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Abstract: On social media platforms, users can not only unfollow others whose opinion excessively
opposes their own, but they can also add new connections. To better reflect the evolution of opinions
on social media, this paper proposes an opinion asymmetry evolution model based on a dynamic
network structure, where the trusts between two individuals are not mutual and dynamic. First, the
paper analyzes the general properties of the model. We prove that group opinion can converge to a
steady state even if the connection is unidirectional. Second, we compare the evolution process of
static and dynamic network structures. Computer simulation results show that a higher probability
of new connections leads to less aggregation of group opinion, higher information entropy, lower
HHI, and lower degrees of polarization.
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1. Introduction

Various platforms on social networks, such as Twitter and Toutiao, provide a place for
people to express their opinions. However, every netizen can also be influenced by others,
such as opinion leaders or friends. Accordingly, the opinions of individuals can evolve
with the passing of time, eventually forming the same or several opinion subgroups, and
even forming opinion polarization.

To explain the above phenomenon, scholars have established the opinion dynamics
model. An example is the Degroot model [1]. This model was initially used in group
decision-making, the consensus of expert opinions, and has been widely applied to the
research of opinion dynamics and collective intelligence, among others. In the model, the
updated opinion value is the weighted average of the individual’s own opinion and the
opinion of others. In certain conditions, group opinions can reach a consensus.

Based on the DeGroot model, Hegselmann and Krause [2] assumed that an individual
interacts only with neighbors whose opinion is not larger than a bound; they then proposed
a bounded confidence model. Each time, the individual’s opinion is averaged with the
neighbors’ whose opinion falls within the parameter range. Unlike the DeGroot model, the
model is nonlinear. The group may not reach a consensus even if group opinions converge,
thus forming opinion clusters.

It can simulate the various complex behaviors of groups in reality, such as the con-
sensus of group views and the split of group views. Thus, it has been widely used by
scholars. Similar to the HK model, another widely used model based on bounded trust is
the Deffaunt model [3].

Similar to the Degroot model, these two models are built on the bases of conformity
psychology and compromise mechanisms among individuals. The update of opinions
is the repeated averaging process. However, the HK model and the Deffaunt model are
nonlinear, and an individual’s dynamic behaviors are more complex. Group opinions can
reach a consensus or split, which can better reflect reality. Later research directions are
generally divided into two categories: to study the qualitative properties of the model
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using a mathematical method and to extend the model to make it more consistent with
reality. It considers opinion leaders and key individuals, heterogeneity, and opinion
polarization, among others. For example, [4] demonstrated that when the trust level of
all group members is consistent, the sufficient and necessary conditions for group views
to be consistent are demonstrated. From an analytical perspective, [5] demonstrated that
the HK model would eventually converge to a series of clusters and, within each cluster,
individual views would be consistent. At the same time, the author provides an upper
bound on the range of distance between opinion clusters. Jan Lorenz [6], using the matrix
algebra method, proposed that if one meets the following three conditions: group members
have a trusting relationship between each other, each individual has certain self-confidence,
and mutual influence between individuals has a positive lower bound, then the group
opinions will converge or achieve consistency; otherwise, the group is split into subgroups
with no contact. Santo Fortuno [7] studied the threshold problem of the continuous opinion
evolution model by numerical simulation. Gang Kou et al. [8] studied the evolution of
opinions when members in a community have a heterogeneous trust threshold. Watts
and Dodds [9], through a series of computer simulation studies, found that, in most cases,
strong influence is not driven by opinion leaders, but by some key individuals who are
easily influenced. Researchers in [10–12] also discuss the evolution law of opinions when
opinion leaders are present in a group. [13–15] discuss the influence of stubborn individuals
on the evolution of group views. For example, [16,17] discussed the role of special members
of a group and [18–24] studied how network structures impacted opinion evolution.

Contributions of this paper:
Unlike the abovementioned studies, this paper not only considers individuals as being

heterogeneous, but that the interactions between individuals are asymmetric and dynamic
on social media. For example, when using Toutiao, one user can follow another user, but
the latter may not follow them. Thus, the connection is asymmetric. Any user can also
follow a new user at any time, thereby rendering the connection dynamic.

