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Abstract: Fix a format (17 +1) X -+ X (g +1), k > 1, for real or complex tensors and the associated
multiprojective space Y. Let V be the vector space of all tensors of the prescribed format. Let
S(Y, x) denote the set of all subsets of Y with cardinality x. Elements of S(Y, x) are associated to
rank 1 decompositions of tensors T € V. We study the dimension §(2S, Y) of the kernel at S of the
differential of the associated algebraic map S(Y,x) — PV. The set T1(Y,x) of all S € S(Y, x) such
that 6(2S,Y) > 0 is the largest and less interesting x-Terracini locus for tensors T € V. Moreover, we
consider the one (minimally Terracini) such that 6(24,Y) = 0 for all A ¢ S. We define and study two
different types of subsets of T1 (Y, x) (primitive Terracini and solution sets). A previous work (Ballico,
Bernardi, and Santarsiero) provided a complete classification for the cases x = 2,3. We consider the
case x = 4 and several extremal cases for arbitrary x.
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1. Introduction

Fix a format (n; + 1) x -+ x (nx + 1), k > 1, for real or complex tensors and the
associated multiprojective space Y. Let V be the vector space of all tensors of the prescribed
format. Let S(Y, x) denote the set of all finite subsets of Y with cardinality x. Elements of
S(Y, x) are associated to rank 1 decompositions of tensors of that format with x non-zero
terms and the associated has a differential S(Y,x) — PV, and we call §(2S, Y) the kernel of
the differential of this algebraic map.

Let Y = P™ x - .. x P be a multiprojective spaceand v : Y — P, r = 1+ % (n; + 1),
its Segre embedding, i.e., the embedding of Y induced by the complete linear system
|Oy(1,...,1)]. Anelement g € P" is an equivalence class of non-zero tensors of format
(n1+1) x -+ X (nx + 1), up to a non-zero scalar multiple. For any p € Y let 2p or
(2p,Y) denote the closed subscheme of Y with (Z,)? as its ideal sheaf. For any finite set
S C Y set 2S := Upcs2p. Note that deg(2p) = 1+ dimY. As in [1] for any positive
integer x let T1(Y, x) denote the set of all S € S(Y, x) such that h°(Z»5(1,...,1)) > 0 and
h'(Zrs(1,...,1)) > 0. Let T(Y, x) denote the set of all S € T;(Y, x) such that Y is the
minimal multiprojective space containing S.

The paper publised by [1] considered the set T(Y, 3). Herein, we mostly study T(Y,4)
but also provide some general results, and study 3 remarkable subsets of T(Y, x). The
following results describe all multiprojective spaces Y such that T(Y,4) # @.

Theorem 1. SetY :=P™" x .- - x P withk > landny > -+ > np > 0. Wehave T(Y,4) # @
ifand only ifk > 3, n1 < 3and nz < 2.

For an arbitrary integer x > 4, we prove the following existence theorem.

Theorem 2. Set Y :=P" x ... x P withk > 3and ny > --- > ny > 0. Fix an integer x > 5
and assume 11 < x — 1 and one of the following set of conditions:
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i) ny<x-—2
(i) k>4dandny < x—2.

Then, T(Y,x) # Q.
Consider the following highly useful definition ([1], Definition 2.2).

Definition 1. Let Y be a multiprojective space and S C Y a finite set. The set S is said to be
minimally Terracini if 6(2S,Y) > 0and 6(2A,Y) = 0forall A C S.

For each positive integer x, let T(Y, x)’ be the set of all S € T(Y, x) which are mini-
mal Terracini.
In Section 6, we prove the following results.

Theorem 3. Fix integers k > 4, x > 4dandny > --- > np > 0,1 < i < k, such that
m <x—Tlandny+---+mnp =2x—2. Set Y := P" x --. x P, Then, T(Y,x)" # @ and
dimT(Y,x) > x —4+ Y5, (n? +2n;).

Theorem 4. Fix integers x > 3,k > 3andny > --- > ny > Osuch that ny = np = x — 1.
SetY =P™ x - x P, Then, T(Y,x) = @.

In Section 7, we prove the following result.

Theorem 5. Let Y be a multiprojective space with at least three factors and dimY > 7.
Then, T(Y,4) = @.

Theorem 5 together with the results of Section 6 gives the following list of all multi-
projective spaces Y such that T(Y,4)" # @.

Theorem 6. Let Y = P" x -+ x P withny > -+ > ng > 0 for all i. We have T(Y,4) # @
ifand only if k > 3, n; < 3 and either dimY = 6 or Y € {(P')*, (P!)5, P2 x P2 x P1}.

We introduce the following definition.

forany S" C S.
T

Definition 2. Take S € T(Y,x). We say that S is primitive if S' ¢ T(Y,#S'
x) \ T(Y, x) any set

Let T(Y, x) denote the set of all primitive S € T(Y,x). Forany S € T(Y,
A C S such that A € T(Y,#A) is called a primitive reduction of S.

)
\

Clearly, T(Y,x) 2 ’]T'(Y, x) 2 T(Y,x). By [1] (Proposition 1.8) T(Y,2) = @. By [1]
(Theorem 4.12) T(Y,3)" = @ if Y # (P')*. Remark 16 gives T((P')*,3) # @ and that
S € T((P')4,3)" if and only if #71;(S) = 3 foralli = 1,2,3,4, where 7; : (P1)* — P! is the
i-th projection.

For any set E in a projective space, P™, let (E) denote the linear span of E in P".

Forany g € (v(Y)), i.e., for any equivalence class of non-zero tensors, the rank rank(q)
of g is the minimal cardinality of a set S C Y such thatg € (v(S)). Let S(Y, q) denote the
setof all S € S(Y, rank(q)) such that g € (v(S)). The set S(Y, rank(g)) is often called the
solution set of g. Concision ([2], Proposition 3.1.3.1) says that if S € S(Y, q) for some g, then
Y is the minimal multiprojective subspace containing S.

Let S(Y, x) denote the setof all S € T(Y, x) such that S € S(Y, q) for some g with rank
x. An element g € (v(Y)) is said to be concise if there is no multiprojective space Y/ C Y
such that g € (v(Y")). If g is concise, then each S € S(Y, rank(q)) has the property that Y
is the minimal multiprojective space containing S ([2], Proposition 3.1.3.1). If S € S(Y, q)
for some g and 4(2S,Y) = 0, then Terracini lemma gives that S is an isolated point of the
constructible algebraic set S(Y, q). This observation provided the main geometric reason to
study the Terracini loci.

Using the tangential variety of the Segre variety, we prove the following result.
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Theorem 7. Take Y = (P')* with k > 5. Then S(Y,k) NT(Y, k) # @ and S(Y,k) N T(Y, k)
contains an element of the solution set of any concise q € T(v(Y)).

We also prove some more precise results for (P1)¥ with low k. In the section “Conclu-
sions and open questions”, we raise and discuss 3 open questions.

We work over an algebraically closed field with characteristic zero K. The reader
may assume K = C. However, the non-existence results are clearly then true for all fields
contained in K, i.e., for all fields containing Q. When we mentioned a “general S € S(Y, x)”
it is sufficient to take S in a Zariski dense subset of S(Y, x) and in particular, we may take
general real rank 1 decompositions of real tensors. For the existence results which use
rational normal curves, again we may find solution over R or over Q.

2. Preliminaries

For any variety W and any positive integer x let S(W, x) denote the sets of all subsets
of W with cardinality x. Let Y =P" x ... xP%, k > 0,n; > Oforalli. Letv:Y — P,
r=-1+ ]—[;‘:1 (n; + 1), denote the Segre embedding of i, i.e., the embedding of Y induced
by the complete linear system |Oy(1,...,1)|. Let 7t; : Y — P" denote the projection of
Y onto its i-th factor. For any S € S(Y,x) the multiprojective space [T5_, (71;(S)) is the
minimal multiprojective subspace containing S. If k > 2, let Y; be the product of all factors
of Y, except the i-th one, and let #7; : Y — Y; denote the projection (7; is the map that forgets
the i-th component of the Y elements).

Forany E C {1,...,k}, let Yg be the product of all factors of Y associated to the integer
{1,...,k} \ Eand 5g : Y — Yf the projection. If E = {1,2}, we may write 7, » instead of
(1,2}

Forany (ay,...,a;) € ZF set Oy(ay, ..., ar) := @ 7w} (Opn; (a;)). Forany i € {1,...,k},
let ¢; (resp. #;) be the element (ay,...,a;) € NF such that a; = 1 and aj = 0 for all
j # i (resp. a; = 0 and a; = O for all j # i). We will often use the line bundles Oy (¢;)
and Oy(¢;). For any zero-dimensional scheme Z C Y set 6(Z,Y) := h'(Zz(1,...,1)).
We often write §(Z) instead of §(Z,Y). Forany p € Y, let 2p or (2p, Y) denote the closed
subscheme of Y with (Z,,)? as its ideal sheaf. Note that if W is a hypersurface of Y and
p € Sing(W), then 2p C W. Fix Y and the positive integer x. Terracini lemma and the
semicontinuity theorem for cohomology say that 6(2S, x) > 0and h°(Z5(1,---,1)) > 0 for
all S(Y, x) if and only if the x-secant variety ox(v(Y)) of the Segre variety v(Y) is defective,
ie, ox(v(Y)) € (v(Y)) and dimox (v(Y)) < x(dimY +1) — 2.

Remark 1. Let S C Y =P x ... x P" be a general subset of Y with cardinality s. The s-secant
variety o5(v(Y)) is said to be defective if o5(Y) € (v(Y)) and dim o (v(Y)) < x(dimY +1) — 2.
We recall that os(v(Y)) is not defective if and only if either 5(2S,Y) = 0 or h%(Zps(1,...,1)) =0
(or both if '°(Oy(1,---,1)) = s(1+dimY)). We assume k > 3 and we use the convention

ny > - >n>0.

(@) o3(v(Y)) is defective if and only if either Y = (P)* or k = 3, ny > 3and np = n3 = 1([3],
Theorem 4.5).

() o4(v(Y)) is defective if and only if either Y = (P?)3 ork = 3,np =2, n3 = land ny > 4
([3], Theorem 4.6).

Remark 2. By the semicontinuity theorem for cohomology, o+ (v(Y)) is defective if and only if
T1(Y,x) = S(Y,x). Fix a general S € S(Y,x). The multiprojective space Y is the minimal
multiprojective space containing S, i.e., S € T(Y,x), if and only if each factor of Y has dimension
<x-—1

For any zero-dimensional scheme Z C Y and every effective divisor M C Y, let
Respi(Z) denote the closed subscheme of Y with Z; : Zy as its ideal sheaf. We have
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Resy(Z) C Z, deg(Z) = deg(Z N M) + deg(Resp(Z)) and for every line bundle £ on Y
we have the following exact sequence, which we call the residual sequence of M:

0— IResM(Z) QL(-M) -— IzammM @ ﬁ\M — 0. 1)

We have Resy(2p) = p if p is a smooth point of M, Resy(2p) = @ if p € Sing(M)
and Resy((2p) = 2pifp ¢ M. f Z = ZUZ" with Z’NZ" = @, then Resy(Z) =
Resp(Z") UResp(Z").

