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Abstract: We consider two types of Cheney–Sharma operators for functions defined on a triangle with
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and the orders of accuracy and we give different expressions of the corresponding remainders,
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1. Introduction

In order to match all the boundary information on a domain, there were considered
interpolation operators on triangles with straight sides (see, e.g., [1–7]) and on triangles
with curved sides (see, e.g., [8–21]).

Here, we construct two kind of Cheney–Sharma type operators (see, e.g., [22–25]) de-
fined on a triangle with all straight sides and study the interpolation properties, the orders
of accuracy, their products and boolean sums and the remainders of the corresponding
approximation formulas, using the modulus of continuity and Peano’s theorem. There is a
symmetrical connection between the two methods introduced here. Using the interpolation
properties of such operators, blending function interpolants can be constructed that exactly
match the function on some sides of the given region. Applications of these blending func-
tions are in computer-aided geometric design, in the finite element method for differential
equations problems and for the construction of surfaces that satisfy some given conditions
(see, e.g., [1,14,17,20,21,26–34]).

We have considered the standard triangle Th (see Figure 1), with vertices V1 = (0, h),
V2 = (h, 0) and V3 = (0, 0) and sides Γ1, Γ2, Γ3.
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Figure 1. Triangle Th.
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2. Cheney–Sharma Operator of the Second Kind

Let m ∈ N and β be a nonnegative parameter. The Cheney–Sharma operator of the
second kind Qm : C[0, 1]→ C[0, 1], introduced in [23], is given by

(Qm f )(x) =
m
∑

i=0
qm,i(x) f ( i

m ), (1)

with

qm,i(x) = (m
i )

x(x + iβ)i−1(1− x)[1− x + (m− i)β]m−i−1

(1 + mβ)m−1 .

The following results are useful in the sequel.

Remark 1. (1) Notice that for β = 0, the operator Qm becomes the Bernstein operator.
(2) In [25], it has been proved that the Cheney–Sharma operator Qm interpolates a given

function at the endpoints of the interval.
(3) In [23,25], it has been proved that the Cheney–Sharma operator Qm reproduces the constant

and the linear functions, so its degree of exactness is 1 (denoted dex(Qm) = 1).
(4) In [23], the following result is given:

(Qme2)(x) =x(1 + mβ)1−m[S(2, m− 2, x + 2β, 1− x) (2)

− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)],

where ei(x) = xi, i ∈ N, and

S(j, m, x, y) =
m

∑
k=0

(
m
k

)
(x + kβ)k+j−1[y + (m− k)β]m−k, (3)

j = 0, . . . , m, m ∈ N, x, y ∈ [0, 1], β > 0.

Considering the partitions ∆x
m =

{
i h−y

m

∣∣∣ i = 0, . . . , m
}

and ∆y
n =

{
j h−x

n

∣∣∣ j = 0, . . . , n
}

of the intervals [0, h− y] and [0, h− x], the real-valued function F defined on Th (Figure 1),
for m, n ∈ N, β, b ∈ R+, we introduce the following extensions to the triangle Th of the
Cheney–Sharma operator given in (1):

(Qx
mF)(x, y) =

m
∑

i=0
qm,i(x, y)F

(
i h−y

m , y
)

, (4)

(Qy
nF)(x, y) =

n
∑

j=0
qn,j(x, y)F

(
x, j h−x

n

)
,

with

qm,i(x, y) = (m
i )

x
h−y (

x
h−y+iβ)i−1(1− x

h−y )[1−
x

h−y+(m−i)β]m−i−1

(1+mβ)m−1 ,

qn,j(x, y) = (n
j)

y
h−x (

y
h−x +jb)j−1(1− y

h−x )[1−
y

h−x +(n−j)b]n−j−1

(1+nb)n−1 .

Remark 2. As the Cheney–Sharma operator of the second kind interpolates a given function at the
endpoints of the interval, we may use the operators Qx

m and Qy
n as interpolation operators.

