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Abstract: When subjected to a classical fluctuating field characterized by a Gaussian process, we
examine the purity and coherence protection in a three-level quantum system. This symmetry of the
three-level system is examined when the local random field is investigated further in the noiseless
and noisy regimes. In particular, we consider fractional Gaussian, Gaussian, Ornstein–Uhlenbeck,
and power law noisy regimes. We show that the destructive nature of the Ornstein–Uhlenbeck
noise toward the symmetry of the qutrit to preserve encoded purity and coherence remains large.
Our findings suggest that properly adjusting the noisy parameters to specifically provided values
can facilitate optimal extended purity and coherence survival. Non-vanishing terms appear in the
final density matrix of the single qutrit system, indicating that it is in a strong coherence regime.
Because of all of the Gaussian noises, monotonic decay with no revivals has been observed in the
single qutrit system. In terms of coherence and information preservation, we find that the current
qutrit system outperforms systems with multiple qubits or qutrits using purity and von Neumann
entropy. A comparison of noisy and noiseless situations shows that the fluctuating nature of the local
random fields is ultimately lost when influenced using the classical Gaussian noises.

Keywords: coherence; three-level system; classical fluctuating field; Gaussian process; purity

1. Introduction

In recent decades, there has been considerable progress in quantum information
processing and quantum computing [1–3], inspired by the design and enhancement of
certain related aspects [4–6]. Quantum coherence has remained one of the most active
research areas in quantum information sciences, and it has been extensively investigated,
yielding significant results and improvements in quantum mechanical protocols [7,8].
Coherence preservation in a quantum system ensures successful transmission and higher
efficiency in practical quantum information processing. The concept of super-positioning
is central to quantum physics and quantum computing, and is referred to as quantum
coherence. Coherence has also been found to be a requirement for entanglement and other
types of quantum correlations [9–14].

The entangled and coherent states are not physically separated from their surround-
ings in a practical sense. Connecting such quantum systems to their surroundings results in
a loss of coherence and entanglement due to dephasing effects [15]. This can be caused by a
variety of factors in the environment, such as random particle mobility, thermal fluctuations,
and various disorders, to name a few. Depending on the defect, the type of system, and the
type of system–environment interaction involved, these faulty environments produce a
variety of noises; for examples, see Refs. [16–20]. In this context, the local environmental
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description is preferable because it allows for a more comprehensive investigation of quan-
tum systems with multiple degrees of freedom. The coherence dynamics for decreasing
degrading effects have been researched both theoretically and experimentally for a range
of quantum systems under varied noisy situations [21–25].

We present a thorough investigation of the coherence preservation for a three-level
system under various Gaussian noises. Among the noise types are fractional Gaussian
noise (FGn), Gaussian noise (Gn), Ornstein–Uhlenbeck noise (OUn), and power law noise
(PLn). These noises are produced by the particles’ usual random motions, which can
degrade entanglement and coherence [26–28]. The study’s primary aim will be to devise
effective methods for preventing the deteriorating effects of the corresponding Gaussian
noise. In addition, the comparative dynamics of coherence under various noises will be
thoroughly investigated.

Non-Markovianity, local environment responses to coherence, entanglement protec-
tion, and statistical distinguishability on the density operator space, can be investigated
using quantum Fisher information and quantum estimation theory, as discussed in [29,30].
The primary goal of the measurements is to determine the quantum Fisher information
enhancement of open quantum systems so that unknown environmental parameters can
be precisely measured. Important results have been achieved to prevent entanglement
and coherence losses using quantum Fisher information and estimation theory for single
and three-qubit states in [31–34]. In addition, in [35], coherence measurement has been
investigated using entanglement-based coherence measures, distance-based coherence,
and geometric coherence measures. In this paper, we look at the coherence preserva-
tion for a single qutrit state using two metrics: purity and von Neumann entropy [25].
To summarize the noise-free and noisy local fields’ comprehensive coherence evaluation,
besides purity and von Neumann entropy, we will be using the `1-norm of coherence [36].

The phase of a quantum system is crucial to the dynamics and symmetry of quantum
systems and the associated transmitting channels. After computing the time-evolved
density matrix, an average of the noise phases will be calculated to determine the noise’s
damaging effects. The quantum system’s dynamics will be performed using the time
unitary operation. Under the classical fluctuating field, the stochastic Hamiltonian is
used to describe the energy state of the qutrit system. In both noisy and noise-free local
environments, we examine the qualitative behavior of the system’s coherence. The existence
of a pure noiseless configuration is an ideal example; however, to decode a coherent
state, it will be necessary to estimate the dissipation power and other local environmental
characteristics. Differentiating between noiseless and noisy classical channels could help
with quantum mechanical circuit design and long-term coherence preservation.