Remark 3. Fix any multiprojective space Y = P™" x --- x P, k > 0, n; > 0 for all i and
let w C Y be any connected degree 2 zero-dimensional scheme. Fix any q € (v(w)) such that
q 7 V(Wyeq). Set m := rank(q). We have 1 < m < k and the minimal multiprojective space Y’
containing w is isomorphic to (P1)™. If m > 1 (and hence k > 1), then Nifw is an embedding for
alli=1,..., k. Now assume m = 1and k > 1. Let i be the only element of {1, ..., k} such that
1 (Y") is isomorphic to P! or, equivalently, such that #7t;(Y') # 1. The map Hjjw 15 an embedding

ifand only if j # i.
Lemma 1. Takeany Y, any g and any S € S(Y,q). Then all maps n;s,i = 1,..., k, are injective.

Proof. Assume the existence of i € {1,...,k}and a,b € Ssuchthata # band 5;(a) = 1;(b),
ie, mj(a) = mtj(b) forallj € {1,...,k} \ {i}. SetS' := S\ {a,b}. Since a # b, rt;(a) # m;(b).
Let L C P" be the line spanned by 7;(a) and 7;(b). Let Y/ C Y be the dimension 1
multiprojective subspace of Y with L as its i-th factor and 7;(a) as its j-th factor for all
j # i. Note that v(Y”) is a line containing {v(a), v(b)}. Therefore, there is e € L such that
g€ (v(S")U{v(e)}). Thus, rank(q) < #S, is a contradiction. [

Remark 4. Tnke any Y with k > 3 factors, any integer x > 2 and any S € T(Y,x)’. Fix any
A C S such that #A = 2 and let Y' be the minimal multiprojective subspace containing A. We
have Y' = (PY)™ for some m < k. The integer m is the number of integersi € {1,...,k} such
that #7t;(A) > 1. We have m > 3, because 6(2A,Y) > 6(2A,Y") and 6(2E, (P')™) = 2 for any
E C (PY)" with 1 < m < 2 and (P')™ the minimal multiprojective space containing E.

Lemma 2. Take any Y with k > 3 factors, x > 2, S € T(Y,x) andany 1 < i < j < k.
Then 1; ;s is injective.

Proof. Assume that 7; ;|5 is not injective. Take A C S such that #4 = 2 and #1;;(A) = 1,
ie, m(A) =1forallh € {1,...,k}\ {i,j}. Thus, the minimal multiprojective space Y’
containing A is isomorphic to P! or P! x P!. By [1] (Lemma 2.3) 6(24,Y) > §(2A,Y’) =2,
contradicting the assumption S € T(Y, x)". O

Remark 5. Let Y be a multiprojectve space, and Z C Y a zero-dimensional scheme. If deg(Z) < 2,
then v(Z) is linearly independent. Now assume deg(Z) = 3. Since v(Y') is scheme-theoretically
cut out by quadrics, v(Z) is linearly dependent, i.e., (v(Z)) is a line, if and only if (Z) C Y, i.e., if
and only if (Z) is a line contained in a ruling of Y.

Proposition 1. Take an integer e € {1,2,3},aset E C Y = P™ x - x P™ such that #E = e

and a connected degree 2 scheme v C Y \ E. Set Z := EUwv. Assume h'(Zz(1,...,1)) > 0.

Let W be the minimal subscheme of Z such that W' (Ty(1,...,1)) > 0. Assume that Y is the

minimal multiprojective space containing W.

(i) Ife=1thenk=1n =1andZ =W.

(i) Assumee = 2andk > 1. Then, k = 2, ny = np = 1and W = Z. Moreover, there is
C € |0y (1,1)| containing W and the converse holds.

(iii) Assumee =3 andk > 2. Then, W =Z,k=3andny =np, =nz =1.
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Proof. Note that deg(Z) = e + 2. Part (a) is true by Remark 5. From now on we assume
k > 1. We have deg(W) < e+ 2 and deg(W) = e + 2 if and only if W = Z. We just proved
that deg(W) > 4. If W = W,oq, then we use [4] (Proposition 5.2).

Write W = v U W’ with W Novs. = @. Since h' (Zyy(1,...,1)) > 0, there is q €
(v(W")) N (v(v)). The minimality of W gives g ¢ (v(W)) if either W; C W' or W; C W',
Note that g is in the tangential variety of v(Y). If ¢ # v(Y), then it has rank < deg(W’) <3
and rank 3 only if e = 3and Z = W. Thus, Y = (P!1)f with k < 3and k = 3 only ife = 3
and W =2 0O

Lemma 3. Take two-degree 2 connected zero-dimensional schemes u,v C Y such that uNv =
@, Y is the minimal mutiprojective space containing Z := uUv, h'(Zz(1,...,1)) > 0 and
W(Zy,(1,...,1))=0forallZ' C Z. Then, k < 2and Y = P! x P! ifk = 2.

Proof. Assume k > 3. By assumption (v(u)) N (v(v)) is a single point, . Take C €
|Oy(1,1)| such that deg(Z N C) > 3. By [5] (Lemma 5.1) we have Z C C. Leti be any
integer i € {1,...,k} such that there is H; € |Oy(¢;)| such that e; := deg(Z N Hy) is
maximal. Set Z; := Resy, (Z). Note that deg(Z;) = z —e;. Set E; := H; N Z. Note
that deg(E;) = e1. Let e; be the maximal integer such that there is j € {2,...,k} and
H, € |Oy(¢j)| such that e, := H; N Z; is maximal. With no loss of generality (we do not
impose that the integer n; is non-increasing) we may assume j = 2. We then continue in
the same way, defining the integers es, .. ., the divisors H3, ... and the zero-dimensional
schemes E3,... and Z3, ... such that E; := H; N Z;, e; = #E;, Z; 1 = Resy, (Z;) and at each
step the integer i is maximal. Note thate; > ey > -+ > ¢; > ¢;11 and that ¢; = 0 if and
only if Z C HyU---UH;_;. Since k > deg(Z) — 1 there is a maximal integer ¢ < k such
that e < 1 (it exists, because k > deg(Z) — 1. Since Oy is globally generated, [5] (Lemma
5.1) givese. = 0and e._1 > 2. We gete; = ep = 2and Z C H; U Hp. By [5] (Lemma
5.1) we have h!(Zz (¢1)) > 0. Since the Segre embedding of Y; is an embedding, we get
deg(71(Z1)) = 1. Set {a} := uyq and {b} = v,q. First assume that Z; is connected, say
Z1 = v. The set 1/(171_1 (m1(a))) is contained in a line contained in v(Y'), and hence g € v(Y).
Since h'(Zz/(1,...,1)) = 0forall Z' C Z, q # v(a). Since v(Y) is cut out by quadrics and
the intersection of the line (v(u)) with v(Y) contains the degree 3 scheme v(u) U {q}, we get
{(v(u)) C Y,and hence Y = P! x P'. Now assume Z; = {a,b}. We get 7r;(a) = 7t;(b) for all
i > 1. We also get {a,b} = E1, and hence if n; = 1 we obtain 7r1(a) = 711(b). Hence, a = b,
a contradiction, if n1 = 1. Assume 711 (a) # 71(b), and hence 771 (a) and 771 (b) are linearly
independent. Take M € |Oy(e3)| containing a. Since rr3(a) = m3(b), b € M and hence
Resp(Z) C {a,b}. As above, we get 7;(a) = m;(b) for all i # 3. Thus, 7r1(a) = m1(b), is
a contradiction. O

We recall the following lemma which we learned from K. Chandler ([6,7]).

Lemma 4. Let W be an integral projective variety, £ a line bundle on W with h'(L) = 0 and
S C Wheg a finite set. Then:

(i) h (Zias,w) ® L) > 0 ifand only if for each a € S there is a degree 2 scheme v(a) C W such
that v(a)eq = 2 and h' (T @ L) > 0, where Z := U,esv(a).

(ii)  Assume h'(Zsyw ® L) = 0. Take a minimal Z' C Z containing S and such that h* (T, ®
L) > 0. Then, W' (T @ L) = 1.

Lemma 5. Fix S € T(Y, x)" and take Z as in Lemma 4, i.e., assume Z.q 2 S, that each connected
component of Z has degree < 2, h'(Zz(1,...,1)) = Land W' (T (1,...,1)) =0forall Z' C Z.
Then Z,.q = S.

Proof. Assume S’ := Z,q # S. The “if” part of Lemma 4 gives 6(25',Y) > 0.
Thus, S € T(Y, x)’, is a contradiction. [
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Remark 6. Take Z as in Lemma 4 for x = 4 and assume S € T(Y,4)". Take a closed subscheme
W C Z such that 3 < deg(W) < 4 and #W,oq = 3. Let Y' be the minimal multiprojective
space containing Wieq. Assume the existence of at least k — 3 indices such that #71;(Wygeq) = 1,
ie, Y = P™M x P"™ x P" with 0 < m; < 2 forall i. By [1] (Theorem 4.12) and a dimensional
count, we get #Wpoq # 3.

Remark 7. Take Y = P™ x - x P, k > 2. As in [8] (Examples 2 and 3), let C(Y') denote the
set of all curves f(P'), where f : P! — Y is a morphism with 7t; o f an isomorphism if n; = 1,
while 71; o f is an embedding with as its image a rational normal curve if n; > 2. Each C € C(Y)
is called a rational normal curve of Y. The set C(Y') is an integral quasi-projective variety and
dimC(Y) = —3+ 5, (n? +2m)).

3. The Tangential Variety

Among the Terracini loci we obtain an interesting family from the tangential vari-
ety 7(v(Y)) of the Segre variety. Since v(Y) is smooth, T(v(Y)) is the union of all lines
L C (v(Y)) such that L Nv(Y) contains a degree 2 connected zero-dimensional scheme.

From now on in this section, we only consider concise g € T(v(Y)), i.e., we take
Y = (P1)k, k > 2, and take g € T(v(Y)) such that rank(q) = k.

Lemma 6. Tuke Y = (P1)¥, k > 3. Take g € t(v(Y)) such that rank(q) = k. Then there is a
unique connected degree 2 zero-dimensional scheme v such that q € (v(v)).

