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Abstract: This paper studies the lateral control problem for intelligent vehicles based on the concept
of shared control. Considering the participation of drivers in the control loop, a shared control-
based lateral controller is designed, which consists of two differed controllers: one is an LQR-based
autonomous driving controller and the other is a driver’s intention-based fuzzy controller. For the
vehicle dynamic model with two-degrees of freedom, an autonomous driving controller based on
LQR and a driver’s intention-based fuzzy controller are designed. Then, the lateral controller based
on shared control is constructed, which integrates the aforementioned two controllers. Finally, the
co-simulation by MATLAB/Simulink and Carsim is presented. Furthermore, simulation results
show that the designed lateral controller can track the desired path with better performance than the
LQR-based autonomous driving controller.
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1. Introduction

In recent years, with the rapid development of new techniques such as 5G, big data,
cloud computing and AI, the intelligence of the automotive industry and the traditional
cars are gradually developing into intelligent vehicles [1–4]. Since intelligent vehicles have
great potential to improve road safety, passenger comfort, energy conservation, and emis-
sion reduction [5], they have become research hotspots. Furthermore, remarkable results
have been achieved [6]. Network advanced communication techniques support the con-
nectivity of intelligent vehicles despite their reduced perception ability, which improve the
environmental perception of self-driving cars [7–9].

To measure the level of autonomous driving, the Society of Automotive Engineers
International has released a classification system based on the level of driver intervention and
attention, these include levels of autonomy for self-driving cars ranging from L0 to L5, and
research on self-driving cars is generally focused on L3 level [10]. Currently, the intelligent
vehicles with partial or fully autonomous driving functions are becoming increasingly mature,
and have been used in unmanned shuttle, courier delivery and unmanned ferry. Many cities
allow autonomous vehicles to test and operate. For example, the Toyota e-Palette self-driving
minibus served as a ferry for athletes in the Olympic Village during the Tokyo Olympic and
Paralympic Games; Baidu Apollo self-driving cars and driverless micro-circulation buses have
been operating for a long time in the Shougang Park, the office of the Beijing Winter Olympic
Organizing Committee. As pointed out in [11], autonomous vehicles were permissible in
several states in the United States, even without the necessity of drivers.

However, the self-driving still faces challenges. Although Waymo announced plans
in March 2022 to remove safety drivers for fully autonomous rides in [12], only a few
intelligent transportation systems in specific scenarios can achieve a high-level autonomy
in the actual traffic environment. In addition, the sensing networks deployed by intelligent
vehicles cannot cover complex traffic environments. As stated in the White Book on Traffic
Safety of Self-Driving Cars released by CAC and Baidu, the road testing permits were
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issued by the California Department of Motor Vehicles in April 2014. The statistical results
showed that 149 accidents occurred in real road testing of self-driving cars and 105 accidents
occurred during driver takeover between 2019 and mid-2020. Especially, an e-Palette self-
driving bus struck and injured a blind athlete while turning right into a crosswalk during
the Tokyo Paralympic Games. Consequently, the self-driving bus was taken out of service.

The above description illustrates that there are still many issues to be resolved to achieve
a breakthrough in high-level autonomous driving technique without human involvement.
As is known to all, it is not only limited by the technological development, but also by
the constraints of relevant legal imperfections. At present, most autonomous vehicles still
need the participation of drivers, which provides guidance and assess the potential hazards
in the presence of the failed algorithm. The human–machine cooperative control uses the
asymmetric advantages of human intelligence and machine intelligence, for achieving
the hybrid enhancement of human–machine intelligence and the two-way information
exchange. Therefore, the active safety assisted control or shared control technology with
human involvement is expected to reduce traffic accidents [13]. Notely, the human–machine
shared control method has been widely used in auxiliary robots [14,15], remote operation
robots [16,17] and intelligent vehicles [18], which balances the advantages of driver and
automatic vehicles to achieve the best cooperation [19–21]. Shared control provides a solution
to the problem for driving controller conversion of intelligent vehicles [22].

Therefore, this paper designs a shared control-based method to achieve the lateral
motion control of intelligent vehicles with driver’s participation. The main contributions of
this paper are summarized as follows.

1. To achieve the flexible shared control, a model-based LQR controller and a driver’s
intention-based fuzzy controller are designed. The weight of the two controllers can
be adjusted according to the needs of designers.

2. The co-simulation of MATLAB and Carsim is executed, and the lateral motion con-
troller based on shared control can better track the prescribed trajectory with a per-
missible deviation.