Theorem 1. If F is a real-valued function defined on Th , then

(i) Qx
mF = F on Γ1 ∪ Γ3,

(ii) Qy
nF = F on Γ2 ∪ Γ3.
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Proof. (i) We may write

(Qx
mF)(x, y) = 1

(1+mβ)m−1

{
(1− x

h−y )[1−
x

h−y + mβ]m−1F(0, y) (5)

+ x
h−y (1−

x
h−y )

m−1
∑

i=1
(m

i )(
x

h−y + iβ)i−1

· [1− x
h−y + (m− i)β]m−i−1F

(
i h−y

m , y
)

+ x
h−y (

x
h−y + mβ)m−1F(h− y, y)

}
.

Considering (5), it follows that

(Qx
mF)(0, y) = F(0, y),

(Qx
mF)(h− y, y) = F(h− y, y).

(ii) Similarly, writing

(Qy
nF)(x, y) = 1

(1+nb)n−1

{
(1− y

h−x )[1−
y

h−x + nb]n−1F(x, 0)

+ y
h−x (1−

y
h−x )

n−1
∑

j=1
(n

j)(
y

h−x + jb)j−1

· [1− y
h−x + (n− j)b]n−j−1F

(
x, j h−x

n

)
+ y

h−x (
y

h−x + nb)n−1F(x, h− x)
}

,

we find that

(Qy
nF)(x, 0) = F(x, 0),

(Qy
nF)(x, h− x) = F(x, h− x).

Theorem 2. The operators Qx
m and Qy

n have the following orders of accuracy:

(i)
(

Qx
mekj

)
(x, y) = xkyj, k = 0, 1; j ∈ N;

(ii)
(

Qy
nekj

)
(x, y) = xkyj, k ∈ N; j = 0, 1, where ekj(x, y) = xkyj, k, j ∈ N.

Proof. (i) We have

(Qx
mekj)(x, y) = yj

m
∑

i=0
qm,i(x, y)(i h−y

m )k,

and by Remark 1, the result follows.
Similarly, (ii) follows.

We consider the approximation formula

F = Qx
mF + Rx

mF,

where Rx
mF denotes the approximation error.

Theorem 3. If F(·, y) ∈ C[0, h− y], the following holds:∣∣(Rx
mF)(x, y)

∣∣ ≤ (1 + 1
δ

√
Am − x2)ω(F(·, y); δ), ∀δ > 0, (6)

where ω(F(·, y); δ) is the modulus of continuity and Am = x(1 + mβ)1−m[S(2, m− 2, x + 2β,
1− x)− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)], with S given in (3).



Symmetry 2022, 14, 2446 4 of 11

Proof. By Theorem 2, it follows that dex(Qx
m) = 1; thus, we may apply the following

property of linear operators (see, for example, [35]):

∣∣(Qx
mF)(x, y)− F(x, y)

∣∣ ≤ [1 + δ−1
√
(Qx

me20)(x, y)− x2]ω(F(·, y); δ), ∀δ > 0;

thus, taking into account (2), we obtain (6).

Theorem 4. If F(·, y) ∈ C2[0, h− y], then

(Rx
mF)(x, y) = 1

2 F(2,0)(ξ, y){x2 − x(1 + mβ)1−m[S(2, m− 2, x + 2β, 1− x) (7)

− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)]},

for ξ ∈ [0, h− y] and β > 0.

Proof. Taking into account the fact that dex(Qx
m) = 1, by Theorem 2 and applying Peano’s

theorem (see, e.g., [36]), it follows that

(Rx
mF)(x, y) =

∫ h−y

0
K20(x, y; s)F(2,0)(s, y)ds,

where

K20(x, y; s) = (x− s)+ −
m

∑
i=0

qm,i(x, y)
(

i h−y
m − s

)
+

.

For a given ν ∈ {1, . . . , m}, one denotes by Kν
20(x, y; ·) the restriction of the kernel

K20(x, y; ·) to the interval
[
(ν− 1) h−y

m , ν
h−y

m

]
, i.e.,

Kν
20(x, y; ν) = (x− s)+ −

m

∑
i=ν

qm,i(x, y)
(

i h−y
m − s

)
,

whence,

Kν
20(x, y; s) =


x− s−

m
∑

i=ν
qm,i(x, y)

(
i h−y

m − s
)

, s < x

−
m
∑

i=ν
qm,i(x, y)

(
i h−y

m − s
)

, s ≥ x.