Proof. The existence part is true because v(Y') is smooth. Assume the existence of another
such a scheme w and set Z := v Uw. Thus, 3 < deg(Z) < 4. The case deg(Z) = 4,
ie, uNov = Qisexcluded by Lemma 3. The case deg(Z) = 3, i.e., ;g = Ureq is excluded,
because in this case Z is not Gorenstein ([9], Lemma 2.3). O

Lemma 7. Tnke Y with k > 3 factors. Let Z C Y be the union of two degree 2 connected
zero-dimensional scheme, u and v, and a point, c. Let Y' be the minimal multiprojective space
containing Z. Assume h'(Zz(1,...,1)) > 0 and take a minimal subscheme W C Z such that
W(Zw(1,...,1)) > 0. Then., W = Zand Y' = P! x P! x P!,

Proof. If W # Z, we obtain a contradiction by Lemma 3 and Proposition 1. Thus, we may
assume W = Z and that either k > 4 or n; > 2 for at least one integer i. We do not assume
that the dimensions of the Y factors are non-increasing and hence we may permute the
factors of Y to simplify the notation. Let e; be the maximal integer deg(Z N Hy) for some
i €{1,...,k} and some H; € |Oy(¢;)|. Note that e; > max{ny,...,n;}. Permuting the
factors of Y, we may assume i = 1. Set Z; := Resp, (Z). Let e; be the maximal integer
deg(Z; N Hy) for somei € {2,...,k} and some H; € |Oy(¢;)|. With no loss of generality,
we may assume i = 2. Set Z := Resp,(Z;). We define in the same way e3, e4, Z3, Zj.
Since either k > 4 or n; > 2 for at least one integer i, ey + - -- +e4 > 4, and hence
deg(Z4) < 1. Thus, h! (Zz,) = 0. By [5] (Lemma 5.1) we have Z C H; U---U Hy. We
also get that the last integer i with ¢; > 0 satisfies ¢; > 2. Thus, e; = 3 and ¢, = 2. Since
h'(Zz,(81)) > 0,deg(m;(Z1)) = 1forali > 1. Set Wy := Resp, (Z). Since h! (Zy, (¢2)) > 0,
Remark 4 gives that there is either G C W; with deg(G) = 2 and deg(12(G)) = 1 or
deg(W;) =3 and thereisi € {1,...,k} \ {2} with deg(7;(Wy)) = 1forallj € {1,...,k} \
{i,2} and dim(7r;(Wp)) = 1. Since deg(n2(Z1)) = 1, (v(Z;)) is contained in the second
ruling of v(Y). Thus, the plane (v(Z N Hy)) intersects another point &« = v(B) of v(Y).
Proposition 1 implies that the minimal multiprojective space Y” containing Z N Hj is
contained in P! x P! and that Z N H; U B is contained in a curve of bidegree (1,1) of P! x P!,
Thus, n; = 1 and, since k > 3, there are a; € P",1 <i <k, ay € m1(Y’), ap € mp(Y’) such
that Y/ = P! x P! x {a3} x --- x {ay} and B = (ay,...,a;). The line (v(Z;)) contains a.
Hence, 7;(Z1) = a;, except for at most one i. Since k > 3, we get Y’ = Plx Pl xPl. O

We recall the following result ([8], Proposition 7).
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Lemma 8. Fix a concise g € T(v(Y))\ v(Y) and set k := rank(q). Then, Y = (PY)¥ and
dimS(Y,q) > 2k —2.

Proposition 2. Take Y = (P')*. Then S(Y,4) N'T(Y,4)’ contains a 9-dimensional family associ-
ated to rank 4 points q € T(v(Y)) and each S € S(Y,q) satisfies 6(25) > 6,
W(Ips(1,1,1,1)) > 2

Proof. Since h°(Oy(1,1,1,1)) = 16 and 4(1 + dim Y) = 20, the proposition follows from
Lemma 8, Terracini lemma and the fact that Y is the minimal multiprojective space contain-
ing a set evincing the rank of a concise g € (v(Y)). O

Proof of Theorem 7. Fix any g € t(v(Y)) with is concise, i.e., rank(q) =k, and letv C Y
be the only degree 2 connected zero-dimensional scheme such that g € (v(v)) (Lemma 6).
Set {0} := veq, say 0 = (01,...,0;). Take ¥ = X1 U - - U Xy as in Remark 7. Take a general
hyperplane M of (v(Y)) passing through g and let H € |Oy(1,...,1)| be the element
corresponding to M. Since v(0) # g and M is general, o ¢ H. Thus, fori =1,...,k there is
aunique a(i) € X; N H, and a(i) # 0. Set S := {a(1),...,a(k)}. Note that (X) = T,y v(Y),
and that (X) = {v(0) Uv(S)}. Since g is contained in the hyperplane M N (X), and M
is associated to H, g € (S). Since rank(q) = k, S € S(Y,q). Varying M among the
hyperplanes of (v(Y)) containing g, we get that S is not an isolated point of S(Y,¢).
Thus, 6(2S) > 0. Since dim Y = k > 5, we have k(k + 1) < 2¥, and hence 1°(Z,5(1,...,1)) > 0.
Thus, S € T(Y, k). To check that S € T(Y, k) it is sufficient to observe that for any a(i) € S
the (k — 1)-dimensional multiprojective space 7; ! (0;) contains the set S \ {a(i)}. O

4. The Usual Terracini Sets and the Solution Sets
Remark 8. We have S(Y,2) = @ for any Y, because T(Y,2) = @ ([1], Proposition 1.8).

Remark 9. Obviously T(P",x) = @ for all x > 0.
Lemma9. Take Y = P™ x P™ withny > np > 0. Then, T(Y,n1+1) =@

Proof. First assume n7 = ny. Since Y is the minimal multiprojective space containing Y,
T(Y,n; 4+ 1) = @by [1] (Lemma 2.4).

Now assume n; > np. We use induction on the non-negative integer n; — ns.
Assume the existence of S € T(Y,n; + 1). To obtain a contradiction, it is sufficient to
prove that h%(Z,5(1,1)) = 0. Since Y is the minimal multiprojective space containing S,
(m(S)) =P™M, ie., mys is injective and 711 (S) is linearly independent. Since #S > ny +1,
there is S’ C S such that #5’ = nj and (72(S’)) = P"2. Set {p} := S\ S’. Let H be the only
element of |Oy(¢e1)| containing S'. Since (712(S")) = P2, H is the minimal multiprojective
space containing S’. Hence, the inductive assumption gives h°(H, Tysrm,r(1,1)) = 0. We
have Resy(2S) = 2p U S'. Since h° (Z2p(0,1)) = 0, the residual exact sequence of H gives
0 (Zr5(1,1)) =0. O

Theorem 8. If Y = P"1 x P2, then T(Y,x) = @ for all x.

Proof. We may assume n; > n, > 0. Assume the existence of S € T(Y, x). The definition
of T(Y,x), gives x > nj + 1 and the existence of A C S such that #4 = n; + 1 and
(m(A)) = P™", ie, 7y, is injective and 71 (A) is linearly independent. To obtain a
contradiction, it is sufficient to find S’ C S such that h°(Z,5(1,1)) = 0. Let Y’ be the
minimal multiprojective space containing A. Since (711 (A)) = P", Y’ = P"1 x [P’ for some
integer s € {0,...,ny}. If s = np, then we may take S’ = A by Lemma 9. Assume s < n5.
We use induction on 1 — s allowing the case s = 0. Thus, we reduce to prove the existence
of §" in the case s = np — 1 for some ny > 1. In this case Y’ € |Oy(0,1)|. Since Y is the
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minimal multiprojective space containing S there is o € S\ A such that o ¢ H. We claim
that we may take S’ = A U {o}. Consider the residual exact sequence

0— IonA(l,O) — Izs/(l,l) — I(ZA,H),H(lfl) —0 (2)

of H Lemma 9 gives hO(H,I(zA’H),H(l,l)) = 0. Clearly h°(Z(1,0)) = 0
(Remark 9). O

We recall the following result ([10], Proposition 2.3).

Lemma 10. Take Y := P x P™ x P™, m > 3. Then, each secant variety of v(Y') has the expected
dimension.

Proposition 3. Take k > 3 and Y = P" x --- x P with ny = np = n3 = m > 3.
Then, T(Y,m+1) = @.

Proof. Let myp3:Y — Y/ = (P™)3 denote the projection of Y onto its first three factors.
Assume the existence of S € T(Y,m + 1). In particular, Y is the minimal multiprojective
space containing Y and hence #714 _4(S) = m + 1 and Y’ is the minimal multiprojective
space containing S’ := 71 ,3(S). Thus, S’ is in the open orbit for the action of (Aut(P™))?
of S(Y/,m +1). Lemma 10 gives dimo,, 1 (v(Y')) = (m+1)Bm+1) =1 < (m +1)3.
Hence, §(25,Y') = 0. If k = 3, then Y = Y. If k > 4 we see Y’ as a multiprojective
subspace of Y fixing p; € P",4 <i < k, and applying k — 3 times [1] (Proposition 2.7), we
getd(2S,Y)=0. O

Lemma 11. Fix a finiteset S C Y and a € Y \ S. Assume the existence of i € {1,...,k} such
that 7t;(a) € m;(S). Then, 6(2S,Y) < 6(2(SU{a}),Y).

Proof. The thesis of the lemma is equivalent to proving the following statement: T, ;v (Y) N
(UpesTyyv(Y)) # ©. By assumption, there are i € {1,...,k} and b € S such that
mi(a) = 7;(b). Thus, T, ;) v(Y) N T, v (Y) contains a point of v(Y). O

Lemma 12. Fix integers x > m > 0 and E C P" such that #£ = x and (E) = P™.
Set Y := P" x (PY)*1 for some k > 2. Fix 0y,...,0, € Pl and let A C Y be the set of
all (a,0y,...,a;y),a € E. Fixu € Y\ A such that ty(u) € E. Then, 6(2(AU{u}),Y) >
5(2A,Y) > (x —1)(m+1).

Proof. The first inequality is true by Lemma 11. We have 6(2A,Y) > 6(2E,P™) ([1], Lemma
2.3). Clearly, 6(2E,P") = (x — 1)(m+1). O

Remark 10. Take k = 4, m = 1 and x = 3 in the set-up of Lemma 15. Thus, Y = (P')*. We get
elements of T(Y, 4), because h°(Oy(1,1,1,1)) = 16, 4(dimY + 1) =20and 1 + (x — 1)(m +
1) =5

Lemma 13. Take Y = (P')3 and any S € S(Y,3). Let Y' be the minimal multiprojective space

containing S.

1. IfY =Y, then i°(Zps(1,1,1)) < 1; i%(Zy(1,1,1)) > O, if and only if S is as in [1]
(Proposition 3.2 (iv)). If S is as in [1] (Proposition 3.2 (iv)) with {i,j} = {1,2}, then the only
element, W, of | Zrs(1,1,1)| is of the form W = W1 U Wy U W3 with W; € |Oy (¢;)|. If S is
as in [1] (Proposition 3.2 (iv)) with W; € |Oy (¢;)|. Moreover, dim Sing(W) = 1.