The major benefit of Gaussian processes is that they are tractable in many contexts
and mimic a wide range of situations reasonably well. For example, in finance, Kalman
filters, econometrics, satellite tracking, neural networks, machine learning, Bayesian rea-
soning, and other fields, Brownian motion and the related Gaussian noises are commonly
used [37–42]. FGn, a stationary time series model with longer memory properties that have
been applied in econometrics, hydrology, climatology, functional MRI, traffic networking
and signaling, and so forth, could be part of the Gaussian process [43–47]. The Ornstein–
Uhlenbeck process is stable, Gaussian, and Markovian; with Brownian motion-associated
disorder causing OUn. This noise has been employed in studies including the intraday
pairs trading strategy, stimulated Raman adiabatic passage systems, quantum control,
modern quantum technologies, and other areas [48–51]. Furthermore, PLn is another
Gaussian noise used to model signal detection, human observer detection experiments, and
surface growth and dynamics in lipid bilayers [52–55]. The dephasing effects generated
by these Gaussian disturbances on the dynamical map of the three-level system in local
external fields will be the focus of this paper. The purpose is to characterize the preser-
vation of coherence and information encoded initially in the system over the complete
range of the related noisy parameters. In this domain, workable methods for avoiding
or minimizing Gaussian dephasing effects will be presented by utilizing the noise phase
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via noise parameter adjustments. Therefore, this will lead to a longer preservation of
quantum correlations. For example, by utilizing the parameters of bit-phase flip and the
phase flip channels, quantum correlations have been shown to remain preserved in a noisy
accelerated two-qubit system [56]. We also intend to provide computational values for the
β-functions concerning various noise parameter values, which define the superimposed
noise phase over the collective phase of the system and a classical fluctuating environment.
This will lay the groundwork for the practical optimization of the classical fields with
relative noise disorder.

The paper is organized as follows: In Section 2, the physical model and the associated
dynamics of the three-level system in the classical fluctuating field under distinct noises
will be presented. In Section 3, the results obtained are discussed. Section 4 will explain the
conclusion from the present investigations.

2. Model and Dynamics

This section summarizes the required mathematical operations. We focus on the
dynamical map of coherence in a three-level system that exists initially and which then
evolves in classical fields of fluctuating nature driven by distinct Gaussian noises (see
Figure 1). The Hamiltonian that governs the system’s present dynamical map can be stated
as [25]:

Hqt(t) = εI + ωη(t)Sx, (1)

where ε is the energy associated with the system. The qutrit’s space is defined by the
identity matrix I and the spin-1 operator Sx. ω is the qutrit-environment coupling strength,
while η(t) is the stochastic parameter that flips between ±1, and its nature depends on the
classical noise imposed on the external fields. Because of the random nature of the η(t),
the given Hamiltonian in Equation (1) is stochastic and explains the stochastic dynamics
of the three-level system with time. The corresponding time evolution operation for the
three-level system can be written as [57]:

Uqt(t) = exp
[
−i
∫ t

0
Hqt(s)ds

]
, (2)

where h̄ = 1. If the qutrit system is initially prepared in the state ρo, then the time-evolved
density matrix can be expressed in the following form as [57]:

ρqt(t) = Uqt(t)ρoUqt(t)
†. (3)

Figure 1. The current configuration model depicts the coupling of a three-level system qt exposed
to a classical fluctuation field EL(t). The system–environment coupling strength ω is shown by
the blue-reddish wavy lines, while the noise’s influence is represented by the yellowish light in the
qutrit. The brownish-wavy lines depict system dynamics as defined by the associated environment’s
stochastic parameter η(t), with diminishing amplitude showing Gaussian noise-induced dephasing.
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2.1. Impact of Local Gaussian Noises

Various local Gaussian noises are defined here to include the noisy effects. In this
proceeding, we evaluate the application of the fractional Gaussian (FGn), Gaussian (Gn),
Ornstein–Uhlenbeck (OUn), and power law noise (PLn). The random mobility of the
particles in the diffusion process causes FGn and OUn. This can disrupt the dynamics
of quantum systems, necessitating further investigation. Because of its larger timescale
correlations, FGn has been utilized to analyze meteorological information [58], traffic
control analysis [59], and electrical measurements [60]. The OUn has been extensively
studied with the dynamics of quantum systems, as described in [57]. Similarly, the discrete
nature of warm object radiation causes Gn and gives rise to the thermal vibration of the
medium’s particle, and is used to study digital imaging [61], signal detection, and phase
transitions [62]. Finally, in solid-state and superconducting materials, the PLn is a low-
frequency noise caused by resistance. This noise has been already studied for the scaling
of surface fluctuations and the dynamics of surface growth models [63], human-observed
detection experiments with mammograms [53], and the discrete simulation of colored noise
and stochastic processes [64].