This paper establishes an opinion evolution model based on the dynamic and asym-
metry network structure of heterogeneous individuals, and analyzes the general properties
of the model. We prove that group opinion can converge to a steady state even if the
connection is unidirectional. Secondly, we consider the influence of the way of establishing
new neighbors on the evolution of opinions. To measure the process and result of evolution,
we put forward measures of the dispersion degree of group opinions, the dominance of
mainstream opinion, and the degree of polarization Finally, using computer simulation
results, the influence of the new rules on the evolution of the group view is analyzed and
the conclusion is drawn.

This paper is organized as follows. In Section 2, we establish a model of opinion
evolution based on dynamic network structure. Using nonnegative matrix theory, we
prove the basic properties of the model. In Section 3, we propose a measurement index of
viewpoint evolution and use computer simulation to study the effect of new connection
probability on the index. In Section 4, we summarize the paper and put forward suggestions
according to the research results.

2. Model
2.1. Model Description

Let us consider a population with m individuals under a certain network structure. The
relationship between individuals is represented by G = (V, E), where V = {1, 2, · · · , m} is
the vertex set and E ⊆ V ×V is an edge set. If individual i is affected by j, it is represented
by a directed edge i→ j .

An individual interacts with all the other people whose opinion value difference is less
than their trust threshold, and has the edge relationship on the network. The individual’s
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opinion only depends on the previous round of opinion values of themselves and others
(no memory). Thus, the set of neighbors of the individual at time t is:

N′i(t) =
{

j|
∣∣xi(t)− xj(t)

∣∣ < εi
}
∩ {j |j ∈ Ni(t), j 6= i

}
. (1)

|Ni(t)| denotes the number of elements in the neighbor set Ni(t). On a social net-
work platform, changing opinions is often not easy for individuals with extreme opinions;
whereas individuals with neutral opinions are more likely to change their opinions. There-
fore, the former has a generally smaller trust threshold εi, and the latter has a larger one.

Dynamic network structure: Social network structures are dynamic and evolution-
ary [25–27]. In our model, a user has a certain probability to create new connected edges at
each time step. In other words, a user’s Ni(t) is dynamic. The phenomenon is thanks to
recommendations from social networking platforms. Given that the user is also affected
by themselves and the herd mentality mechanism, the updating rules of opinions are
as follows:

xi(t + 1) = ∑j∈N′i(t)
wijxj(t), (2)

where wij =
1

1 +
∣∣N′i (t)∣∣ (3)

Under the above assumptions, the evolution model of group opinion can be written as:

X(t + 1) = A(t)X(t), (4)

where A(t) = (aij)m×m. If individual i trusts j, then aij = wij, otherwise aij is 0. Therefore,
the 0–1 pattern of A is consistent with its adjacency matrix, and A is a row stochastic matrix
with row sum 1.

2.2. Property of the Model

Property 1: Group opinions eventually tend to be stable, i.e., lim
t→∞

X(t) = X, where X is
a constant vector.

Proof. Let X(0) be the initial opinion vector and X(t) be the opinion vector at time t, the
components of which denote members’ opinion. According to (4),

X(t) = A(t)A(t− 1)A(t− 2) · · ·A(1)X(0) (5)

Denote Π(t) = A(t)A(t− 1)A(t− 2) · · · A(1). If Π (t) converges to a constant row
stochastic matrix, then for a given initial point of vector, X(t + 1) will be equal to X(t), as
long as t is big enough. Now, we prove lim

t→∞
Π(t) = C. The proof consists of two steps.

Firstly, we show that when t is large enough, the rows in this matrix are equal. Secondly, a
row stochastic matrix with equal rows is proven to remain unchanged when left multiplied
by a row stochastic matrix.