2. T-FVDM

The driving control of intelligent vehicles mainly includes the longitudinal and lateral
control. The longitudinal control means that the vehicles adjust the speed to maintain enough
space between vehicles, via uses the least amount of braking to ensures a relatively constant
speed. The lateral control refers to path tracking with driving safety and ride comfort, which
enables vehicles to follow the desired path through automatic steering control.

When vehicles travel on good roads with a low speed, there is generally no need to con-
sider the stability control and other dynamic problems. Hence the kinematic model-based
design of the path tracking controller has a reliable control performance. However, intelli-
gent vehicles sometimes travel at high speed in complex traffic environments, and a more
accurate vehicle dynamic model is necessary to design for improving the reliable controller.
Accordingly, the lateral dynamic model is the basis of the shared control system [23].

The T-FVDM describes the vehicle dynamic system with some simplifications and
assumptions, which simplifies the analysis process and retains the most basic vehicle
dynamics. Therefore, it has a wide range of applications in vehicle dynamic research and
vehicle control. Although the T-FVDM is simple, it quantifies the key parameters affecting
the lateral motion of the vehicle, including the position of the vehicle’s center of mass and
the lateral deflection characteristics of the tires. Clearly, these are the basis for studying the
manipulating stability of vehicles [24]. In this paper, according to the principles of vehicle
dynamics, a T-FVDM is established, which takes into account two freedoms of vehicles, i.e.,
lateral and yaw.

As shown in Figure 1, lf is the front axle wheelbase, lr is the rear axle wheelbase, af is
the vehicle sideslip angle of the front wheel, and ar is the vehicle sideslip angle of the rear
wheel; vx is the longitudinal speed, and vy is the lateral speed; ω, ϕ, δf are the yaw velocity,
the yaw angle, and the front wheel angle, respectively.
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Figure 1. Two-degree of freedom vehicle dynamic model.

When the longitudinal speed of the vehicle is determined, only the motion of the
vehicle in both lateral and yaw dimensions are focused, and the lateral forces Ff and Fr on
the front and rear wheels can be expressed as:

Ff = Cf

[
δf −

(
vy + lf ϕ

)
vx

]

Fr = −
Cr
(
vy − lr ϕ

)
vx

,

(1)

where Cf is the cornering stiffness of the front tire, and Cr is the cornering stiffness of the
rear tire.

The dynamic differential equations of the lateral and yaw motion are{
2Ffcosδf + 2Fr = m

(
v̇y − vx ϕ̇

)
2lrFf cosδf − 2lfFr = I ϕ̈,

(2)

where m and I are the known mass and rotational inertia with the established vehicle,
respectively, and other parameters have been explained thereinbefore. It is noted that the
lateral force on the front and rear is twice as much as the lateral force of the correspond-
ing tire.

The conversion between the coordinate system of vehicles and the inertial coordinate
system, is {

PX = ṗxcosϕ− ṗysinϕ,
PY = ṗxsinϕ− ṗycosϕ.

(3)

where PX and PY are the positions in terms of X and Y directions in the global coordinate
system, respectively; px and py are the positions in terms of x and y directions in the vehicle
local coordinate system. Furthermore, the linear equation of state is simplified as follows:v̈y

ϕ̈

 =


Cf+Cr

mvx

lr Cf−lf Cr
mvx

− vx

lr Cf−lf Cr
Ivx

lr2 Cf+lf
2 Cr

Ivx


v̇y

ϕ̇

+

−
Cf

mvx

− lr Cf
I

δf (4)

3. Shared Control

Shared control was first proposed by Sheridan and Verplank, and was defined as “a
situation where both automation and humans work on the same task at the same time” [25].
It is generally believed that intelligent control systems are good at the execution of fine
tasks, while humans are skilled in the judgment and upper-level planning. Moreover,
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humans can monitor the operating status of the robotic system in real time and correct
some errors. Therefore, in many cases, it is necessary to rely on humans and intelligent
control systems to complete complex tasks [22]. For intelligent vehicles, the movement is
completely determined by the intelligent control system. However, if a driver intervenes,
the movement is determined by the driver. For the existing problem, the human–machine
shared control is an acceptable solution, and it can determine the movement behavior of
the vehicle together with the driver [19,26–28].

In shared control system of vehicles as shown in Figure 2, a weighting operation is
needed to coordinate the control behavior of the driver and the intelligent control system, it is

us = λua + (1− λ)uh, 0 ≤ λ ≤ 1, (5)

where us is the shared control input, ua is the control command of the intelligent vehicle
autopilot system, uh is the driver’s intention-based control input, and λ is the adjustable
weight coefficient.