To impose classical noise over the time evolution of the system, one has to include the
β-function, which reads as [57]:

β(t) =
∫ t

0

∫ t

0
K(s− s′)dsds′. (4)

We look at four different Gaussian processes. To be more specific, we suppose that the
stochastic field β(t) is driven by FGn, OUn, Gn, or PLn. The associated autocorrelation
function of FGn with a diffusion coefficient which proportionally grows as τ2H can be
written as [28,57]:

KFGn(τ − τ′) =
|τ′|2H − |τ − τ′|2H + |τ|2H

2
. (5)

where 0 ≤ H ≤ 1 is known as the Hurst index (H). This autocorrelation function is
specifically defined for three different values. When H = 1

2 , the effects of FGn noise
become similar to the Wiener process. At H < 1

2 , Equation (5) enters a sub-diffusive
process and the increments of the expressions are negatively correlated. When H > 1

2 ,
the autocorrelation function of the noise reaches the super-diffusive regime and the related
increments of the equation become positive. The β-function for the FGn can be obtained
by inserting the autocorrelation function from Equation (5) into Equation (4) as in [57]:

βFGn(τ) =
τ2(H+1)

2(H + 1)
. (6)

In the case of Gn, OUn, and PLn, the corresponding autocorrelation expressions are:

KGn(t− t′,γ, Γ) =
Γγ exp[−γ2(t− t′)2]√

π
, (7)

KOUn(t− t′,γ, Γ) =
γΓ exp[−γ|t− t′|]

2
, (8)

KPLn(t− t′,γ, Γ, α) =
[α− 1]χΓ

2[χ|t− t′|+ 1]2
, (9)

where Γ regulates the damping rate and α is the unknown parameter in the case of PLn,
which has been also demonstrated to carry noisy detrimental effects. For the Gn, we assume
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g = γ
Γ and τ = Γt, where γ is also a dephasing Gaussian noise parameter. By inserting the

autocorrelation function from Equation (7) into Equation (4), we obtain [28]:

βGN (τ) =
1
g

[
e−g2τ2 − 1√

π
+ Erf[gτ](gτ)

]
, (10)

where Erf[gτ] = 2√
π

∫ gτ
0 exp[−t2]dt is the error function of the normalized Gaussian distri-

bution. The relative β-function for the OUn can be obtained by inserting Equation (8) into
Equation (4) and can be expressed in the form [57]:

βOUn(τ) =
gτ + exp[−gτ]− 1

g
, (11)

where g is the inverse of the autocorrelation time τ. Similarly, for PLn, we recall g = γ
Γ and

τ = Γt and insert the autocorrelation function given in Equation (9) into Equation (4); we
obtain the β-function as in [28]:

βPLn(τ) =
gτ(α− 2)− 1 + (1 + gτ)2−α

g(α− 2)
. (12)

The final density matrix of the system is averaged over the random phase factor φ as
〈e±nφ(t)〉 = 〈eθ(τ)〉, where φ = inωη(t), with n ∈ N being the phase factor determining the
dynamical characteristic of the system in the local random fields, and θ(τ) = − 1

2 n2βAB(τ)
(withAB ∈ {FGn, Gn, OUn, PLn) is the phase factor of the local Gaussian noise. The time-
evolved density matrix of the system can be obtained using [57]:

ρqt(τ) =
〈

Uqt(t)ρoU†
qt(t)

〉
θ(τ)

. (13)

2.2. Coherence Measures

The degree of mixedness of a quantum state, or the coherence of a pure initial state
that reflects the physical system because of interactions with classical environments, is
determined according to purity. For a quantum state ρqt(τ), purity can be determined
by [25]:

Pr(τ) = Tr
[
ρ2

qt(τ)
]
, (14)

where for a system of n-dimensions, the purity ranges as: 1
n ≤ Pr(τ) ≤ 1. The state of

being pure and coherent occurs at Pr(τ) = 1, while it is entirely mixed and decoherent
at 1

n .
Decoherence occurs when quantum systems’ wave functions interact with their cou-

pled environments. As a result, rather than being a single coherent quantum superposition,
the system behaves similarly to a classical statistical ensemble of its constituents. The de-
coherence phenomenon will be a credible measure to calculate the coherence loss in the
time-evolved state of the system, because the system–environment interaction is depicted
classically here. The von Neumann entropy technique can assess the decoherence effects
for the time-evolving density matrix as [25]:

Ve(τ) = −Tr
[
ρqt(τ) log ρqt(τ)

]
. (15)

Ve(τ) = 0 indicates that the state is coherent with no information loss. Any other
value will represent the corresponding amount of coherence and information loss for the
three-level system.
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3. Main Results

In this part, we provide the major findings for the dynamics of a qutrit system under
Gaussian noise emanating from a classical fluctuating field. Apart from that, the results of
Equations (14) and (15) will be analyzed to see how purity and von Neumann entropy have
changed over time. In order to determine the current noise’s ability to dephase the single
qutrit system, the system’s dynamics are explored in both noiseless and noisy conditions.