Step 1: D (A) denotes the largest Euclidean distance between any two rows of an
A-matrix. According to nonnegative matrix theory, for row random matrices A and B [6]:

d(AB) ≤
(

1−min
i,j

∑n
k=1 min aik, ajk

)
d(B) (6)

For any matrix A, given that the entries on the diagonal are at least 1/n, and any
non-zero entries in the matrix are at least 1/n; i.e.,

min
i,j

∑n
k=1 min

{
aik, ajk

}
≥ 1

n
(7)

Thus, d(Π(t + 1)) ≤
(

1− 1
n

)
Π(t) ≤ e−

1
n Π(t) ≤ e−∑t

i=0
1
n Π(0),
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As t goes to infinity, the right side goes to 0, so

lim
t→∞

d(Π(t + 1)) = 0 (8)

Given enough time, Π(t) is a row stochastic matrix with equal rows. In other words,
Π(t) has the following block form:

Π(t) =

π1
π1
π1


where π1 is an n-dimensional row vector.

Step 2: Given that Π(t + 1) = A(t + 1)Π(t), we denote A(t + 1) = aijn×n. It is a row
stochastic matrix.

Thus,

A(t + 1)Π(t) =


a11 a12 · · · a1n
a21 a21 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann



π1
π1
· · ·
π1

 =


∑n

j=1 a1jπ1

∑n
j=1 a2jπ1

· · ·
∑n

j=1 a1jπ1

 =


π1
π1
· · ·
π1

 = Π(t). (9)

Therefore, Π(t + 1) will keep constant after the time when the rows of Π(t) are equal;
i.e.,

lim
t→∞

Π(t) = C (10)

�

Thus, the proposition that group opinions eventually tend to be a stable state has
been proven. Even if the network structure is dynamically changing, the group opinion
still converges. This result is general, but it goes beyond the conclusion obtained in the
literature [6], because the latter believes that the convergence requires a condition of mutual
trust. In this paper, through the above proof, we can see that the group opinion will still
converge even if the trust is not mutual.

3. Evolution of Group Opinions under Asymmetric and Dynamic Network Structure
3.1. Measurement and Indices

Dispersion degree of group opinions:
Let each time an individual adds a new neighbor with probability p. Then, what

effect does p have on the evolution of group opinions? Therefore, we should first put
forward the corresponding evaluation index for the evolution process and result of the
group opinions. One of the most common is the number of opinion clusters. However, this
index still has flaws.

The integer value alone cannot distinguish the order degree of group opinions when
the number of opinion clusters is the same. For example, for a group with 100 members,
in the first case, the opinions of the group eventually converge to 0.1 and 0.95, and the
number of people are 50 and 50, respectively, forming two groups. In the second phase,
the group views also converge to 0.1 and 0.95, but the number of people are 10 and 90,
respectively, which also forms two groups. However, the degree of consensus among the
latter groups is clearly much higher than that of the former. Thus, here, we borrow the
concept of information entropy to quantify the degree of order of group views. Given that
opinions will eventually reach a steady state, assume that the sizes of opinion groups are
n1, n2, · · · nk, respectively. Then, the measurement index of the dispersion degree of group
opinions is:

entropy = −∑j∈1,2,···k pjlog2 pj, where pj =
nj

N
(11)
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Obviously, this index can not only reflect the number of groups, but also the degree of
dispersion caused by the size of the subgroup, which is actually a measure of the disorder
degree of the macro state of the group. Initially, if group opinions are completely disordered,
the information entropy is logN

2 . If consensus is reached, the entropy is 0.
Dominance of mainstream opinion
To reflect the dominance of mainstream opinion, we borrow the HHI index from

economics. Specifically, the HHI measures opinion concentration as the sum of the squares
of “shares of all clusters” in the group, meaning that it considers all subgroup sizes.
Therefore, for example, if the number of clusters is the same in two cases, but the largest
cluster has more people in the first case, the HHI index will be higher than another case,
which means that the first scene has a more dominant opinion.

