)
a2+s1+s2+s3−5

2 +2 × 22 + (−1)
a1+a2+s1+s2+s3−5

2 +1 × 22 = 0,

if and only if 4|a1.
Subcase 3.4 There is no s that is even. Where there is no spanning Sachs subgraph

of G with three cycles; there is no spanning Sachs subgraph of G with two cycles; the
spanning Sachs subgraph of G with one cycle is: Ca1 ∪

a2+a3+s1+s2+s3−5
2 P2 (one); there are

2 perfect matchings.
By Lemma 3, G is singular if and only if

(−1)
a2+a3+s1+s2+s3−5

2 +1 × 2 + (−1)
a1+a2+a3+s1+s2+s3−5

2 × 2 = 0,

if and only if 4|a1.
Case 4 There is no a that is even.
Subcase 4.1 There are three s that are even. There is no spanning Sachs subgraph

of G with three cycles; the spanning Sachs subgraph of G with two cycles is: Ca1 ∪ Ca2 ∪
a3+s1+s2+s3−5

2 P2 (one), Ca1 ∪Ca3 ∪
a2+s1+s2+s3−5

2 P2 (one), Ca2 ∪Ca3 ∪
a1+s1+s2+s3−5

2 P2 (one);
there is no spanning Sachs subgraph of G with one cycle; there is no perfect matching.

By Lemma 3, G is singular if and only if

(−1)
a3+s1+s2+s3−5

2 +2 × 22 + (−1)
a2+s1+s2+s3−5

2 +2 × 22 + (−1)
a1+s1+s2+s3−5

2 +2 × 22 = 0,

multiply both sides by (−1)
s1+s2+s3

2 , and we obtain

(−1)
a3−5

2 + (−1)
a2−5

2 + (−1)
a1−5

2 = 0.

However, that is impossible, so G is non-singular.
Subcase 4.2 There are exactly two s that are even. Suppose that s1, s2 are even,

s3 is odd. Where the spanning Sachs subgraph of G with three cycles is: Ca1 ∪ Ca2 ∪
Ca3 ∪

s1+s2+s3−5
2 P2 (one); there is no spanning Sachs subgraph of G with two cycles; the

spanning Sachs subgraph of G with one cycle is: Ca1 ∪
a2+a3+s1+s2+s3−5

2 P2 (one), Ca2 ∪
a1+a3+s1+s2+s3−5

2 P2 (one); there is no perfect matching.
By Lemma 3, G is singular if and only if

(−1)
s1+s2+s3−5

2 +3 × 23 + (−1)
a2+a3+s1+s2+s3−5

2 +1 × 2 + (−1)
a1+a3+s1+s2+s3−5

2 +1 × 2 = 0,

multiply both sides by (−1)
s1+s2+s3−5

2 , and we obtain

−4− (−1)
a2+a3

2 + (−1)
a1+a3

2 = 0.

However, that is impossible, so G is non-singular.
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Subcase 4.3 There is exactly one s that is even. Suppose that s1 is even, s2, s3 are
odd. Where there is no spanning Sachs subgraph of G with three cycles; the spanning
Sachs subgraph of G with two cycles is: Ca1 ∪ Ca2 ∪

a3+s1+s2+s3−5
2 P2 (one), Ca1 ∪ Ca3 ∪

a2+s1+s2+s3−5
2 P2 (one); there is no spanning Sachs subgraph of G with one cycle; there is 1

perfect matching.
By Lemma 3, G is singular if and only if

(−1)
a3+s1+s2+s3−5

2 +2 × 22 + (−1)
a2+s1+s2+s3−5

2 +2 × 22 + (−1)
a1+a2+a3+s1+s2+s3−5

2 = 0.

However, that is impossible, so G is non-singular.
Subcase 4.4 There is no s that is even. Where there is no spanning Sachs subgraph

of G with three cycles; there is no spanning Sachs subgraph of G with two cycles; the
spanning Sachs subgraph of G with one cycle is: Ca1 ∪

a2+a3+s1+s2+s3−5
2 P2 (one), Ca2 ∪

a1+a3+s1+s2+s3−5
2 P2 (one), Ca3 ∪

a1+a2+s1+s2+s3−5
2 P2 (one); there is no perfect matching.

By Lemma 3, G is singular if and only if

(−1)
a2+a3+s1+s2+s3−5

2 +1 × 2 + (−1)
a1+a3+s1+s2+s3−5

2 +1 × 2 + (−1)
a1+a2+s1+s2+s3−5

2 +1 × 2 = 0.

However, that is impossible, so G is non-singular.

Proof of Theorem 2. Let X be a random event and P(X) denote the probability that the
event X will occur.

Let U denote a random event: graph γ(a1, a2, a3, s1, s2, s3) (see Figure 1) is singular.
In order to make Theorem 1 (i)–(iv) mutually incompatible, the even cycle in (ii)–(iv) is
restricted to the cycle whose length is module 4 plus 2.