3.1. The Noiseless Classical Field

The dynamics of the single qutrit system, when subjected to a noise-free stochastic field,
is discussed in this section. Using the existing dynamical setup of the system in a noise-free
context, the original role of stochastic fields in noise exclusion can be demonstrated. This
will also discriminate between the qualitative dynamical map of a single qutrit system in
both noiseless and noisy classical fields. The following is the time unitary operation matrix:

Uqt(t) = exp(−itε)


cos
[

φ
2

]2
− i sin[φ]√

2
1
2 (−1 + cos[φ])

− i sin[φ]√
2

cos[φ] − i sin[φ]√
2

1
2 (−1 + cos[φ]) − i sin[φ]√

2
cos
[

φ
2

]2

, (16)

while the initial density matrix is considered in the form ρo = |ψ〉〈ψ|, ψ = 1√
3
(|0〉 +

|1〉 + |2〉). The final density matrix, computed using Equation (3), can be put into the
following form:

ρqt(t) =
1
12


3 + cos[2φ] 4 + i

√
2 sin[2φ] 3 + cos[2φ]

4− i
√

2 sin[2φ] 6− 2 cos[2φ] 4− i
√

2 sin[2φ]

3 + cos[2φ] 4 + i
√

2 sin[2φ] 3 + cos[2φ]

. (17)

The structure of the density matrix given in Equation (17) illustrates that the system
is coherent, as the off-diagonal elements of the matrix are non-zero. Furthermore, for the
density matrix Pr(t) = 1 and Ve(t) = 0, the system is hence portrayed to be coherent.

To analyze the coherence qualitative dynamical map for the time-evolved density
matrix of the system given in Equation (17), we use the `1-norm of coherence, which can be
computed as [36]:

C(t) = ∑
i 6=j
|〈i|ρqt(t)|j〉|, (18)

where ∑i 6=j |.| is the sum of the absolute values of the off-diagonal elements of ρqt(t) in the
chosen reference basis. It is worth mentioning that the `1-norm of coherence has a range of
0 ≤ C(t) ≤ n− 1, where n are the dimensions of the system [65]. Therefore, for the current
qutrit system, the `1-norm of coherence will range as 0 ≤ C(t) ≤ 2.

Figure 2 shows the dynamics of coherence for the time-evolved density matrix state
given in Equation (3) for the single qutrit system when coupled to the classical field against
coupling strength ω and classical stochastic parameter η. Note that the superposition of
the noise phase over the system phase is not applied. From the current results, we find
that such local environments have a random character and strongly support coherence
revivals. These fluctuations are the main reasons for the dynamics and preservation of co-
herence. As in most of the previous results, whenever the revival character in the dynamical
maps of the system vanishes, the coherent states become decoherent; for example, see the
Refs. [57,66–69]. Thus, the fluctuating character of the current local channels influenced by
disorders can be helpful for preserving the coherence encoded initially in a quantum state.
Here, the fluctuation rate in coherence is influenced by the qutrit-environment coupling
strength ω and the stochastic parameter η of the classical field. One can note that the
number of revivals is greater for the increasing strength of ω in Figure 2a and for η in
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Figure 2b. In agreement, the stochastic parameter also influences the revival frequency
of coherence, as for the increasing η values, the `1-norm of coherence faces a repeated
and increasing number of oscillations. The amplitude of the fluctuations is completely
independent of the ω as well as of η(t), and only depends upon the type of system involved.
This optimal setting for controlling the revivals of coherence can lead to the engineering
and design of circuits and protocols for the required results [70–72]. We conclude that the
three-level system remains a resource state in the noise-free classical fields, exhibiting a
dynamical map with no coherence loss, and that it does not transition from the resource
state to the free state regime completely.
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Figure 2. Time evolution of coherence in a single qutrit system prepared in the time-evolved state
ρqt(t) given in Equation (19) subjected to a noiseless classical channel when (a) η = 1, 0 ≤ ω ≤ 1 and
(b) 0 ≤ η ≤ 1, ω = 0.5 against the time evolution parameter t.

3.2. A Classical Field with Gaussian Noises

The application of Gaussian noises to the time-evolved density matrix of the single
qutrit system described in Equation (13) is covered in this section. In the current case,
the noise phase is superimposed over the system’s phase. The final density matrix for the
three-level system under the Gaussian noise computed has the form:

ρABn
qt (τ) =


1

12 (3 +MABn)
1
3

1
12 (3 +MABn)

1
3

1
2 −

MABn
6

1
3

1
12 (3 +MABn)

1
3

1
12 (3 +MABn)

, (19)

where

ρABn
qt (τ) ∈ {ρFGn

qt (τ), ρGn
qt (τ), ρOU n

qt (τ), ρPLn
qt (τ)}, MABn ∈ {MFGn , MGn , MOU n , MPLn},

with

MFGn =e−
τ2H+2

H+1 , MGn = exp

−2
(
(gτ)erf(gτ) + e−g2τ2−1√

π

)
g

,

MOUn =e−
2(gτ+e−gτ−1)

g , MPLn = exp

[
−

2
(
(gτ + 1)2−α + (α− 2)gτ − 1

)
(α− 2)g

]
.

Under the effects of Gaussian noises, the diagonal and off-diagonal components of
the aforementioned matrix differ from those in Equation (17), but they do not vanish.
Therefore, the current three-level state remained coherent, even under the presence of
noise. This means the single three-level system is a better resource in terms of informa-
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tion preservation than bipartite and tripartite quantum systems, which suffer from more
loss [16–20,66,68,73–76].