HHI = ∑k
j=1 (

nj

N
)

2
(12)

Polarization index
A higher degree of polarization indicates that most opinions of individuals in the

group are far away from the neutral opinion. Unlike in [28], we put the opinions in the
range of [0, 1], and the neutral opinion is about 0.5. Therefore, we define polarization index
PI as:

PI =

√
∑m

i=1(oi − 0.5)2

n
(13)

The higher the value of this index, the higher the degree of opinion polarization, and
vice versa. From the formula of the above indicators, we can predict that a cyberspace
where diversified opinions coexist must have a higher entropy, a lower HHI, and a lower
PI. Given that dynamic interactions enhance the communications between group members,
we can also predict that such dynamics may increase the number of final opinion clusters,
which will also lead to an increase of entropy and a decrease of HHI and PI.

3.2. Evolution of Group Views under Dynamic Network Structure

To confirm these predictions, we use computer simulations to investigate the effects of
asymmetric and dynamic interactions on the evolution. The constructed group size is 100,
and 100 opinion values with uniform distribution are placed on the network node. Each
node represents an individual or user. The openness of the individual (trust threshold)
with extreme opinion (0 or 1) is set to 0.02, and the individual with a neutral view is set to
0.22. The openness of other individuals evenly varies between [0.02, 0.22].

We examine two types of evolution: based on static network structure and dynamic
network structure. Using Formula 2.4, we can calculate the evolution process of the group’s
opinions. The result is shown in Figure 1, where the horizontal axis represents the time
step and the vertical axis represents the view values of different individuals. Individuals
have different connection patterns or openness, so the evolution caused by this asymmetric
dynamics looks very complex. As a result, there is no opinion-order preservation as
mentioned in the literature [29]. Figure 1a shows an example of the evolution of group
opinions under a static network structure. Two extreme opinion subgroups are easily
found to be eventually formed. Given that individuals with extreme opinions often lack
openness, an asymmetric attraction exists between them and those with neutral opinions.
Consequently, individuals in the middle attracted to individuals with extreme opinions
will form a larger extreme opinion group. The polarization degree is shown in the subplot,
and the final PI is approximately 0.047.
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Figure 1. Comparison of group opinion evolution under static and dynamic network structures.
(a) Represents the static network structure, and (b) represents the dynamic one. The horizontal axis
represents the moment, and the vertical axis represents the different individual’s opinion. The subplot
reflects the trend of polarization index during the evolution process.

By contrast, Figure 1b shows an example of the evolution of group opinions under
a dynamic network structure. The number of clusters is easily seen to be three. It forms
a new subgroup with a neutral opinion. The final PI is only 0.034, which is significantly
lower than that of the static network. This finding suggests that creating new connections
between static network nodes may reduce the degree of polarization and increase the
number of clusters.

To further compare and quantify the evolution results of static and dynamic network
structures, we investigate the change in the probability of adding a new edge p from 0 to
0.9. Here, p is the probability that an individual will create a directed edge with another
non-neighbor individual during the evolutionary process. Notably, even if a connection
does occur, interaction depends on whether the other’s opinion is within the individual’s
threshold range.

In order to make the simulation results more robust, we choose the initial network
structure as the control variable. The initial networks are set as random networks (ER
network), small-world networks (WS model), and real network (including the Karate Club
network, BKHAM network, and a topic network that we captured in Toutiao). Take the
new connection probability p as the independent variable, and observe the influence of p
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on the evolution result (PI, entropy, and HHI). The value of p ranges from 0 to 1, where
p = 0 represents a static network.

Figure 2 shows that, compared with the static network (p = 0), the dynamic network
will bring about a weakening of polarization. With the increase of p, the polarization of
group opinion tends to weaken. That is, no matter what the network structure is, the
dynamics often weaken the polarization phenomenon. This also means that there will
be more neutral individuals during the dynamic evolution, which causes the size of the
extreme opinion clusters to become smaller.
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structures (b). The horizontal axis represents the probability of a new connection, and the vertical
axis represents PI.