2. IfY =P x P!, then h%(Z5(1,1,1)) = 1.

3. IfY 2Pl then1 < h°(Zps(1,1,1)) < 2.

Proof. The case Y’ = Y is proved in the proof of [1] (Lemma 4.2) with the description of all
cases with h%(Z,5(1,1,1)) = 1. It is easy to see that a reducible surface W = W; U W, U W;



Symmetry 2022, 14, 2440

9 of 32

is singular at all points of S. Thus, W is the only element of |Z,5(1,1,1)|. Note that Sing(Y')
is the union of 3 curves.

Assume Y’ = P! x P1. Obviously, h°(Y, Zip5y(1,1,1)) = 0. Thus, 6(2S,Y’) = 5
With no loss of generality, we may assume #713(S) = 1,1i.e., Y € |Oy(e3). Consider the
residual exact sequence of Y':

0— Is(l, 1,0) — Izs(l, 1,1) — I(ZS,Y’)(Ll/l) — 0. (3)

We have hO(IS (1,1,0) = 1, because Y’ is the minimal multiprojective space containing
S. Therefore, h'(Zs(1,1,0)) = 0. Thus, §(2S,Y) = §(2S,Y’") = 5and h°(Zp5(1,1,1)) = 1,
concluding the proof of this case.

Assume Y’ 2 P, Clearly, 6(2S,Y’) = 4. With no loss of generality, we may assume
#71;(S) = 1fori = 2,3, i.e., the existence of 05,03 € P! such that Y/ = P! x {0,} x {03}.
Set Y := P! x P! x {03}. Thus, Y’ € |Oyx(0,1)|. Consider the residual exact sequence of
Y inY":

0— IS,Y”(L 0) — IZS,Y”(L 1) — I(ZS,Y/)(l, 1, 1) — 0. (4)

Since h0(Y", Z(gyn(1,0)) = hO(Y', Tpsy(1,1)) = 0, (4) gives h°(Y", Tp5yn(1,1)) = O,
and hence 6(25,Y”) = 5. Then, the exact sequence (3) with Y” instead of Y’ gives 1 <
W(Zs(1,1,1)) <2. O

Remark 11. Take any multiprojective space Y and any positive integer x. Assume the existence
of S€ T(Y,x)and W € |Ips(1,...,1)| such that Sing(W) 2 S and take any p € Sing(W) \ S.
Since 6(2(SU{p}),Y) > 6(2S,Y) > 0, Y is the minimal multiprojective space containing
SU{p}tand W € |Zysupy(L,-.-, 1), SU{p} € T(Y,x + 1). Hence, if dim Sing(W) > 0,
then T(Y,y) # @ forall y > x.

Remark 12. We claim that (P?)3 is the only multiprojective space such that T1(Y,4) = S(Y,4).
If k > 3 it is sufficient to use part (b) of Remark 1. If k < 2 use Remark 9 and Theorem 8.

Proposition 4. Fix any multiprojective space Y. Set n := dimY,
w:=[(1+h(0y(1,...,1)))/(n+1)], z:=max{n+1,w}.
Then, T(Y,x) = @ forall x > z.

Proof. Fix A C Y such that #4 > z. Since dimoy(v(Y)) < (x +1)(n+ 1) — 1, the semi-
continuity theorem for cohomology gives i'(Zo4(1,...,1)) > 0. Take any x > z and any
S € T(Y,x). We saw that every A C S with #A = z has h'(Z,4(1,...,1)) > 0. Since A C S,
h%(Zy4(1,...,1)) > 0. Thus, to prove that S ¢ T(Y, x) it is sufficient to find A with the
additional condition that Y is the minimal multiprojective space containing A. We claim
the existence of E C S such that #£ < n + 1 and Y is the minimal multiprojective space
containing E. Take any a1 € S. The set Y(1) := {a; } is the minimal multiprojective space
containing 4. Since Y is the minimal multiprojective space containing S, there is a(2) € S
such that the minimal multiprojective space Y (2) containing {a1,a, } strictly contains Y (1),
and hence, dim Y (2) > dim Y(1). Furthermore, so on to get E after at most n — 1 steps. [

Almost always w > n 4 1. For instance, if n; = 1 for all i (and hence n = k) we have
w > n+1ifand only if k > 5.

Proposition 5. Fix integers x > 3 and k > 3. Fixny > --- > ny > 0 such that ny < x—1,
npy <x—1landny < x—2. SetY :=P" x ... x P"%. Assume o,_1(v(Y)) # (v(Y)). Fix
lines L C P™, R C P"2 and points o; € P",3 < i < k. Let Y’ C Y the multiprojective space
with L as its first factor R as its second factors and {o;} as its i-th factor 3 < i < k. Fix a general
(a,b) € Y x Y and a general S’ C Y with #S' = x — 2. Set S := S" U {a, b}. Let q be a general
element of (v(S)). Then, rank(q) = x and Y is the minimal multiprojective space containing S.
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Proof. Y’ is the minimal multiprojective space containing {a,b}. Since ny > -+ > n; > 0,
nm <x—1,n <x—1,n3 <x—2,and S is general, Y is the minimal multiprojective
space containing S. Assume rank(q) < x — 1. Thus, g € oy_1(v(Y)). Since Aut(P"),
h = 1,2, acts transitively on the Grassmannian of the lines of P, Aut(P"),i =3,...,k,ais
general in Y/ and S’ is general in Y, S’ U {a} is a general subset of Y with cardinality x — 1.
Hence, varying S’ and a the union of the sets (v(S’ U {a})) covers a non-empty open subset
of oy _1(v(Y)). Since for a fixed S’ U {a} the point b is a general point of Y’, the closure of
the union of all (v(S)) is the join, J, of v(Y’) and 0,1 (v(Y)). Since g € 0,1 (v(Y)), we get
that 0y, _1(v(Y)) is a cone with vertex containing v(Y’). Since Y is the image of Y’ by the
action of the group [T5_; Aut(P"), we get that o, _1(v(Y)) is a cone with vertex containing
v(Y). Thus, 0,1 (v(Y)) = (v(Y)), a contradiction. [J

Remark 13. Note that T(Y,ny +1) = T(Y,n; +1).

Lemma 14. Take Y = P™ x P"2 x P". We have T(Y,4) # @ if (ny,ny,n3) €
((3,1,1),(2,1,1),(2,2,1)}.

Proof. Fix a line L C P™, a;,by € L such thata; # by and 0; € P"%, i = 2,3.
Set Y := L x {02} x {03}, a = (a1,02,03), and b = (by,07,03). Since 6(2{a,b},Y’) = 2,
5(2{a,b},Y) > 2.

Take H;, i = 2,3, such that o; € 7;(H;). Take a general H; € |Oy(e1)| and set
W := H; U Hy U H3. Note that {a,b} C Hp N H3 and hence {a,b} C Sing(H, U H3) C
Sing(W). By Remark 11, it is sufficient to find c¢,d € Sing(W) \ {a,b} such that ¢ # d
and Y is the minimal multiprojective space containing S := {a,b,c,d}. Since M is general,
P = (LU (M)).

Assume (n1,n2,n3) € {(3,1,1),(2,1,1),(2,2,1)}. Take a general c € M N Hy and
a general d € M N Hj. Since 111(Hy) = m(Hz) = P™, P = (LU m(M)) and ¢, d are
general, (711(S)) = P™. Since c is general and 7t3(H,) = P!, 713(S) spans P. Since c and d
are general, 71p(H3) = P"2 and (1»(S)) =P"2. O

Lemma 15. Assume k > 3, n; € {2,3} and n; < 2 foralli = 2,...,k. Then, T(Y,4) # @.
Ifny =3, then T(Y,4) # @.

Proof. With no loss of generality, we may assume n; > --- > n; > 0. Since T(Y,4) =
T(Y,4) if n; = 3 (Remark 13) it is sufficient to prove that T(Y,4) # @. Fix a line L C P™,
a1,b1 € Lsuch thatay # by and o; € P",2 < i < k. Seta := (ay,03,0),b:= (b1,02,...,0k)
and Y’ := L x {02} x -+ x {ox}. Since 6(2({a,b}),Y’) = 2,5(2({a,b},Y)) > 2. Fixa
general (¢, d) € Y x Yand set S := {a,b,c,d}. Note that Y is the minimal multiprojective
space containing S. We have 6(2S,Y) > 6(2({a,b}),Y) > 2. Thus, to prove that S € T(Y,4)
it is sufficient to prove that Ko (Zps(1,...,1)) > 0. Since §(2S,Y) > 2, it is sufficient to

prove that
k

A(m+ -+ +1) <1+ [T +1). ©)
i=1

Since k > 3, the difference (11, ..., ny) between the right-hand side and the left-hand
side of (5) is a non-decreasing function of each n;. If n; = 1 (and hence n; = 1 for all
i, then (5) is satisfied if and only if k > 5. Theorems 10 and 11 in the next section give
T((P')k,4) # @ for k = 3,4. For k > 3 we have (ny,...,n;) < ¥(ny,...,n,1). We have
¥(3,3,1) =1,9(3,2,2) =5,¥(3,2,1,1) =17, 9(2,2,1,1) = 8,¥(3,1,1,1) = 1. Thus, itis
sufficient to check all (11, ..., ny) in the following list (2,1,1), (2,2,1),(3,1,1), (2,1,1,1).

This is done in Lemma 14. [

Lemma 16. Assume k > 3,11 = np = 3and ng < 2. Then, T(Y,4) # @.
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Proof. Fix lines L,R C P> and o; € P",3 <i < k. Set Y’ := L x R x {03} x -+ x {og}.
Fix a general (a,b) € Y/ x Y. Since §(2{a,b},Y’) = 2, we have 6(2{a,b},Y) > 2. Fixa
general (¢,d) € Y x Yand set S := {a,b,c,d}. Note that Y is the minimal multiprojective
space containing S and that 6(S,Y) > §(2{a,b},Y) > 2. Thus, to prove that S € T(Y,4) it
is sufficient to prove that the inequality (5) is satisfied. As in the proof of Lemma 15, it is
sufficient to observe that it is satisfied if k = 3and ng =1. O

Proposition 6. Take Y =P x - - - x P withk > 0andny > --- > n > 0.

(i) We have S(Y,3) # @ ifand only if k > 3 and n; < 2.

(i) IfY # (PY)*, all S € S(Y,3) are as in [1] (Proposition 3.2).

(iii) Assume Y = (PY)*; S € S(Y,3) if and only if either S € S(Y,q) for some q such that
rank(q) = 3 or it is as in [1] (Proposition 3.2).