It follows that Kν
20(x, y; s) ≤ 0, for s ≥ x.

For s < x, we have

Kν
20(x, y; s) = x− s−∑m

i=0qm,i(x, y)
(

i h−y
m − s

)
+ ∑ν−1

i=0 qm,i(x, y)
(

i h−y
m − s

)
.

Applying Theorem 2, we get

m

∑
i=0

qm,i(x, y)
(

i h−y
m − s

)
= (Qx

me10)(x, y)− s(Qx
me00)(x, y) = x− s;

it then follows that

Kν
20(x, y; s) =

ν−1

∑
i=0

qm,i(x, y)
(

i h−y
m − s

)
≤ 0.

Thus, Kν
20(x, y; ·) ≤ 0, for any ν ∈ {1, . . . , m}, i.e., K20(x, y; s) ≤ 0, for s ∈ [0, h− y].

By the Mean Value Theorem, one obtains

(Rx
mF)(x, y) = F(2,0)(ξ, y)

∫ h−y

0
K20(x, y; s)ds, for 0 ≤ ξ ≤ h− y,
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with ∫ h−y

0
K20(x, y; s)ds = 1

2 [x
2 − (Qx

me20)(x, y)],

and using (2) we get (7).

Remark 3. Analogous results with the ones in Theorems 3 and 4 can be obtained for the remainder
Ry

nF of the formula F = Qy
nF + Ry

nF.

2.1. Product Operators

Let P1
mn = Qx

mQy
n, respectively, P2

nm = Qy
nQx

m be the products of the operators Qx
m and

Qy
n, given by

(
P1

mnF
)
(x, y)=

m

∑
i=0

n

∑
j=0

qm,i(x, y)qn,j

(
i h−y

m , y
)

F
(

i h−y
m , j (m−i)h+iy

mn

)
,

respectively,

(
P2

nmF
)
(x, y)=

m

∑
i=0

n

∑
j=0

qm,i

(
x, j h−x

n

)
qn,j(x, y)F

(
i (n−j)h+jx

mn , j h−x
n

)
.

Theorem 5. If F is a real-valued function defined on Th, then

(i) (P1
mnF)(Vi) = F(Vi), i = 1, 2, 3;

(P1
mnF)(Γ3) = F(Γ3),

(ii) (P2
nmF)(Vi) = F(Vi), i = 1, 2, 3;

(P2
nmF)(Γ3) = F(Γ3),

Proof. By a straightforward computation, we obtain the following properties:

(P1
mnF)(x, 0) = (Qx

mF)(x, 0),

(P1
mnF)(0, y) = (Qy

nF)(0, y),

(P1
mnF)(x, h− x) = F(x, h− x), x, y ∈ [0, h]

and

(P2
nmF)(x, 0) = (Qx

mF)(x, 0),

(P2
nmF)(0, y) = (Qy

nF)(0, y),

(P2
nmF)(h− y, y) = F(h− y, y), x, y ∈ [0, h],

and, taking into account Theorem 1, these imply (i) and (ii).

We consider the following approximation formula:

F = P1
mnF + R

P1

mnF,

where R
P1

mn is the corresponding remainder operator.

Theorem 6. If F ∈ C(Th) then∣∣∣(RP1

mnF)(x, y)
∣∣∣ ≤ (Am + Bn − x2 − y2 + 1)ω(F; 1√

Am−x2
, 1√

Bn−y2
), ∀(x, y) ∈ Th, (8)

where
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Am =x(1 + mβ)1−m[S(2, m− 2, x + 2β, 1− x) (9)

− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)]

Bn =y(1 + nb)1−n[S(2, n− 2, y + 2b, 1− y)− (n− 2)bS(2, n− 3, y + 2b, 1− y + β)]

and ω(F; δ1, δ2), with δ1 > 0, δ2 > 0, is the bivariate modulus of continuity.