Using Equation (18) for the final density matrix given in Equation (19), the result
obtained for `1-norm of coherence has the following form:

C(τ) =
1
6
(|3 +MABn |+ 8). (20)

In Figure 3, the dynamics of the coherence in the final density matrix of the single
qutrit system under local Gaussian noises originating from the stochastic field is depicted.
The current results reflect the time evolution of the coherence when the noise phases
is superimposed on the system phase. By comparing Figures 2 and 3, one may easily
determine the prevailing deteriorating character of classical noises for coherence and
the revival character of the local fields. Because of the Gaussian noisy classical field,
the fluctuations are eradicated after the first death. This means that the coherence revivals
seen in noise-free classical fields were completely dampened in the dynamical map of the
three-level system under Gaussian noises. Therefore, this demonstrates that information
transmission between the qutrit and its environment is not supported, and that information
loss is irreversible. When subjected to the classical fields regulated by the Gaussian noises,
the interconversion of the free and resource three-level system is completely restricted. This
implies that quantum information processing involving local Gaussian noisy fields will be
a delicate operation with a high risk of failure. As shown in [66,68], this characteristic has
also been proven in quantum correlations and in the survival of coherence in classical fields
with non-Gaussian noises, causing total or partial non-local correlation losses. Each noise,
as well as its associated parameters, has a different ability to suppress coherence throughout
time. In the specified Hurst exponent (H) range, the decay is substantially higher and
faster. When compared to FGn, the relative losses in the cases of Gn, OUn, and PLn are
significantly reduced for both the high and low values of the noisy parameters. It is worth
noting that the decay behavior of FGn differs significantly from that of other existing noises
and that there is no evidence of a significant rise in decay when the parameter H is increased.
This is in direct contrast to the latter included noises when the slopes change towards higher
decay as the noisy parameters are increased. The decay caused by the PLn seems to be
similar to that of FGn; however, the intrinsic roles of their corresponding parameters α and
H seem to be the opposite. Furthermore, FGn is followed by PLn in producing greater
dephasing effects. As in the cases of Gn andOUn noises, when g approaches zero, the initial
coherence remains preserved for indefinite intervals. The saturation values for all the
included noises remained constant, implying a comparable relevant Gaussian character.
Based on the existing findings, it is possible to predict that the non-local correlations and
information decay caused by these noises will be monotonic rather than having revivals.
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Figure 3. Time evolution of coherence in a single qutrit system prepared in the time-evolved state
ρqt(τ) given in Equation (19) when subjected to the classical field generating (a) fractional Gaussian
noise when 0 ≤ H ≤ 1 and (b) Gaussian noise when 0 ≤ g ≤ 1, (c) Ornstein–Uhlenbeck noise when
0 ≤ g ≤ 1 and (d) power law noise when 2 ≤ α ≤ 4 with g = 1 against evolution parameter τ = 3.

3.2.1. A Classical Field with FGn

The dynamics of the single qutrit system originating from the classical field underFGn
is briefly investigated here. The impact of current noise is applied by averaging the final
density matrix in Equation (13) over the noisy phase with the β-function from Equation (6).
In Equation (19), we find that the diagonal- and off-diagonal terms are non-vanishing. This
means the qutrit system is still coherent under FGn. The density matrix states calculated
for many quantum systems studied in [57] contradict this, where many elements of the
final density matrix of the systems vanished, resulting in larger or complete decoherence.
The following analytical results are obtained using Equations (14) and (15) for the system’s
final density matrix:

Pr(τ) =
1

18

(
17 + cosh[

2(τ2)1+H cos[2(1 + H)Arg[τ]]
1 + H

]− sin[
2(τ2)1+H cos[2(1 + H)Arg[τ]]

1 + H
]

)
, (21)

Ve(τ) =
1
6

ν1

(
−3ν2 +

√
ν2 + 8ν3) log[

1
6
(3− ν1

√
ν2 + 8ν3]

)
−1

6
ν1

(
3ν2 +

√
ν2 + 8ν3) log[

1
6
(3 + ν1

√
ν2 + 8ν3]

)
,

(22)
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where

ν1 =e−
2τ2+2H

1+H , ν2 =e
2τ2+2H

1+H ,

ν3 =e
4τ2+2H

1+H .