Proof. Since T(Y,3) # @, k > 3 and ny < 2 ([1], Theorem 4.12) and all S € T(Y, 3) are as
described in [1] (Theorem 4.12).

(@) IfY # (PYHY%, S € T(Y,3) if and only if either S € S(Y,q) for some g such that
rank(g) = 3 or it is as in [1] (Propositions 3.1 and 3.2, Theorem 4.12). The case [1]
(Proposition 3.1) is excluded by Lemma 1, because in this case 7|5 is not injective.
Proposition 5 proves that a general S as in [1] (Proposition 3.2) is an element of
T(Y,3). In (iii), we claim a stronger statement. Fix S as in [1] (Proposition 3.2) and
a general g € (v(S)). We need to prove that rank(q) = 3. Assume rank(g) < 2
and take A € S(Y,q). Set U := SU A. We have #U < 5 and h'(Zy(1,...,1)) > 0.
Note that h'(Zs(1,...,1)) = 0. Let V be the minimal subset of U containing S and
with K (Zy(1,...,1)) > 0. Since V contains S, Y is the minimal multiprojective space
containing V. Since k > 3, [4] (Theorem 1.1 and Proposition 5.2) gives #V = 5 (hence
V = U, rank(q) =2and ANS = @) and Y = (P!)3. In this case, all possible sets V
are described in [4] (Lemma 5.8) and 7y is injective for all i. However, TTj|s is not
injective for one i by the definition of the example described in [4] (Proposition 3.1),
a contradiction.

(b) Now assume Y = (P1)%. S € T(Y,3) if and only if either S € S(Y, q) for some g such
that rank(g) = 3 or it is described in part (a) ([1], Theorem 4.12).

O

Theorem 9. Take Y = (P?)3. Then, T1(Y,4) = S(Y,4), T(Y,4)" # @ and S(Y,4) # @.
Moreover, S € T(Y,4)" if and only if the following conditions are satisfied:

(i) ms is injective forall i = 1,2,3;
(ii)  foreach A C S such that #A = 3, we have (11;(A)) = P? for at least two i € {1,2,3}.

Proof. Take a general U C Y such that #U = 4. Since 04 (Y) is defective (Remark 1), U €
T(Y,4). The semicontinuity theorem for cohomology gives T1(Y,4) = S(Y,4). The solution
set of any q € (v(Y)) with rank 4 is an element of S(Y,4). Since 03(Y) is not defective
and 3(1+dimY) < h%(0y(1,1,1)), 6(2A,Y) =0 forall A C U, and hence, U € T(Y,4)".
Fix § € 5(Y,3). By Remark 15 the injectivity of all 77 is a necessary condition to have
S € T(Y,4)". Condition (ii) is also necessary by Terracini Lemma and the inequalities
hY(Op1p1yp1(1,1,1)) =8 < 3(1 4+ dimP! x P! x P') and h°(Opa ,p1,p1(1,1,1)) = 12 <
3(1+ dimP? x P! x P!). Now assume (i) and (ii) for the set S. By (i) 6(24,Y) = 0 for all
A C S such that #4 = 2. Now take A C S such that #4 = 3. First assume (71;(A)) = P2
In this case A is the open orbit of S(Y, 3) for the action of Aut(IP?) x Aut(P') x Aut(P').
Since 03(Y) is not defective, we get 6(24,Y) = 0. Now assume dim(7;(A)) = 1 for exactly
one i, say for i = 3. Thus, the minimal multiprojective space Y’ containing A is isomorphic
to P2 x P2 x PL. Since #713(A) = 3 and (m;(A)) = P? fori = 1,2, A is in the open orbit for
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the action on S(Y’, 3) of the connected component Aut(Y’) and dim 03(Y’) = 17 (Remark 1),
we get §(2A,Y’) = 0. We have Y’ € |Oy(e3)|. Consider the residual exact sequence of Y’

0— IA<1, 1,0) — IZA(L 1,1) — I(zA,Y/),y/(l,l,l) — 0. (6)

Since (711(A)) = P?, we have h'(Z4(1,1,0)) = 0. Since §(2A,Y") = 0, (6) gives
5(2A,Y) = 0. Thus, S is minimally Terracini. [

5. Proofs of Theorems 1 and 2

Lemma 17. Fix integersk >4, x > 4andny > --- > np > 0,1 <i <k, suchthatny <x—1
and ny + - - - +np = 2x — 2. Then,

k

[[(ni+1) > x(2x—1). @)

i=1

Proof. We fix the integer x > 4.

Observation 1: Fix an integer a > 3. The real function h(t) := t(a — t) has a unique
maximum in the interval [1,a — 1] and the integers [a/2| and [a/2] are the only one with
maximum value for the integers 1 < x <a—1.

First assume k = 4. Applying several times Observation 1, we see that the right hand
side of (7) has a minimum with ny = x — 1, n = x — 3 and n3 = n4 = 1. For these integers,
(7) is satisfied.

Now assume k > 5. Since ny > --- > n > Oand ny +---+n = 2x — 2,
ng—1 +nx < x —1. We apply Observation 1 to the integer a = 11 + 1 and the induc-
tive assumption for the integers ny,...,nx_p, nx_1 + 1y (after permuting them to get a
non-increasing sequence). [

Proof of Theorem 1. Assume T(Y,4) # @. For any S € T(Y,4), Y is the minimal multi-
projective space containing S, and hence, n; < 3. Obviously k > 1 (Remark 9). Theorem 8
excludes the case k = 2. Proposition 3 gives n3 < 2.

If k > 3 and n; = 1 for all i, then T(Y,4) # @ by Theorem 10 (the case k = 3) and the
case m = 1 of Theorem 11. If k > 3,2 < ny; <3and ny < 2,then T(Y,4) # @by Lemma 16.
If k > 3,n; =ny =3and n3 < 2, then T(Y,4) # @by Lemma 16. O

Theorem 10. Take Y = (P')3. Then, T(Y,x) # @ and T(Y,x) = @ for all x > 4.
Moreover, for all x > 4 each set A € T(Y,3) as in [1] (Proposition 3.2) is a primitive reduc-
tion of some S € T(Y, x).

Proof. We have T(Y,x) # @ for all x > 4 by Remark 11 and part (1) of Lemma 13.
Thus, the “Moreover” part is proved.

Take S € T(Y,x), x > 4. For each S’ C S such that #5' = 3 we have 6(5',Y) > 0.
Thus, to prove that T(Y,x) = @ it is sufficient to find S’ such that Y is the minimal
multiprojective space containing Y.

Claim 1. There is u,v € S such that u # v and the minimal multiprojective space
containing {u,v} is not isomorphic to P'.

Proof of Claim 1. Assume that Claim 1 is not true, i.e., assume that for all a,b € S
such that a # b, there is A(a,b) C {1,2,3} such that #A(a,b) = 2 and 7;(a) = m;(b) for
alli € A(a,b). For any u € S set u; := m;(u). By assumption #rm;(S) > 2 foralli = 1,2, 3.
Start with any a = (ay,a3,a3) € S. Thereis b € S such that by # a;. Assume b = (by, a3, a3).
Thereis ¢ € Ssuch thatcy # a. If c; = by takeu =aandv=c. O

Fix u,v € S as in Claim 1 and let W be the minimal multiprojective space containing
{u,v}. f W =Y, then any w € S\ {u,v} shows that S is not primitive. If W = P! x P!,
then any w € S such that w ¢ W shows that S is not primitive. [
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Theorem 11. Tuke Y = P" x (PY)*~1 with m € {1,2} and k > 4. For any integer x > 4,
there is S € T(Y,x) with as a primitive reduction an element A € T(Y,3) described in [1]
(Proposition 3.1).

Proof. Take any A € T(Y,3) described by [1] (Proposition 3.1). By Remark 11 it is sufficient
to find W € |Zp5(1,...,1)| such that dimSing(W) > 0. As in [1] (Proposition 3.2) take
A ={ab,c}witha = (ay,up...,u;), b = (by,up, ..., ux), c = (c1,..., ), ¢; # u; for all
i>1,#{ay, b, c1} = 3 and ay, by, c; spanning P". Set H, and H3) be the only element of
|Oy(¢;)|, i = 2,3, containing a. Note that b € H, N Hz, and hence, {a,b} € Sing(H, U H3).
Let Hy be the only element of |Oy(e4)| containing c. Let Hy be an element of |Oy(e1)|
containing c. Note that A C Sing(H; U H, U H3 U Hy) and that Sing(H; U Hp U H3 U Hy)
has codimension 2 in Y. If k > 4, use the union of H; U H, U H3 U Hy and an arbitrary
element of |0y(0,0,0,0,1...,1)|. O

Theorem 12. Fix integers x > 4,k > 3, ny € {1,2} and n, € {1,2}. Set Y := P™ x P"2 x
(PY)%=2. Fix any A € T(Y,3) as in [1] (Proposition 3.2). Then, there is S € T(Y, x) such that A
is a primitive reduction of S.

Proof. The set A is primitive, because T(Y,y) = @ for y < 3 (the case y = 1 is trivial

and [1] (Proposition 1.8) gives the case ¥ = 2. By Remark 11 it is sufficient to find W €

|Oy(1,...,1)] such that A C Sing(W) and dim Sing(W) > 0. Write A = {u,v,0} with

u,v,0 as in [1] (Proposition 3.2).

(@) Assume k > 4. For i = 3,4 let H; be the only element of |Oy(¢;)| containing u.
Note that v € Hy N H3 and hence {u, v} C Sing(Hy U H3). Take H; € |Oy(¢;)],i =1,2,
containing o. Thus, A C Sing(H; U Hy U H3 U Hy). The set Sing(H; U Hy U H3 U Hy)
has codimension 2 in Y. If k > 4, use the union of Hy U Hy, U H3 U Hy and an arbitrary
element of |0y(0,0,0,0,1...,1)|.

(b) Assume k = 3. Since the case n; = np = 1 is true by Theorem 10, we may assume
ny +mny > 3, say ny = 2. Let Hz be the only element of |Oy(e1)| containing u.
Note that v € Hj.

(bl) Assume n; = np = 2. Take H; € |Oy(e1)| containing {o,u} and Hy € |Oy(e2)]
containing {0, v}. Use H; U H, U H3.

(b2) Assume n; = 2 and n; = 1. Since o is as in [1] (Proposition 3.2 (v)), there 1, (0) €
{ma(u), mp(v)}, say ma(0) = ma(v). Take Hy € |Oy(e1)| containing {o, u} and H; €
|Oy (g2)| containing o and hence containing v. Use H; U Hy U Hj.

O

Proof of Theorem 2. Assume n; < x — 2. Fixa line L C P"1 and points 0; € P",2 <i < k.
Let Y/ C Y the multiprojective space with L as its first factor and {o;} as its i-th factor
2 <i <k Fixageneral (a,b) € Y’ x Y. Since h'(Y', Tp(, 1 yr) = 2, 6(2{a,b},Y) > 2.