Figure 2. The control framework based on shared control.

Remark 1. In the proposed shared control scheme, it is assumed that both the intelligent control
system and the driver have a perception of the external environment. The autonomous driving
system controls the steering angle through the control input of an LQR controller (see Equation (10)).
Accordingly, the driver controls the steering angle of the vehicle through a fuzzy controller, which
uses fuzzy rules to deduce control commands in the Driver Intent Recognition part.

4. LQR Algorithm for Intelligent Vehicles

LQR optimal control has the ability to achieve the desired performance index with low
cost, and to tune the unstable system simultaneously [29–31]. When the intelligent vehicle
tracks the target path, the distance and heading deviations need to be considered. To be
clearer, they are described in Figure 3. The distance deviation ed is the distance from the
centroid of the vehicle to the road centerline, and the heading deviation eϕ is the deviation
between the vehicle heading and the road direction; ϕdes is the ideal heading angle.

Figure 3. Distance deviation and heading deviation.

For the deviations ed and eϕ, the equations are obtained as
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ëd = −Cf + Cr

mvx
ėd +

Cf + Cr

m
eϕ +

lf Cf − lr Cr

mvx
ėϕ +

Cf
m

δf−
(

lfCf − lrCr

mvx
− vx

)
Ψ̇des. (6)

ëϕ = − lf Cf − lr Cr

Ivx
ėd

lf Cf − lr Cr

I
eϕ −

lr2 Cr + lf
2 Cf

Ivx
ėϕ +

lf Cf
Ivx

δf−
( l2

f Cf − l2
r Cr

Ivx

)
Ψ̇des. (7)

where Ψdes =
vx

Rr
is the yaw rate reference, and Rr is the turning radius of the planned path.

Let x =
[
eT

d ėT
d eT

ϕ ėT
ϕ

]T
, we have

ẋ = Ax + B1ua+B2Ψ̇des. (8)

where A, B1 and B2 represent the state transition matrix, control matrix and feedforward
matrix of the continuous-time vehicle model, respectively, and the details are

A =



0 1 0 0

0 −Cf+Cr
mvx

Cf+Cr
m

−lf Cf+lr Cr
mvx

0 0 0 1

0 − lf Cf−lr Cr
Ivx

lf Cf−lr Cr
I − lf

2 Cf+lf
2 Cf

Ivx

,

B1 =


0
Cf
m

0
lf Cf
Ivx

, B2 =



0

− lfCf−lrCr
mvx

− vx

0

− l2
f Cf+l2

r Cr
Ivx

.

Remark 2. In [32], the yaw rate reference was introduced and used to obtain the corresponding
error. Similarly, it has been also used in Equations (6) and (7) (see the terms eϕ and ėϕ).

Using the LQR control theory to design a lateral controller for autonomous driving,
the control system performance indicator is

J =
∫ ∞

0

[
xTQx + uT

a Rua

]
dt, (9)

where Q and R are the positive definite weighting matrixs. The control law of the LQR
controller is designed as

ua = −Kx + δ f f = −R−1BT
1 Px + δ f f , (10)

δ f f =
mvx

2

RrL

[
lr

2Cf
− lf

2Cr
+

lf
2Cr

k3

]
+

L
Rr
− lr

Rr
k3, (11)

where K = [k1, k2, k3, k4], δ f f is the feedforward component of steering angle, L = (lf + lr)
is the total wheel base, and P is the positive definite solution of the following well-known
algebraic Riccati equation:

AT P + PA + Q− PB1R−1BT
1 P = 0. (12)
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5. Driver Intent Recognition

At present, the driver’s intent is crucial and has been widely used in intelligent
driver assistance systems and autonomous driving systems, such as driving intent for lane
changing, steering, starting, parking and braking. Based on the GHMM/GGAP-RBFNN
hybrid model, the driver’s braking intention recognition model was studied to improve the
accuracy of normal braking and light braking in [33]. The prediction of steering intention
was given via a novel hybrid algorithm of the time-series model based on deep learning
in [34]. In [35], driving intention recognition was extracted and dynamically identified
based on the rough set theory and back-propagation artificial neural networks.

Considering the complexity of the lateral control, such as nonlinearity of the driving
process and the difficulty of obtaining the accurate model, the fuzzy control method is
introduced to transform the driver’s input into the control input of intelligent vehicles. The
angular deviation eϕ and the angular deviation rate ėϕ are the input variables, and the angle
increment uh of the front wheel is the output variable. {NB, NM, NS, ZO, PS, PM, PB} are
the fuzzy sets of eϕ, ėϕ and uh. Both input and output membership functions are taken as
triangular membership functions. Based on the summary of skilled drivers’ experience
and control engineering knowledge, 49 rules were formulated in Table 1. According to the
designed fuzzy rules, the fuzzy output is obtained by fuzzy inference with the driver’s
input. Next, the centroid method is used for defuzzification, and the control input of the
front wheel angle is obtained.