Figure 4 explores the dynamics of the purity and von Neumann entropy for a single
qutrit system under the local FGn. By comparing Figures 2–4, the destructive nature of the
FGn towards the revivals and preservation of the coherence and information is obvious
enough. Purity and coherence, because of FGn, attain final saturation values after undergo-
ing maximum decay. It is important to recall that the present saturation levels only reflect a
small partial loss of coherence and information. This is both startling and counterintuitive
to most previous results for systems with multiple qubits or qutrits [57,67,68], where a
greater loss of information has been observed. This means that once the information is
lost, then this noise does not facilitate the repeated interchange of information between
the system and the environment. One might deduce that the information degradation
is irreversible and cannot be reversed, as also shown in [57,77–80], where a temporary
reversible decay occurred. The dynamics of the bipartite and tripartite states under OUn,
and pure and mixed Gaussian noises have the same monotonic qualitative decay; through
with different decay levels or reaching complete separability [57,77–80]. We find it distinct
that, for increasing choices of H, the slopes shift from the green to the red end. This implies
the supporting nature of the parameter H for memory properties of the environments, and
the opposite results have been obtained while discussing different noise parameters, such
as in [57,67,77,78] where decay increases with the increase in the noisy parameters. All
of the parameter values overlap at the peaks and minima, indicating that both measures
suggest a single saturation level, and therefore they predict a good agreement between
them. The current noise parameters do not affect the loss in this case, but the noise
phase has an enormous impact. Adjusting the parameters has only a minor impact on
the preservation duration, and any choice of H does not guarantee that the coherence
and information will be preserved. Because of the discrete nature, we found no ultimate
solution or ideal parameter fixing to avoid the FGn noisy detrimental effects. Avoiding
classical environments with discrete Brownian motions of the relative constituents is the
only method to reduce this type of noise. The β-function for H = {0.1, 0.5, 0.9} is computed
to be β = {2.08854, 2.66667, 3.66548}. Within classical environments with FGn disorders,
these precise values will be useful in optimizing quantum correlations and the coherence
survival time.
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Figure 4. Time evolution of (a) purity and (b) von Neumann entropy as functions of H versus τ in a
single qutrit system when subjected to the classical field generating fractional Gaussian noise.
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3.2.2. A Classical Field with Gn

Performing the average of the final density matrix given in Equation (13) over the
noise phase with the β-function given in Equation (10) results in the dynamics of the single
qutrit system under Gn. From the final density matrix given in Equation (19), it is readily
deducible that the system remains coherent under the current noisy configuration because
of the non-vanishing terms.

In contrast, the bipartite and tripartite states given in [16–20,57] remained more fragile
to the local noisy environments and became less coherent shortly, as compared to the
current three-level system. From Equations (14) and (15), the analytical results for the
current configuration are:

Pr(τ) =
1
18

17 + e

4
(

1−e−g2τ2
)

√
π

−4gτErf[gτ]

g

, (23)

Ve(τ) =η1

(
(−3η2 +

√
η3) log

[
1
6
(3− η1

√
η3)

]
− (3η4 +

√
η3) log

[
1
6
(3 + η2

√
η3)

])
, (24)

where

η1 =
1
6

e
− 4e−g2τ2

g
√

π
−4τErf[gτ]

, η2 =e
4e−g2τ2

g
√

π
+4τErf[gτ]

,

η3 =8e
8e−g2τ2

g
√

π
+8τErf[gτ]

+ e
4

(
1+e−g2τ2
√

π
+gτErf[gτ]

)
g , η4 =e

− 4e−g2τ2

g
√

π
−4τErf[gτ]

.

Figure 5 shows the dynamics of purity and von Neumann entropy for a single qutrit
system when subjected to the classical field with Gn. The system’s time evolution is
investigated further for various g values against τ. By comparing Figures 2, 3 and 5, one
can deduce the dominating deteriorating character of the Gn to the lower preservation
capacities and vanishing revival features of the environments. Due to Gn, the initially
encoded purity and coherence in the system showed a monotonic decline rather than
showing any rebirths. As a result, the classical random field with Gn does not allow
information from the environment to flow back into the system. One can deduce that the
degradation produced by Gn is irreversible. The observed qualitative behaviors for bipartite
and tripartite states are consistent with the previous results obtained under various kinds of
Gaussian noises studied in [57,77–80]. However, the related quantitative analysis has many
differences, such as a greater loss and preservation time. When g increases, the slopes move
from the green to the red end. For large values of g, this means a higher occurrence of purity
and coherence loss. Due to FGn, the decay encountered is incompatible with this behavior.
It is important to note that under Gn, the coherence and information are not lost entirely and
they reach a final saturation level after maximal decay. This property of the single qutrit
system, which shows a minimal partial loss rather than a complete loss, is a useful resource
that contradicts most of the previous findings obtained for bipartite and tripartite qubit
systems in [57,66,76–80], where the quantum systems become easily decoherent. According
to both measures, the saturation levels for each value of the noise parameter meet at the
same height, implying that the decay levels are the same. The measures’ maxima and
minima are comparable, showing that the results are consistent. In addition, the Gn noise
phase is less decoherent towards the coherence and information decay than the FGn noise
phase. Unlike the FGn, the Gn exhibits flexible noise parameter range values. This makes
it easier to characterize the classical environments with Gn for optimal longer quantum
correlations and coherence preservation times. For g = {1, 3, 10}, the corresponding
β-functions for the current noise have the values of β = {1.43679, 1.81194, 1.94358}.
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Figure 5. Time evolution of (a) purity and (b) von Neumann entropy as functions of H versus τ in a
single qutrit system when subjected to the classical field generating Gaussian noise.

3.2.3. A Classical Field with OUn

This section involves the noisy effects due to OUn by averaging the final density
matrix given in Equation (13) over the noise phase having the β-function from Equation (11).
The final density matrix obtained for the three-level system under OUn agrees with those
obtained under the FGn and Gn and shows that the system remains coherent.