Claim 1. Wehave2(n; +---+n,+1) <1+ Hile(m +1).

Proof of Claim 1. Let ¢(ny, ..., n) be the difference between the right hand side and
the left hand side of the inequality in Claim 1. Since k > 3, ¢(n1, ..., ng) is an increasing
function in [1, +c0)k. Thus, it is sufficient to check that ¢ (k) := ¢(1,...,1) > 0. Since the
function ¢ is an increasing function of k, it is sufficient to observe that ¢(3) =1. O

Claim 1 and the inequality 6(2{a,b},Y) > 2 give h° (Logapyv(1,-..,1)) > 0. By Re-
mark 2 it is sufficient to find W € |Z,(,5(1,...,1)| such that Sing(W) contains a set S’
such that #5' = x — 2, SN {a,b} = @ and Y is the minimal multiprojective space con-
taining S := S’ U {a,b}. Take a general H; € |Z,(¢;)|, i = 2,3. Since {a,b} C Hp N H3,
{a,b} C Sing(H, U H3). Fix general H; € |Oy(¢e1) and set W := H; U H, U H3. Since Hy
is general, (L U 7t1(Hy)) = P™. Fix a general S” C Hy N H such that #5” = x —3 and a
general c € Hy N H3. Set S’ := S” U {c}. Obviously, S’ N {a,b} =@and S := S U{a, b} C
Sing(W). Note that L = ({711 (a), 711 (b)) and that 711 (H; N Hy) = 1y (Hy N H3) = 711 (Hy).
Hence (r11(S)) = P™. Since R = ({pa2(a), m2(b)}), (RU ma(Hy))P™ and S’ is general,
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(12(S)) = P"2. Obviously, (7;(0;) U;(S")) = P" for alli > 2. Thus, Y is the minimal
multiprojective space containing S.

Now assume k > 4and n3 < x — 2.

By Claim 1 and the inequality 6(2{a,b},Y) > 2 we have hO(Iz{ﬂ,b},y(l,. ..,1)) > 0.
By Remark 2 it is sufficient to find W € |Z,(,;1(1,...,1)| such that Sing(W) contains a
set ' such that #5’ = x — 2, SN {a,b} = @ and Y is the minimal multiprojective space
containing S := S§' U {a, b}. Take a general H; € |Z,(¢;)|, i = 3,4. Since {a,b} C H3 N Hy,
{a,b} C Sing(H3 U Hy). Fixgeneral H; € |Oy(¢;),i =1,2,and set W := Hy U Hy UH3 U Hy.
Since Hy and H, are general, (L U 71y (Hy)) = P™ and (m2(Hy)) = P™. Fix a general S’ C
Hy N Hy such that #S' = x — 2. Obviously ' N {a,b} = @and S := S’ U {a, b} C Sing(W).
Note that L = ({71(a), 7r1(b)) and that 71y (Hy N Hy) = m1(Hp). We conclude as in the
proof of (i). O

6. Minimally Terracini

Remark 14. Take Y = P" x - - - x P". Fix any S C Y such that #S = 4 and Y is the minimal
multiprojective space containing S, i.e., (1;(S)) = P" for all i. If n; = 1, then #m;(S) > 1.
Ifn; = 2, then #71;(S) > 2 and 7;(S) is not contained in a line. If n; = 3, then 7;|5 is injective and
7;(S) is linearly independent. If E € T(Y,x)" and n; = x + 1, then ;. is injective and t;(E) is
linearly independent.

Proof of Theorem 3. Since h°(Oy(1,...,1)) > x(1 +dimY) (Lemma 17), we have
h(Zys(1,...,1)) > 0if #5 = x and 6(2S,Y) > 0. Fix C € C(Y) (Remark 7) and a general
S C Csuch that #S = x. Forany o0 € S, let W(0) be the degree 2 zero-dimensional sub-
scheme of the smooth curve C with o has its reduction. Set W := U,csW(0). Note that
deg(W) = 2x, W C C. Since x > n; + 1 for all i and either 71;(C) = P! (case n; = 1) or
7;(C) is a rational normal curve of P" if n; > 1, Y is the minimal multiprojective space
containing S. Since v(C) is a degree dim Y = 2x — 2 rational normal curve in its linear span
and deg(W) = 2x, h'(C,Zzc(1,...,1)) > 0. Thus, 6(2S,Y) > 0, and hence, S € T(Y, x).
Assume S ¢ T(Y,x)" and take a minimal S’ C S such that §(25',Y) > 0. Sety := #S5'. We
have2 <y < x —1. By Lemma 4 and the minimality of y there is a zero-dimensional scheme
Z = UpesrZ(0) C Y with Z(0)yeq = {0}, deg(Z(0)) < 2forallo € S, k! (Zz(1,...,1)) >0
and h'(Z,(1,...,1)) =0forall Z' C Z.

Observation 1: Each 7;s is injective and each 7; (§') is in linear independent position
in P, i.e., each subset of 77;(S) with cardinality < n; 4 1 is linearly independent.

Observation 1 gives Il (Zs(1,...,1)) = 0. Thus, Z # S/, i.e., there is 0 € S’ such that
deg(Z(0)) = 2.

Take H; € |Zo(e1)| containing min{n;, y} points of S’. Since 77y|g is injective and each
711(S") is in linear independent position in P"1, #(H; N S’) = min{y, n1 }. If y > nq, we take
in Hy NS’ as much points x € §’ with deg(Z(x)) = 2 as possible. Set Z; := Resy, (Z) and
51 := (Z1)red-

(@) Assume Z(0) ¢ H;. Note that {0} is a connected component of Z;. We take
H; € |Oy(¢e2)] such that o ¢ H, and H; contains min{—1 + #S1,n,} points of Sy,
taking first the ones which are not connected components of Z;. Set Z, := Resy, (Z1).
Note that o0 is a connected component of Z,. We continue in this way, until we get Z, S,
and H, € |Oy(e;)| with #S. < n. and o ¢ H. (we find ¢ < k, because 1y + - - - + 1 >
x > y). Set Z.41 := Resy, (Z.). First assume Z. \ {o} C H,. In this case Z.,1 = {o}
and since h!(Z,) = 0 we obtain a contradiction. Now assume Z. \ {0} ¢ H..
In this case, Z.;1 is a reduced set containing o and with cardinality at most #,.
Set u := (uy,...,uy) € NFwithuy = 0ifi < candu; = 1ifc+1 < i < k. By Obser-
vation 1, to prove that h'(Zz_, (1)) = 0 (and hence to conclude the proof of this case)
it is sufficient to prove that #Z.,1 < n.y1 + - - - + ny + 1. We started with Z such that
deg(Z) <2y <2x —2. Wehave#Z.,1 < deg(Z) —ny —--- —n,_q —deg(H: N Z)
and #Z..1 <1+ deg(H, N Z.). Since ny + - - - + ny > 2x — 2, we conclude.
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(b) Assume Z(0) C Hy and Z SZ H;. Since we required that H; contains as much points
x € §' with deg(Z(x)) = 2, Z; has at least one connected component, o/, of degree 1.
We continue as in Step (a), using o’ instead of o.

(c) Assume Z C Hj. Hence S’ C Hy. Thus, y < nj. First assume deg(Z) = 2y and
deg(m(Z(x))) =1forallx € S'.

(c1) Assume the existence of x € S’ such that either deg(Z(x)) = 1 or deg(n1(Z(x))) = 2.
The latter condition is equivalent to the existence of i > 1 such that deg(m;(Z(x))) = 2.
Instead of Hy, we take My € |Zgn (4} (e1)| such that x ¢ M;. The scheme E :=
Resyy, (Z) is the union of Z(x) and a subset S” of S’ \ {x}. Thus, deg(E) < n3 + 1.
Lemma 2 and the assumption on Z(x) give that ;| is an embedding. Since np + - - - +
ng > x —1 > yand deg(m;(Z(x))) = 2 for some i > 1, Observation 1 and step (a)
applied to 771 (E) C Yj prove this case.

(c2) Assume deg(Z) = 2y and deg(171(Z(x)) = 1 forall x € S'. Thus, deg(m;
for all x € S'. We order the points o1, ...,0, of S and use M; € |Oy(g;)|, 2
first with My, but never taking a divisor M; containing 0;. Set 7k = Resyy, (Z),

—

N

—~
=

Zk1 = Respy, (Z¥), and so on. Note that all the connected components of all

schemes Z' have degree 2 and that either deg(Z') = 2y — 21 — - - — 2n; 1 or Z! =
Z(x). Then, we use that h! (Zz(x)(e1)) = 0, because deg(71(Z(x))) = 2.

We have dimC(Y) = -3+ Zé‘zl(nlz + 2n;) (Remark 7) and each C € C(Y) has co*~!
subsets with cardinality x — 1. Take C,C’ € C such that C # C’. Since C N C' is a finite
set, 2 different rational normal curves may only have finitely many common elements of
T(Y,x)". Thus, dimT(Y,x) > x — 4+ Y5, (n? +2n;). O

Remark 15. Take any Y with three factors and take A C Y such that #A = 2 and 5(2A,Y) = 0.
Then, [1] (Propositions 3.1 and 3.2) show that 7; 4 is injective for all i = 1,2,3. Hence, for every
every S € T(Y,x)', x > 4, all s, 1 <i < 3, are injective.

Remark 16. Take Y = (PY)* and any S C Y such that #S = 3. We have S € T(Y,3), and in
particular, W' (Zp5(1,1,1,1)) > 0and h°(Zp5(1,1,1,1)) > 0. Thus, S is minimally Terracini if
and only if each A C S such that #A = 2 satisfies h' (o4 (1,...,1)) = 0. By [1] (Propositions 3.1
and 3.2) this is the case if and only if for each A C S such that #A = 2 we have #7;(A) = 2 for at
least 3 indices i € {1,2,3,4}. Thus, S € T(Y,3)" if and only if 11;|s is injective for all i = 1,2,3,4.

Proposition 7. Take as Y one of the following multiprojective spaces: P x (P1)3, P2 x (P1)4,
(P18, Then, T(Y,4) # @. In the first (resp. second, resp. third) case we have dim T(Y,4)" > 25
(resp. 21, resp. 19).