Table 1. Fuzzy control rules.

uh
ėϕ

NB NM NS ZO PS PM PB

eϕ

NB NB NB NM NM NS NS ZO

NM NB NM NM NS NS ZO PS

NS NM NM NS NS ZO PS PS

ZO NM NS NS ZO PS PS PM

PS NS NS ZO PS PS PM PM

PM NS ZO PS PS PM PM PB

PB ZO PS PS PM PM PB PB

6. Simulation Results

In order to verify the proposed control scheme, a Co-Simulation of CarSim and
MATLAB is performed in this section. CarSim is a simulation software for vehicle dynamics,
which can simulate the response of a vehicle to the road and aerodynamic inputs. It is
mainly used to predict and simulate the handling stability, braking, smoothness, power
and economy of the whole vehicle [33].

In CarSim, the C-class passenger car model is adopted, and the main parameters are
shown in Table 2. The fixed vehicle speed is controlled by the controller in Carsim, and the
front-wheel turning angle is calculated by the controller in the Simulink.

In Figure 4, the shared control is achieved by combining the driver’s intention-based
fuzzy control algorithm and the LQR-based automatic driving algorithm.

The simulation results are shown in Figures 5 and 6. It can be seen that the LQR
and shared controllers can track the planned path well, as shown in in Figure 5. For a
comparison, the distance deviations of LQR and shared controllers are given in Figure 6,
The tracking performance of the lateral controller based on shared control is better than that
of the LQR-based autonomous driving controller. To quantify the results of the LQR control
and the shared control, we introduce eLx and eLy, which are the trajectory tracking errors of
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the LQR control in terms of x and y directions, respectively. Accordingly, eSx and eSy are
the trajectory tracking errors of the share control in terms of x and y directions, respectively.
For comparison, the performance index E = ∑30

t=0(‖e.x‖1 + ‖e.y‖1) is calculated for the LQR
control and shared control cases, respectively, i.e., 3.8395× 106 and 3.8198× 106. Clearly,
the superiority of the proposed shared control method is verified.

Table 2. Main parameters of the vehicle.

Name (Unit) Symbol Numerical

vehicle quality (kg) m 1412
moment of inertia of the

vehicle (kg·m2) I 1536.7

cornering stiffness of the front
wheel (N/rad) Cf −110,000

cornering stiffness of the rear
wheel (N/rad) Cr −110,000

front wheelbase (m) lf 1.015
rear wheelbase (m) lr 1.895

Figure 4. Matlab/Carsim simulation model.

Figure 5. The portion of tracking trajectory of LQR control and the shared control.
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Figure 6. Tracking trajectory of LQR control and the shared control.

7. Conclusions

For the intelligent vehicle control system with the driver’s participation, this paper pro-
posed a control scheme for the lateral motion based on shared control. With the constructed
T-FVDM, an LQR controller for autonomous driving system and a fuzzy control-based
controller have been designed. Based on these controllers, the lateral controller hwas
constructed according to the shared control method. Through the co-simulation of MAT-
LAB/Simulink and Carsim, the simulation results showed that the lateral controller based
on shared control has provided better tracking performance than the LQR-based controller.
In our future work, the shared control of intelligent vehicles using data-driven techniques
will be further investigated [36–38], even considering non-cooperative behaviors [39–44].
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Abbreviations
For the convenience of readers, all the symbols involved in the paper are summarized and listed in
the table.
Symbol Name Units
lf front axle wheelbase m
lr rear axle wheelbase m
L total wheel base m
af vehicle sideslip angle of the front wheel deg
ar vehicle sideslip angle of the rear wheel deg
vx longitudinal speed km/h
vy lateral speed km/h
ω yaw velocity rad/s
ϕ yaw angle deg
δf front wheel angle deg
δ f f feedforward component of steering angle deg
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Cf cornering stiffness of the front wheel N/rad
Cr cornering stiffness of the rear wheel N/rad
m vehicle quality kg
I moment of inertia of the vehicle kg·m2

Rr turning radius of the planned path m
Ψdes yaw rate reference
us shared control input
ua control command of the vehicle autopilot system
uh driver’s control intention-based control input
λ adjustable weight coefficient
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