Let A denote a random event: there is at least one cycle whose length is a multiple
of 4.

Let B1 denote a random event: there are three a that satisfy a ≡ 2 (mod 4), and at least
two s are odd or three s are even (the opposite is: exactly one s is odd).

Let B2 denote a random event: there are exactly two a that satisfy a ≡ 2 (mod 4),
and the other a ≡ 1 (mod 2), and the s connected with these two even cycles are all odd.

Let B3 denote a random event: there is exactly one a that satisfies a ≡ 2 (mod 4),
and the other two a ≡ 1 (mod 2), and the s connected with this even cycle is even, and the
length of two odd cycles is not congruent with respect to module 4 and the parity of two s
connected with these two odd cycles is the same. Then,

p(A) = 1− (
3
4
)3 =

37
64

, p(B1) = (
1
4
)3(1−

(
3
1

)
(

1
2
)3) =

5
512

,

p(B2) =

(
3
2

)
(

1
4
)2 × (

1
2
)3 =

3
128

, p(B3) =

(
3
1

)
1
4
× (

1
2
)5 =

3
128

,

by Theorem 1, we obtain

p(U) = p(A ∪ B1 ∪ B2 ∪ B3) = p(A) + p(B1) + p(B2) + p(B3)

=
37
64

+
5

512
+

3
128

+
3

256
=

325
512

.

Let V denote a random event: graph δ(a1, a2, a3, s1, s2) (see Figure 2) is singular. In or-
der to make Corollary 1 (i)–(iv) mutually incompatible, the even cycle in (ii)–(iv) is restricted
to the cycle whose length is module 4 plus 2.

Let A denote a random event: there is at least one cycle whose length is a multiple
of 4.

Let B′1 denote a random event: there are three a that satisfy a ≡ 2 (mod 4), and at least
one s is odd.
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Let C1 denote a random event: a2 ≡ 2 (mod 4), in the remaining a, one a ≡ 2 (mod 4),
the other a is odd and the s connected with the even cycle is odd.

Let C2 denote a random event: a1, a3 ≡ 2 (mod 4), a2 is odd, and two s are odd.
Let B′2 = C1 ∪ C2.
Let B′3 denote a random event: a2 is odd, in the remaining a, one a ≡ 2 (mod 4),

the other a is odd, and the s connected with the even cycle is even, the length of two odd
cycles is not congruent with respect to module 4 and the s connected with another odd
cycle is odd. Then,

p(A) = 1− (
3
4
)3 =

37
64

, p(B′1) = (
1
4
)3(1− (

1
2
)2) =

3
256

,

p(C1) =
1
4
×
(

2
1

)
1
4
× (

1
2
)2 =

1
32

, p(C2) = (
1
4
)2 × (

1
2
)3 =

1
128

,

p(B′2) = p(C1 ∪ C2) = p(C1) + p(C2) =
5

128
, p(B′3) =

1
2
×
(

2
1

)
1
4
× (

1
2
)4 =

1
64

,

p(V) = p(A ∪ B′1 ∪ B′2 ∪ B′3) = p(A) + p(B′1) + p(B′2) + p(B′3)

=
37
64

+
3

256
+

5
128

+
1

64
=

165
256

.

Let W denote a random event: graph ζ(a1, a2, a3, s) (see Figure 3) is singular. In order
to make Corollary 2 (i)–(iv) mutually incompatible, the even cycle in (ii)–(iv) is restricted to
the cycle whose length is module 4 plus 2.

Let A denote a random event: there is at least one cycle whose length is a multiple
of 4.

Let B′′1 denote a random event: there are three a that satisfy a ≡ 2 (mod 4).
Let C′1 denote a random event: a1, a2 ≡ 2 (mod 4), a3 is odd.
Let C′2 denote a random event: a3 ≡ 2 (mod 4), in the remaining a, one a ≡ 2 (mod 4),

the other a is odd and s is odd.
Let B′′2 = C′1 ∪ C′2.
Let B′′3 denote a random event: a3 ≡ 2 (mod 4), a1, a2 are odd and s is even; the length

of two odd cycles is not congruent with respect to module 4. Then,

p(A) = 1− (
3
4
)3 =

37
64

, p(B′′1 ) = (
1
4
)3 =

1
64

,

p(C′1) = (
1
4
)2 × 1

2
=

1
32

, p(C′2) =
(

2
1

)
(

1
4
)2 × (

1
2
)2 =

1
32

,

p(B′′2 ) = p(C′1 ∪ C′2) = p(C′1) + p(C′2) =
1

16
, p(B′′3 ) =

1
4
× (

1
2
)4 =

1
64

,

p(W) = p(A ∪ B′′1 ∪ B′′2 ∪ B′′3 ) = p(A) + p(B′′1 ) + p(B′′2 ) + p(B′′3 )

=
37
64

+
1

64
+

1
16

+
1

64
=

43
64

.