Proof. In all cases, we have dimY = 6 and h'(Oy(1,...,1)) > 4(1 + dimY).
Thus, S € T(Y,4) if and only if 6(25,Y) > 0. Let C C Y be a rational normal curve
(Remark 7). Fix a general S € S(C,4). Since h°(O¢(1,...,1)) = dimY +1 = 7 and
deg((25,Y) N C) = deg((2S,C)) = 8, we have h!(Z(55¢(1,...,1)) > 0. Since (25,C)
is a subscheme of the zero-dimensional scheme (2S,Y), h!'(Zps(1,...,1)) > 0. Thus,
S € T(Y,4). Fix A C Ssuch thata := #A € {2,3}. Fixi € {1,...,k}. If n; = 1, then
7;(C) = PL. The generality of S gives that 7r;(A) are x general points of P!. Recall that
Aut(PP!) is 3-transitive. If n; > 2, then 7;(C) is a rational normal curve of P", and hence,
the generality of S C C gives that 77;(A) is in the open orbit for the action of Aut(P").
Thus, A is in the open orbit for the action on S(Y, x) of the connected component of the
identity of Aut(Y). Since 0»(Y) and 03(A) are not defective (Remark 1), S € T(Y,4)".

Since in the first (resp. second, resp. third) case we have dim C = 21 (resp. 17, resp.
15), we get the last assertion of the proposition. [

We do not claim thatall S € T(Y, 4)’ are the ones described in the proof of Proposition 7.
The following example for Y = (P')® is in the limit of the family constructed to prove
Proposition 7.
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Example 1. Take (P1)°. Fix a partition EUF of {1,2,3,4,5,6} such that #£ = #F = 3.
Take ap := (ay,...,a¢) witha; = 1ifi € Eand a; = 0if i € F. Let ap be the multidegree
(1,...,1) —ag. Let Cq be an integral curve of multidegree ag (all of them are in the same orbit
for the action of (Aut(P'))® and the stabilizer for this action acts transitively on Cy). Using ;
for some i € E, we see that C; = PL. Let Cy C Y be an integral curve of multidegree ar such
that C1 N Cy # @. It is easy to see that #(C1 N Cp) = 1 and that Cy U Cy is a nodal curve of
arithmetic genus 0. Fix a general (Eq, E;) C Cq X Cp such that #E1 = #E, = 2. Note that Cy and
Cy are isomorphic to rational normal curves of (P1)3. Since 2 general points of (P')3 are contained
in a rational normal curve of (P')3 and or((P1)3) = P7 ([10], Example 2.1), E; ¢ T(Y,2).
Fix A C S such that x := #A < 3, ANE; # @ and Ey # @. Y is the minimal multiprojective
space containing A. Since #7t;(E;) = 2 for 3 indices j, [1] (Theorem 4.12) gives A ¢ T(Y,x).
Thus, S € T(Y,4)".

Proposition 8. Take Y = P2 x P2 x P! x PL. Then:

1. T(Y,4) #9;

2. forageneral A € S(Y,3), thereare co® S € T(Y,4)’ containing A;
3. dimT(Y,4) =23,

Proof. Fix any smooth C € |[0Oy(0,0,1,1)| and a general S C C such that #5 = 4.
Obviously, 1%(Z,5(1,1,1,1)) > 32 —4 x 8 > 0. Note that C = P? x P2 x P! and that
V|c is the embedding of C by the complete linear system |Op2,p2,p1(1,1,2)[. We have
B (Op2 . p2yp1(1,1,2)) = 27 and 4(1 + dim C) = 24. Since the fourth secant variety of P? x
P2 x P! embedded by |Op2, p2, p1(1,1,2)| is defective ([11], Theorem 4.13), §(2S,v(C)) >
0. Since the scheme 25 N C does not impose independent conditions to |Oy(1,1,1,1)|,
5(25,Y) > 0. Thus, S € T(Y,4). Since S is general in C, #7;(S) = 4 foralli = 1,2,3,4 and
no 3 of the points of 71;(S), i = 1,2, are collinear. Thus, every subset of S with cardinality
x < 31is the open orbit for the action of the connected component of the identity of Aut(Y)
on 5(Y, x). Since the second and third secant varieties of Y are not defective (Remark 1),
SeT(Y,4).

Fix a general A € S(Y,3). Since h°(0y(0,0,1,1)) = 4 and A is general, there
is a unique C € |Z4(0,0,1,1)| and C is smooth. We proved that AU {p} € T(Y,4)".
Thus, dim T(Y,4)" > 23. Since dim(Y) = 6 and dimo4(Y) = 27, the setof all S € T(Y, 4)
has dimension < 23. We get parts (ii) and (iii) with equality, not just the inequality co® with
x>5. O

Lemma 18. Take cither Y = P3 x P! x Pl or Y = P? x P! x PL. Then, T(Y,4)' = @.

Proof. Assume the existence of S € T(Y,4)’. By Remark 15 each s is injective.
Fix A C S such that #4 = 3 and let Y’ be the minimal multiprojective space containing A.
Since 6(2A,Y) > 6(2A,Y’) ([1], Lemma 2.3), to a contradiction it is sufficient to prove that
5(2A,Y") > 0.

(@) AssumeY =P3 x P! x PL. Since Y is the minimal multiprojective space containing S,
(rr1(S)) = P3. Thus, Y’ 2 P? x P! x PL. Since h°(Oy/(1,1,1)) = 12 < 3(1 +dim Y’),
5(AY") > 0.

(b) AssumeY = P? x P! x PL.If Y = (P')3, then 6(24,Y’) > 0, because h°(Oy/(1,1,1)) =
8 < 3(1 +dimY’). Now assume Y’ = Y. Since h°(Oy(1,1,1)) = 12 < 3(1 +dimY),
5(2A,Y) > 0.

O

Proposition 9. Take cither Y = P2 x P2 x Pl or Y = P2 x (P)® or Y = (P').
Then, T(Y,4) # Q.

Proof. Write Y = P™ x ... x P withny > -+ > np > 0. Let f : P! — Y be the
embedding induced by f = (f1,..., f), fi : P! — P" with f; an isomorphism if n; = 1,
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while f; is an embedding with fi(PY) C P a degree n; rational normal curve. Set C :=
f(P). Note that v(C) is a degree 5 rational normal curve in its linear span. Let W C C
be a connected degree 3 zero-dimensional scheme. Fix a general g € (v(W)). A theorem
of Sylvester gives the existence of a one-dimensional family U/ of set S C C such that
#S = 4 and each S evinces the v(C)-rank of 4. Since dim¥f > 0 and each v(S), S € U
irredundantly span g, Terracini lemma gives §(2S,Y) > 0. Fix A C Y such that #A < 3
and let Y’ be the minimal multiprojective space containing A. First assume #A = 2. Since
each f; is injective, Y’ = (P!)¥ and A is in the open orbit for the action on S(Y’,2) of
(Aut(P1)*. Since dim o> (Y') = 2k + 1, we get 6(2A,Y’) = 0. If n; = 1 we get 5(24,Y") = 0.
Now assume 17 = np = 2. Since #71;(A) = 2, W' (Z(e;)) = 0 for all i. Take Hy € |Oy(e1)|
and H; € |Oy(ey)| such that Y = H; N Hy. Taking the residual exact sequence of Y’ in
H; and using that ' (Z4(e3)) = 0, we get 6(2A4, Hy) = 0. Then, using the residual exact
sequence of Hy in Y we get 6(2A,Y) = 0.

Now assume #A = 3. Since each f; is injective, n; < 2 for all i and f;(C) is a rational
normal curve if n; = 2, then Y/ = Y and A is in the open orbit of S(Y, 3) for the action of
the connected component of the identity of Aut(Y). Since dimo3(Y) = 17 (Remark 1), we
get 6(2A,Y) = 0. Thus, S is minimally Terracini. [J

Lemma 19. Tuke Y = P x P" x P° withs > 0. Fix S C Y such that #5S = m + 1, Y is the
minimal multiprojective space containing S and #73(S) = m + 1. Then h'(Z5(1,1,1)) = 0.

Proof. Taking linear projections in the 3-rd coordinate, if necessary we reduce to the case
s = 1. In this case, Y is the minimal multiprojective space containing S and (m +1)(dim Y +
1) = h°(Oy(1,1,1)). Thus, if the lemma fails, then S € T(Y,m + 1). The case m = 1 follows
from [1] (Proposition 1.8). Assume m > 1. Fix a general g € (v(S)). By Terracini’s lemma, it
is sufficient to prove that S(q) = {S}. This is a simple consequence of [8] (Theorem 3). [J

Proof of Theorem 4. Assume the existence of S € T(Y,x). Since S € T(Y,x),
W(Zps(1,...,1)) > 0and 6(2S,Y) > 0. Since S € T(Y,x)’, Y is the minimal multipro-
jective space containing S, ;s is injective and 7;(S) is linearly independent for i = 1,2.
Assume for the moment k = 3. Since §(24,Y) = 0 for all A C S such that #A = 2,
Remark 15 gives that 735 is injective. Lemma 19 gives h'(Zps(1,...,1)) = 0, a contra-
diction. Now assume k > 4. Let 7r153 : Y — P x P x P° denote the projection onto
the first three factors of Y. Since 71y is injective, #71123(S) = m + 1. The case k = 3 of
Lemma 19 shows that {711,3(S)} = S(P™ x P x IPS,q") for a general 4’ € (v(r123(5)).
Since #71123(S) = #S, we get {S} = S(Y,q) for a general g € (v(S)). Thus, Terracini
Lemma gives h!(Zs(1,...,1)) =0. O

7. Proof of Theorems 5 and 6

We divide the long proof of Theorem 5 into five different propositions, and then join
them together. In Section 6 we proved Theorem 4, which covers some cases of Theorem 5.
Since the proofs of Propositions 10-14 have the same beginning, we write here the starting
sentences of all 5 proofs and avoid duplications.

Notation 1. Assume the existence of S € T(Y,4)'. By Lemmas 4 and 5, there is a zero-
dimensional scheme Z C Y such that Z..q = S, each connected component of Z has degree
<2, h(Zz(1,...,1)) > 0and K" (Zy(1,...,1)) = O0forall Z' C Z. Set z := deg(Z) < 8.
Foreach p € S, let Z(p) denote the connected component of Z containing p.

Proposition 10. Take Y = (PN, k > 7. Then T(Y,4)' = @.

Proof. For any a € S, let e(a) be the dimension of the minimal multiprojective space
containing Z(a) with the convention e(a) = 0if Z(a) = {a}. We take a partition S = S’ LU S"
of S with #5' = #S” = 2 and set Z' := ZN (UyegZ(a)) and Z" := Z N (Uzes Z(a)).
Note that Z/NZ" = @, Z' # @ and Z" # @. Since S € T(Y,4), W' (Z,(1,...,1)) =
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W (Zz(1,...,1)) = 0. Since h'(Zz(1,...,1)) > 0, (v(Z")) N (v(Z")) # @. Fix a general
g € (v(Z")) N (v(Z")). There are minimal V' C Z" and V" C Z" such thatq € (v(V')) N
(v(V")). The minimality property of Z gives V' = Z' and V" = Z"; however, we typically
do not utilize it. Instead, we use U’ U U" in place of Z in the construction we provided.