Symmetry 2022, 14, 2499 8 of 11

Figure 3 shows that, compared with static networks, opinion evolution under different
dynamic network structures tends to form a lower HHI. This finding means that as the new
connection probability increases, mainstream opinion usually weakens and group opinion
tends to be increasingly leaderless.
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Figure 3. The influence of new connection probability on HHI and entropy. Figure 3 shows the
influence of new connection probability on HHI under different network structures. The horizontal
axis represents the probability of a new connection, and the vertical axis represents HHI. In the
subplots, the vertical axis represents entropy. Figure 3 (a) shows that the initial networks are small-
world and (b) are random, whereas (c) are real.
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With the increase in new connection probability, the final opinion information entropy
increases. Given that the information entropy reflects the disorder degree of an opinion,
it can be seen that with the increase in the probability of adding new edges, the disorder
degree becomes increasingly higher.

It is important to note that our results are only on average. Therefore, we carefully
checked to see if they were statistically significant. We compare the mean values based on
t-test, the results of which are shown in Table 1. According to Table 1, all dynamic cases
are significantly higher than p = 0, where the p-value is 0. For relatively close probabilities,
most of the mean differences are significant, and only a few are not very significant.

Table 1. t-test results (take ER(N,0.2) as example).

PI p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

p-value

compare
with p = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

compare
with p-0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HHI p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

p-value

compare
with p = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

compare
with p-0.1 0.00 0.00 0.00 0.00 0.20 0.05 0.07 0.53 0.00

entropy p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

p-value

compare
with p = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

compare
with p-0.1 0.00 0.00 0.00 0.00 0.14 0.00 0.76 0.73 0.09

From the above data, we can obtain a relatively consistent outcome: Compared to
static interaction, the asymmetric and dynamic interaction will bring lower PI, HHI, and
a higher entropy; the stronger this dynamic interaction, the more obvious the change.
During the process of evolution, new connections will make group opinions more difficult
to aggregate and more diverse.

This phenomenon occurs due to individual heterogeneity and biased selection. In our
model, individuals with extreme opinions are given smaller thresholds, whereas those with
neutral opinions are given a larger threshold. Therefore, when individuals are allowed
to add new connections during the evolution of opinions, such connections are rare for
extreme individuals and many for individuals with neutral opinions. Therefore, in the
process of interaction, both the extreme individuals’ own opinions and link patterns will
scarcely change. However, for neutral individuals, establishing new interaction relations
is easier due to its larger openness. Thus, forming a subgroup between the two extreme
opinion clusters is also easier. Consequently, aggregating group opinions is harder, and
mainstream opinions are less dominant.

Notably, our results are on average. Therefore, the above conclusions are not abso-
lute. The final evolutionary outcome also depends on other factors (e.g., initial opinion
distribution and random factors).

4. Conclusions and Implications
4.1. Conclusions

In this paper, we established an opinion evolution model under an asymmetric and
dynamic network structure. Compared with the static model, it was closer to the reality
of social media. We proved that opinion evolution under an asymmetric and dynamic
network structure can also yield a stable convergence result. To compare with a static
network structure, this paper put forward indices such as entropy, HHI, and PI. Experiments
showed that with the increase in the probability of adding edges, the evolution of ideas
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under the dynamic network structure eventually leads to lower HHI, higher information
entropy, and larger opinion polarization results.

For the quantification of group opinions, the indices proposed in this paper have very
important application value. Unlike AOC and convergence time, the above indexes are
sensitive to data and can clearly reflect the whole appearance of group opinion.

4.2. Implications

The above results have important implications for social media. The recommendation
and follow mechanisms of social media are not conducive to the aggregation of group
opinions, but promote the diversification of opinions; particularly, individuals with neutral
opinions are prone to form subgroups. Therefore, the recommendation and follow mech-
anisms are more likely to lead to an information cocoon and reinforce the echo chamber
effect. Therefore, to reduce this information cocoon and echo chamber effect, we should
reduce the number of such recommendations (reduce the probability of new edges). If
we want to reduce the polarization of opposing views, we should increase the number of
recommendations (increase the probability of new edges), which can provide a basis for
the policy maker in the new media age.

The research in this paper has many shortcomings. In view of the complexity of
the network and its dynamics, many factors can only be used as control variables. More
extensive datasets should be used to validate the research. We are currently working on
these challenging subjects.
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