The analytical results for the Pr(τ) and Ve(τ) are obtained from Equations (14) and (15)
and are followed as:

Pr(τ) =
1

18

(
17 + e

4−4e−gτ−4gτ
g

)
, (25)

Ve(τ) =−
3− γ1

6
log
[

3− γ1

6

]
− 3 + γ1

6
log
[

3 + γ1

6

]
, (26)

where

γ1 =e−
4e−gτ

g −4τ

√
e

4
g +

4e−gτ

g +4τ
+ 8e

8e−gτ

g +8τ ,

Figure 6 shows the dynamics of the purity and von Neumann entropy for the single
qutrit system when coupled to the classical field generating OUn. The degrading quality of
the OUn is shown by comparing the initial purity and coherence with the latter. The loss
caused by the current noise has resulted in monotonous functions over time with no re-
vivals. The current monotonic decay under OUn contradicts the findings of bipartite and
hybrid qubit-qutrit state dynamics given in [57,67], where evident revivals of coherence
have been detected. The initial encoded purity, coherence, and information are not fully
lost, and the saturation threshold is reached. The measures’ maximum and minimum
values are comparable, and there is a single saturation level for all g values. By comparing
Figures 2, 3 and 6, it is easy to determine that this noise has a dominant character to sup-
press oscillation and the preservation capacity of the system. We noticed that as compared
to the previously investigated systems in [77,79–82], the single qutrit system exhibited a
superior preservation capacity. Aside from that, raising the noise parameter g caused the
initial encoded purity, coherence, and information to decay faster. As seen, the slopes move
towards the red end with increasing values of g, suggesting greater degradation. However,
by limiting g to be as minimal as possible, the optimal smaller decay can be produced.
In contrast to FGn, the present noise phase has shown to have a lower deteriorating char-
acter for the memory properties of the system, as the preservation time encountered in the
current case is longer. Similar to the Gn, the OUn has the same large range in terms of g.
The dephasing effects because of the superposition of the OUn over the system’s phase are
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lesser than those of the FGn. This is owing to OUn’s exploitable noise phase, which was
not possible in the case of FGn. With g = {1, 3, 10}, the corresponding β-function amounts
as β = {1.13534, 1.66749, 1.9}.
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Figure 6. Time evolution of (a) purity and (b) von Neumann entropy as functions of H versus τ in a
single qutrit system when subjected to the classical field generating Ornstein–Uhlenbeck noise.

3.2.4. A Classical Field with PLn

To evaluate the degrading effects of the PLn over the dynamics of the single qutrit
state, we perform an average of the final density matrix given in Equation (13) over the
noise phase with the β-function given in Equation (12). The structure of the final density
matrix under the current noise ensures that the three-level system does not become entirely
decoherent. By using the Equations (14) and (15), the corresponding analytical results for
the Pr(τ) and Ve(τ) are followed as:

Pr(τ) =
1

18

(
17 + e4δ1−4τ− 4((1+gτ)2)1−

α
2 cos[(−2+α)Arg[1+gτ]]
g(−2+α)

)
, (27)

Ve(τ) =−
1
6

(
3− e−4δ2

√
8e8δ2 + e4(δ2+δ1)

)
log
[

1
6

(
3− e−4δ2

√
8e8δ2 + e4(δ2+δ1)

)]
− 1

6

(
3 + e−4δ2

√
8e8δ2 + e4(δ2+ξ1)

)
log
[

1
6

(
3 + e−4δ2

√
8e8δ2 + e4(δ2+δ1)

)]
,

(28)

where

δ1 =
1

g(−2 + α)
, δ2 =τ +

(1 + gτ)2−α

g(−2 + α)
.

Figure 7 shows the time evolution of the purity and von Neumann entropy for the
single qutrit system when subjected to a classical random field withPLn. In the current case,
the dynamics of the system are investigated under two different noisy parameters, namely
g (upper panel) and α (bottom panel). By comparing Figures 2, 3 and 7, the dissipative
capability of the PLn in terms of the capability of two noisy parameters to disappear
revivals and to lower the initial encoded coherence and information can be validated. Large
values of g have greater degraded purity, coherence, and information than the parameter
α. For g, the slopes for purity and von Neumann entropy reach saturation values faster
than for α. Aside from the decaying nature of the PLn, the smaller partial loss rather than
complete decay cannot be overlooked. This directly opposes most of the prior findings
for various quantum systems, where in most cases, complete separability is reached,
as discussed in [57,77–81,83,84]. All of the slopes for various noise parameter values reach
a single saturation level, although at different intervals. As a result, there appears to be
a strong link between the measures for demonstrating consistency and agreement in the
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results. As the values of both parameters increase, the slopes move from the green to
the red end, implying that the decay rate increases. In the current cases, this qualitative
behavior is comparable to those of the OUn and mixed Gaussian noise; nevertheless,
the decay levels encountered for the single qutrit system differ significantly from those
previously investigated [57,77,80]. There was no evidence of revivals in the dynamical map
of the system, and both noisy parameters showed a monotonic decline in coherence. As a
result, there is no way for information from the environment to flow back into the system,
contradicting the findings in [67,85,86], where a strong backflow of the information into
the system has been observed. Because of this noise, purity, coherence, and information
are permanently lost rather than experiencing periodic transitory deterioration. In the case
of PLn, the β-function is characterized by two noisy parameters, g and α. With α = 3,
the β-function ranges as β = {1.333, 1.71429, 1.90476} for g = {1, 3, 10}. By keeping g = 0.5
and α = {3, 5, 10}, the relative β-function has values as β = {1.0, 1.41667, 1.75098}.
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Figure 7. Upper Panel: Time evolution of (a) purity and (b) von Neumann entropy as functions of g
versus τ in a single qutrit system when subjected to the classical field generating power law noise
when α = 3. Bottom panel: Time evolution of (c) purity and (d) von Neumann entropy as functions
of α versus τ in a single qutrit system when subjected to the classical field generating power law
noise when g = 0.5.