Proof. Using a basic property of the modulus of continuity, we have∣∣∣(RP1

mnF)(x, y)
∣∣∣ ≤[ 1

δ1

m

∑
i=0

n

∑
j=0

qm,i(x, y)qn,j

(
i
m (h− y), y

)∣∣∣x− i
m (h− y)

∣∣∣
+ 1

δ2

m

∑
i=0

n

∑
j=0

qm,i(x, y)qn,j

(
i
m (h− y), y

)∣∣∣y− j
n
(m−i)h+iy

m

∣∣∣
+

m

∑
i=0

n

∑
j=0

qm,i(x, y)qn,j

(
i
m (h− y), y

)]
ω(F; δ1, δ2), ∀δ1, δ2 > 0.

Since

m

∑
i=0

n

∑
j=0

pm,i(x, y)qn,j

(
i
m (h− y), y

)∣∣∣x− i
m (h− y)

∣∣∣ ≤ √(Qx
me20)(x, y)− x2,

m

∑
i=0

n

∑
j=0

pm,i(x, y)qn,j

(
i
m (h− y), y

)∣∣∣y− j
n
(m−i)h+iy

m

∣∣∣ ≤ √(Qy
ne02)(x, y)− y2,

m

∑
i=0

n

∑
j=0

pm,i(x, y)qn,j

(
i
m (h− y), y

)
= 1,

applying (2), we get∣∣∣(RP1

mnF)(x, y)
∣∣∣ ≤ { 1

δ1
[x(1 + mβ)1−m]

1
2

·
{
[S(2, m− 2, x + 2β, 1− x)− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)]− x2

} 1
2

+ 1
δ2
[y(1 + nb)1−n]

1
2

·
{
[S(2, n− 2, y + 2b, 1− y)− (n− 2)bS(2, n− 3, y + 2b, 1− y + β)]− y2

} 1
2
+1}ω(F; δ1, δ2).

Denoting

Am = x(1 + mβ)1−m[S(2, m− 2, x + 2β, 1− x)− (m− 2)βS(2, m− 3, x + 2β, 1− x + β)]

Bn = y(1 + nb)1−n[S(2, n− 2, y + 2b, 1− y)− (n− 2)bS(2, n− 3, y + 2b, 1− y + β)]

and taking δ1 = 1√
Am−x2

and δ2 = 1√
Bn−y2

, we get (8).

2.2. Boolean Sum Operators

The Boolean sums of the operators Qx
m and Qy

n are given by

S1
mn := Qx

m ⊕Qy
n = Qx

m + Qy
n −Qx

mQy
n,

S2
nm := Qy

n ⊕Qx
m = Qy

n + Qx
m −Qy

nQx
m.
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Theorem 7. If F is a real-valued function defined on Th, then

S1
mnF

∣∣
∂Th

= F
∣∣
∂Th

,

S2
mnF

∣∣
∂Th

= F
∣∣
∂Th

.

Proof. By(
Qx

mQy
nF
)
(x, 0) =(Qx

mF)(x, 0),(
Qy

nQx
mF
)
(0, y) =

(
Qy

nF
)
(0, y),

(Qx
mF)(x, h− x) =

(
Qy

nF
)
(x, h− x)

= (P1
mnF)(x, h− x) = (P2

nmF)(x, h− x) = F(x, h− x),

and, taking into account Theorem 1, the conclusion follows.

We consider the following approximation formula:

F = S1
mnF + R

S1

mnF,

where R
S1

mn is the corresponding remainder operator.

Theorem 8. If F ∈ C(Th), then

∣∣(R
S1

mnF)(x, y)
∣∣ ≤ (10)

≤ (1 + Am − x2)ω(F(·, y); 1√
Am−x2

) + (1 + Bn − y2)ω(F(x, ·); 1√
Bn−y2

)

+ (Am + Bn − x2 − y2 + 1)ω(F; 1√
Am−x2

, 1√
Bn−y2

),

with Am and Bn given in (9).

Proof. The identity

F− S1
mnF = (F−Qx

mF) + (F−Qy
nF)− (F− P1

mnF)

implies that

∣∣(R
S1

mnF)(x, y)
∣∣ ≤ ∣∣(Rx

mF)(x, y)
∣∣+ ∣∣(Ry

nF)(x, y)
∣∣+ ∣∣(RP1

mnF)(x, y)
∣∣,

and, applying Theorems 3 and 6, we get (10).