Let Y denote a random event: graph ϕ(a1, a2, a3) (see Figure 4) is singular. In order to
make Corollary 3 (i)–(ii) mutually incompatible, the even cycle in (ii) is restricted to the
cycle whose length is module 4 plus 2.

Let A denote a random event: there is at least one cycle whose length is a multiple
of 4.

Let D denote a random event: there are three a that satisfy a ≡ 2 (mod 4), or two a
satisfy a ≡ 2 (mod 4), the other a is odd. Then,

p(A) = 1− (
3
4
)3 =

37
64

, p(D) = (
1
4
)3 +

(
2
1

)
(

1
4
)2 × 1

2
=

5
64

,
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p(Y) = p(A ∪ D) =
37
64

+
5
64

=
21
32

.

4. Discussion

We know that a connected graph G is a tree, unicyclic graph, bicyclic graph and tricyclic
graph if and only if |E(G)| = |V(G)| − 1, |V(G)|, |V(G)|+ 1 and |V(G)|+ 2, respectively.
When the starting vertices of three paths Pb1 , Pb2 and Pb3 are conglutinated into a vertex
and the end vertices are conglutinated into a vertex, the resulting graph is called a θ−graph
and is denoted as θ(b1, b2, b3). The graph formed by the two end vertices of a path Ps
conglutinating into a vertex on the cycle Ca and Cb is called a ∞−graph, denoted as
∞(a, s, b) (see Figure 7).

（ ）a （ ）b

1

a

3

2

2- a 1-

1

b

3

2

2-b 1-

1 s 2-

1 2

1 2

1 2 3
b 2-3

b 3-

2
b 2-2

b 3-

1
b 2-1

b 3-

Figure 7. Two bicyclic graphs ∞(a, s, b) and θ(b1, b2, b3). Bicyclic graphs can be divided into two
kinds: one is (a) ∞-graph as its induced subgraph, the other is (b) θ-graph as its induced subgraph.

Every unicyclic graph contains a cycle Cn as its induced subgraph. Meanwhile, the
cycle Cn is singular if and only if 4|n. Bicyclic graphs can be divided into two kinds: one is
∞-graph as its induced subgraph, the other is θ-graph as its induced subgraph. Below, we
list two theorems that we will not prove.

Theorem 3. θ(b1, b2, b3) is singular if and only if one of the following holds:
(i) There are three b that are odd.
(ii) The parity of three b is not all the same, and the length of the cycle formed by two paths

with the same parity is a multiple of 4.

Theorem 4. ∞(a, s, b) is singular if and only if one of the following holds:
(i) There is at least one of two cycles whose length is a multiple of 4, that is, 4|a or 4|b.
(ii) s is odd:
(1) Both cycles are even cycles;
(2) Both cycles are odd cycles, and their lengths are not congruent with respect to module 4.

By Theorem 3, the probability that θ(b1, b2, b3) is a singular graph is 1
2 . By Theorem 4,

the probability that ∞(a, s, b) is a singular graph is 17
32 .

The tricyclic graphs can be divided into 15 kinds, according to the induced subgraphs
it contains. The tricyclic graphs containing γ−graph, δ−graph, ζ−graph and ϕ−graph
are denoted as T (γ), T (δ), T (ζ) and T (ϕ), respectively. Suppose G has a pendant vertex,
and G′ is the graph obtained by deleting the pendant vertex and the quasi-pendant vertex
from G, by Lemma 2, graphs G and G′ have the same singularity. Similarly, if graph G′

also has a pendant vertex, and G′′ is the graph obtained by deleting the pendant vertex
and the quasi-pendant vertex from G′, by Lemma 2, the graphs G′ and G′′ therefore have
the same singularity. By repeating the procedure above, that is, deleting in sequence the
pendant vertices and quasi-pendant vertices from the graph, these graphs share the same
singularity. Combined with Lemma 1, Theorem 1, Theorem 3, Theorem 4 and Corollaries
1–3, we can determine that singular graphs in T (γ), T (δ), T (ζ) and T (ϕ).



Symmetry 2022, 14, 2507 12 of 13

5. Conclusions

By using the following results, a graph G with n vertices singularity if and only if its
determinant det(A(G) of adjacency matrix A(G) equals 0, and combined with det(A(G)) =
(−1)n ∑H∈H(−1)p(H)2c(H), whereH denotes the set of all the spanning Sachs subgraphs of
graph G, p(H) denotes the number of components in graph H and c(H) denotes the number
of cycles in graph H. We give the necessity and sufficiency that four kinds of tricyclic graphs,
γ−graph, δ−graph, ζ−graph and ϕ−graph, are singular and prove that the probability
that a randomly given γ−graph, δ−graph, ζ−graph or ϕ−graph being singular is equal
to 325

512 , 165
256 , 43

64 , 21
32 , respectively. These results shine light upon the understanding of certain

singular graphs and may be promising to solve its relevant problems.
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