3.3. Relative Dynamics

The present section explains the comparative dynamical map of the coherence and
information encoded in the system under the present Gaussian noises. Here, we intend
to provide the adjustment of the noise parameters to reduce the dephasing effects and to
increase the coherence span time. For this purpose, we assumed the noise parameters at
the lowest and highest values of the corresponding range.

Figure 8 evaluates the time evolution of the purity (a) and von Neumann entropy (b) for
the single qutrit system under the presence of Gn in the green, OUn in the blue, and PLn in
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the red slopes. We mainly focus on protecting purity, coherence, and information for a large
duration. Following this, we have set the noise parameter g = 10−3 in non-dashed and 10−2

in dashed slopes when τ = 50. Note that FGn is excluded from the current study due to its
discrete nature (where 0 < H < 1). We discovered that the current quantitative behavior of
purity and von Neumann entropy differs significantly from that observed when g is large.
The preservation duration of the phenomenon is substantially longer for minor values of g,
as shown. The qualitative degradation behavior is monotonic, as it was in prior situations.
In comparison,OUn followed by Gn has had less degrading effects on the purity, coherence,
and information survival over a long period. Finally, PLn is found to be the most harmful
to the dynamics of purity, coherence, and information, with saturation levels being reached
earlier, especially for large g values. The single qutrit system’s quantitative degradation is
minimal and partial, and in contrast, complete coherence losses are observed in different
quantum systems under different Markovian and non-Markovian noises; for example,
those given in [57,76,77,79,80,86]. Most significantly, we found that the decay rate is greatly
regulated by altering the values of g, which directly increases as this parameter is increased.
Regardless of the preservation duration and the parameter values, all noises can induce a
similar amount of decay. This strongly suggests the relevance of the Gaussian nature of the
noises. As shown, following maximum decay, the slopes under all the noises remained at
the same elevation levels.
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Figure 8. Prolonged preservation of (a) purity and (b) von Neumann entropy as functions of g versus
τ in a single qutrit system under Gaussian (green), Ornstein–Uhlenbeck (blue), and power law noise
(red) stemming from the classical field when g = 10−3 (non-dashed) and g = 10−2 (dashed).

4. Conclusions

When a single qutrit system is exposed to a classical fluctuating field, the symmetrical
dynamics of having preserved purity and coherence are studied. The classical fields are
driven by a pure Gaussian process, generating several types of Gaussian noise. Furthermore,
we also distinguished between noisy and noiseless local fields. Finally, the degrees of
pureness, coherence, and information preserved by the single qutrit system are determined
using purity and von Neumann entropy.

We show that except for the FGn, all the noises have displayed similar degrading
behaviors in terms of purity, coherence, and information. The decay rates for the current
Gaussian noises increased as the noise parameters were raised. On the other hand, as H
rises, purity and coherence become robust initially in the case of FGn. This qualitative
behavior of H is unlike that of any other noise parameter previously investigated. In each
case, the saturation levels were consistent. This suggests the relevance of the noise phases as
having the same Gaussian nature and causing an equal amount of decay. Most significantly,
the preservation time remained greater with OUn for small g and under PLn for small
α. In the case of measures, purity and von Neumann entropy were found to be in good
agreement. Over an equivalent time duration, the maxima and minima of both metrics are
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perfectly concordant. Therefore, purity and von Neumann entropy are accurate indicators
of the initial purity, coherence, and information encoded in a quantum system. Finally,
under current Gaussian noises, purity and coherence suffer a lesser loss, which is affected
significantly by noise parameter values. In contrast to the smaller partial loss of coherence
in the current three-level system, non-Gaussian noises appear to destroy coherence over
time in quantum systems with a higher number of qubits and qutrits. To reduce this deteri-
oration, the Gaussian noisy parameters should be kept as low as possible. In particular,
for g = 10−3 and g = 10−2, the coherence, information, and in turn, coherence, can be
preserved for a long enough interaction time.
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