3. Cheney–Sharma Operator of the First Kind

Let m ∈ N and β be a nonnegative parameter. In [23], based on the following Jensen’s
identity,

(x + y + mβ)m =
m

∑
k=0

(
m
k

)
x(x + kβ)k−1[y + (m− k)β]m−k, (∀) (x, y) ∈ R2,

the Cheney–Sharma operators of the first kind Gm : C[0, 1] → C[0, 1] were introduced,
given by

(Gm f )(x) =
m
∑

i=0
qm,i(x) f ( k

m ),
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with

qm,i(x) = (m
i )

x(x + iβ)i−1[1− x + (m− i)β]m−i

(1 + mβ)m .

For F, a real-valued function defined on Th, m, n ∈ N, β, b ∈ R+, and the uniform
partitions ∆x

m and ∆y
n of the intervals [0, h− y] and [0, h− x], we consider here the new

extensions of the Cheney–Sharma operator of the first kind,

(Gx
mF)(x, y) =

m
∑

i=0
rm,i(x, y)F

(
i h−y

m , y
)

, (11)

(Gy
nF)(x, y) =

n
∑

j=0
rn,j(x, y)F

(
x, j h−x

n

)
,

with

rm,i(x, y) = (m
i )

x
h−y (

x
h−y + iβ)i−1[1− x

h−y + (m− i)β]m−i

(1 + mβ)m ,

rn,j(x, y) = (n
j)

y
h−x (

y
h−x + jb)j−1[1− y

h−x + (n− j)b]n−j

(1 + nb)n .

We denote by PG
mn = Gx

mGy
n the product and by SG

mn := Gx
m ⊕ Gy

n = Gx
m + Gy

n − Gx
mGy

n,
respectively, the Boolean sum of the operators Gx

m and Gy
n.

Remark 4. The new extensions of the Cheney–Sharma operator of the first kind, Gx
m and Gy

n, and
their product and Boolean sum, PG

mn and SG
mn, introduced here, have similar properties as the ones of

the Cheney–Sharma operator of the second kind from the previous section.

4. Numerical Examples

In this section, we consider two test functions for which we plot the graphs of the
approximants using the methods presented here, and also we study the maximum approxi-
mation errors for the corresponding approximants.

Example 1. Consider the following test functions, generally used in the literature (see, e.g., [37]):

Gentle: F1(x, y) = 1
3 exp[− 81

16 ((x− 0.5)2 + (y− 0.5)2)],

Saddle: F2(x, y) =
1.25 + cos 5.4y
6 + 6(3x− 1)2 .

(12)

Considering h = 1, m = 5, n = 6, β = 1, in Table 1, one can see the maximum errors for
approximating Fi by Qx

mFi, Qy
nFi, P1

mnFi, S1
mnFi, Gx

mFi, Gy
nFi, PG

mnFi, SG
mnFi, i = 1, 2; in Figures 2

and 3, we have plotted the graphs of Fi, Qx
mFi, Qy

nFi, P1
mnFi, S1

mnFi, Gx
mFi, SG

mnFi, i = 1, 2 on Th.

Table 1. Maximum approximation errors.

Max Error F1 F2

Qx
mFi 0.0862 0.1922

Qy
nFi 0.1264 0.1529

P1
mnFi 0.1680 0.1926

S1
mnFi 0.0152 0.0235

Gx
mFi 0.1523 0.1695

Gy
nFi 0.1560 0.2364

PG
mnFi 0.2444 0.1697

SG
mnFi 0.0676 0.0750
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F1 Qx
mF1

P1
mnF1 S1

mnF1

Gx
mF1 SG

mnF1

Figure 2. Graphs of F1 and its interpolants on T1.

F2 Qx
mF2

P1
mnF2 S1

mnF2

Gx
mF2 SG

mnF2

Figure 3. Graphs of F2 and its interpolants on T1.
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5. Conclusions

According to Table 1 and Figures 2 and 3, we note the good approximation properties
of the two types of Cheney–Sharma operators considered here, especially of the Boolean
sum operators, which interpolate on the entire frontier of the domain.
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17. Cătinaş, T.; Blaga, P.; Coman, G. Surfaces generation by blending interpolation on a triangle with one curved side. Results Math.

2013, 64, 343–355. [CrossRef]
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25. Stancu, D , D.; Cişmaxsxiu, C. On an approximating linear positive operator of Cheney-Sharma. Rev. Anal. Numer. Theor. Approx.

1997, 26, 221–227.
26. Barnhill, R.E. Blending Function Interpolation: A Survey and Some New Results. In Numerishe Methoden der Approximationstheorie;

Collatz, L., Ed.; Birkhauser-Verlag: Basel, Switzerland, 1976; Volume 30, pp. 43–89.
27. Barnhill, R.E. Representation and approximation of surfaces. In Mathematical Software III; Rice, J.R., Ed.; Academic Press:

New York, NY, USA, 1977; pp. 68–119.
28. Barnhill, R.E.; Gregory, J.A. Sard kernels theorems on triangular domains with applications to finite element error bounds. Numer.

Math. 1976, 25, 215–229. [CrossRef]
29. Gordon, W.J.; Hall, C. Transfinite element methods: Blending-function interpolation over arbitrary curved element domains.

Numer. Math. 1973, 21, 109–129. [CrossRef]

http://doi.org/10.1016/0021-9045(73)90020-8
http://dx.doi.org/10.1090/S0025-5718-1975-0375735-3
http://dx.doi.org/10.1023/A:1014074211736
http://dx.doi.org/10.1016/j.apnum.2004.08.003
http://dx.doi.org/10.1016/0021-9045(75)90104-5
http://dx.doi.org/10.1137/0726068
http://dx.doi.org/10.1016/j.amc.2011.08.027
http://dx.doi.org/10.1007/s00009-011-0156-2
http://dx.doi.org/10.1016/j.amc.2017.07.060
http://dx.doi.org/10.18514/MMN.2020.2686
http://dx.doi.org/10.1007/s00025-013-0318-6
http://dx.doi.org/10.1007/s10092-009-0016-7
http://dx.doi.org/10.1007/s10543-010-0256-6
http://dx.doi.org/10.1093/imamat/12.3.355
http://dx.doi.org/10.3934/mfc.2022034
http://dx.doi.org/10.3390/axioms11100537
http://dx.doi.org/10.1007/BF01399411
http://dx.doi.org/10.1007/BF01436298


Symmetry 2022, 14, 2446 11 of 11

30. Gordon, W.J.; Wixom, J.A. Pseudo-harmonic interpolation on convex domains. SIAM J. Numer. Anal. 1974, 11, 909–933. [CrossRef]
31. Liu, T. A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations. Comput.

Math. Appl. 2016, 71, 1519–1523. [CrossRef]
32. Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [CrossRef]
33. Marshall, J.A.; Mitchell, A.R. Blending interpolants in the finite element method. Int. J. Numer. Meth. Eng. 1978, 12, 77–83.

[CrossRef]
34. Roomi, V.; Ahmadi, H.R. Continuity and Differentiability of Solutions with Respect to Initial Conditions and Peano Theorem for

Uncertain Differential Equations. Math. Interdiscip. 2022. [CrossRef]
35. Agratini, O. Approximation by Linear Operators; Cluj University Press: Cluj-Napoca, Romania, 2000.
36. Sard, A. Linear Approximation; American Mathematical Society: Providence, RI, USA, 1963.
37. Renka, R.J.; Cline, A.K. A triangle-based C1 interpolation method. Rocky Mountain J. Math. 1984, 14, 223–237. [CrossRef]

http://dx.doi.org/10.1137/0711072
http://dx.doi.org/10.1016/j.camwa.2016.02.036
http://dx.doi.org/10.1016/j.camwa.2019.09.023
http://dx.doi.org/10.1002/nme.1620120108
http://dx.doi.org/10.22052/MIR.2022.246010.1337
http://dx.doi.org/10.1216/RMJ-1984-14-1-223

	Introduction
	Cheney–Sharma Operator of the Second Kind
	Product Operators
	Boolean Sum Operators

	Cheney–Sharma Operator of the First Kind
	Numerical Examples
	Conclusions
	References