Write S = {p(1),p(2),p(3),p(4)}. Fix a divisor C € |Oy(e1 + €2)| containing

{p(1),p(2),p(3)} and set U := Resc(Z). We have h'(Zy;(1,...,1)(—e; —&3)) > 0 ([5],
Lemma 5.1). Note that U C {p(1),p(2), p(3)} UZ(p(4)). By [5] (Lemma 5.1), either U = @
or W' (Zy(1,...,1)) > 0. In steps (a), (b) and (c), we assume h'(Z;(1,...,1)) > 0, while
step (d) handles the case U = @.

(a)

(b)

(©

(d)
(e)

(el)

Assume for the moment that 7,5 is an embedding and that U 2 S. We get

hl(erz’Iﬂl,Z(u)(l’ ...,1)) > 0. Proposition 1 gives that the minimal multiprojec-
tive space containing #; »(U) contains at most three factors, and hence, the minimal
multiprojective space containing S has at most five factors, a contradiction.

Assume that 77 5); is not an embedding. This assumption occurs for exactly two
reasons: either U O Z(p(4))), deg(Z(p(4))) = 2 and deg(112(Z(p(4)))) = 1 or there
are i,j such that 1 < i < j < 4 and m2(p(i)) = ma2(p(j)). The latter possibility
is excluded by Lemma 2. If deg(Z(p4)) = 2 and deg(n12(Z(p(4)))) = 1, then
e(p(4)) <2anddeg(7;(Z(p(4)))) = 1foralli > 2. We may avoid this case by instead
taking the first two factors, the factor associated to two of the integersin {1,...,k},
say i1 and 7y, such that v(p(4)) depends on at least one factor of {1,...,k} \ {i1,i2}
(Lemma 2).

Assume S ¢ U. Note that either U,q = U or deg(U) = deg(Uq) + 1. We have
Ueq # U ifand only if p(4) ¢ C. Since #U,oq < 3and k! (Zyy(1,...,1)(—e; —&2)) >0,
we get that #1(U) depends on at most three factors of Y7 (Remark 5 and Proposition
1), and hence, U depends on four factors at most. Thus, 6(2U,Y) > 0 (Remark 1) and
hence S is not minimally Terracini.

Assume U = @, ie., Z C C. Set C1p := C. Fixinteger 1 < i < j < k and take
Cij € |Zp),p2),p3) (€ t¢j)|- By steps (a), (b) and (c) we get (by exclusion) Z C C; ;.
Up to now, we only used (roughly speaking) that k > 6, and we know (Proposition 7
and Example 1) that the statement of the theorem is not true if k = 6. From now on,
we use that k > 7. More precisely, we use that z := deg(Z) < k+ 1. In steps (a)—(d),
we did not use any ordering of the set {1,...,k}, the only possible difference being
whether C; ; is reducible or not. In the following steps, we freely permute the factors
of Y. Let i be any integer i € {1,...,k} such that there is H; € |Oy(¢;)| such that
e1 := deg(Z N Hy) is maximal. Set Z; := Resy, (Z). Note that deg(Z;) = z — e;. Set
E; := Hy N Z. Note that deg(E;) = e;. Let e; be the maximal integer such that there
isj € {2,...,k} and H € |Oy(¢;)| such that e; := H; N Z; is maximal. With no loss
of generality, we may assume j = 2. Then, we continue in the same way, defining
integers e, ..., the divisors H3, ... and zero-dimensional schemes E3,... and Z3, ...
such that E; := H; N Z;, ¢; = #E;, Ziy1 = Resy, (Z;) and at each step the integer
i is maximal. Note thate; > e; > --- > ¢ > ¢;;11 and that ¢; = 0 if and only if
Z C HyU---UH, 1. Since k > deg(Z) — 1 there is a maximal integer ¢ < k such that
ec < 1. Assume for the moment e = 1. We have deg(Z.) = 1, and hence, hl(IZC) =0,
contradicting [5] (Lemma 5.1). Thus, e = 0. In the same way, we get e,_; > 2. Since
e > -+ > e. > 2, we have the following possibilities (for z = 8, for z < 8§, the first
one does not arise, and the second, third, must be modified):

1. c=5e1=e=e3=¢€4=2;

2. c=4,e1=4,e3=¢e4=2;

3. c=4,e1=38,e0=23,¢e4 =2;

4. c=3,[z/21<ey<z—-2,ep=2z—e¢;.

Assume ¢ = 5, and thus, ¢ = ey = e3 = ¢4 = 2. By [1] (Lemma 5.1) we have
h1(Zg,(0,0,0,1,1,1,1,1)) > 0, and hence deg(7m;(E4)) = 1 foralli > 4. Fixj €
{1,2,3}. Using H, instead of H; we get deg(7;(E;)) = 1fori = jand fori > 4.
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Then, we use { H} = |Z, (e7)| and we also get deg(7t4(E;)) = 1. Thus, deg(7t;(E1)) =
1 except at most for i = 2,3. Using {H'} € |Zg,(e7)| and {H"} € |Tg,(e7)|, we get
deg(m2(E1)) = 1 and deg(m3(E1)) = 1. Thus, e; = 1, a contradiction.

(€2) Assume ¢ < 5,1ie., e; +e > 5. Since each connected component of Z has de-
gree at most 2, we get that H; U H contains at least 3 points of S, and hence,
Hy UH; = Cjp. Hence, we excluded case (2) and (3), e > 4 and e = z —ey.
By [5] (Lemma 5.1), we have h'(Zz (¢1)) > 0. Therefore, either 11|z, is an embed-
ding and h! (Y1,Z,,(z,)(1,...,1)) > 0 or there is a degree 2 scheme w C Z; such
that deg(#1(w)) = 1. Lemma 2 gives that w is connected, i.e., w = Z(p(i) for some
i. Since w C Zy, p(i) ¢ Hy. Since e; > [z/2], H contains at least two points of S.
Takej € {3,..., k} and M; € |Z,,(;) (¢;)|- Since Hy U M; contains at least three points
of S, steps (a)—(d) give Z C H; U M;, and hence, deg(7j(Z1)) = 1 for all j > 2. Since
deg(m2(Z1)) = 1, we also get #(Z1)eq = 1 and hence Z; = w. Thus, #(SN Hy) = 3,
SNHy = S\ {p(i)} and E; is the union of the connected components of Z with
a point of SN Hj as its reduction. For any p € (SN Hy) set m(p) := {2,...,k} if
z(p) = {p}, while if deg(Z(p)) = 2 let m(p) denote the setof all j € {2,...,k} such
that 7, is an embedding. Remark 3 gives #m(p) > k — 2 forall p € SN H;. Since
#(SNHp) =3and k > 5, there is j € m(p) for all p € SN Hy. Fixj € Npesnu,m(p)
and take M € |Z,(;(¢;)|- Set Z' := Resy(Z) and Z" := n;(Z') C Y;. We have
h'(Zz (&) > 0 ([5), Lemma 5.1). Since j > 2, w C M and hence wNZ' = @.
By the definition of j each map 7,7, is an embedding. Since §(24,Y) = 0 for
all A C SN Hy such that #A = 2, #5~p, is injective. Thus, 1)z is an embedding
and hence 1'(Yj,Zzn(1,...,1)) = h'(Zz(j)) > 0. Let Y be the minimal multi-
projective subspace of Y; containing #;(S N Hy). By [1] (Theorem 4.12), we have
Y" = (P1)™ for some m < 4. Thus, thereis € {2,...,k} and D € |Oy(e},)| such that
D 2, ' (Y")]. Since Y is the minimal multiprojective space containing S, p(i) ¢ D.
Thus, Resp(Z) = w. Since deg(r;(w)) = 1foralli > 1, my), is an embedding.
Therefore, h! (Z,(¢5)) < h'(Zw(e1)) = 0, contradicting [5] (Lemma 5.1).

O

Proposition 11. Take Y = P3 x (P2)™ x (P')S with m > 2 and s > 0. Then, T(Y,4)' = @.

Proof. We only use the case Y = P? x (P?)2, because the proofs are extremely similar in all
other cases, but far simpler.

Claim 1. #71;(S) = 4 fori = 2,3.

Proof of Claim 1. Assume for instance #73(S) < 3, and take 4,b € S such that
n3(a) = 1t3(b) and a # b. The minimal multiprojective space Y’ containing is isomorphic
to either P! (case 71p(a) = (b)) or to P! x P! (case o (a) # ma(b)). Since (2{a,b},Y) >
(2{a,b},Y") =2 ([1], Lemma 2.3), S ¢ T(Y,4)’, a contradiction. [

Claim 2. If H € |Oy(€2)‘, M e ‘Oy(€3)| and SC HUM,thenZ C HU M.

Proof of Claim 2. Assume Z ¢ HU M, i.e., assume E := Resyp(Z) # @. Since E C
S, 7|5 is injective, 711 (S) is linearly independent and #S = W (0y(1,0,0), K'(Zg(1,0,0)) =
0, contradicting [5] (Lemma 5.1). O

Claim 3. None of the three points of 77;(S), i € {2,3} are collinear.

Proof of Claim 3. Suppose the existence of A C S such that #4 = 3 and L := (m13(A))
is a line. Set {p} := S\ A, M := 75 L(L). Since Y is the minimal multiprojective space
containing S, M NS = A. Take a general H € |Z,(e;)|. Since S C HU M, Claim 2 gives
Z C HUM. Since #m(S) = 4 (Claim 1) and H is general, HN'S = {p}, and hence,
UoeaZ(0) C M. Since hl(IZ(p)(l,l,O)) > 0 ([5], Lemma 5.1), deg(Z(p)) = 2 and
deg(n3(Z(p))) = 1. Fix 0 € A and take M’ € |Oy(e3)| containing {p,0}, and H' €
|Oy (e2)| containing A \ {0}. Since S ¢ H' UM/, Claim 1 gives Z ¢ H'UM’'. Claim
1 gives Z(p) U Z(0) C M" and Z' := Uyep\(0}Z(a) C H'. Since deg(Z(p)) = 2 and
deg(73(Z(p))) =1, deg(rt3(Z(p))) = 2. Thus, the line (7r3(Z(p))) contains 73(0). Taking
another point o’ € A, we get (713(Z(p))) = L and hence S C M, a contradiction. [
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Claim 4. Fixi € {2,3} and D € |Oy(¢;)| such that#(DNS) > 2. Then, #(DNS) =2
and UyepnsZ(0) C H.

Proof of Claim 4. Claims 1 and 3 give #(D N S) = 2. The last assertion of Claim 4 was
proved in the proof of Claim 3. [

Fix a,b € S such that a # b and let M be the only element of |Oy(0,0,1)| contain-
ing {a,b} (Claim 1). Write S = {a,b,c,d}. We have Z(a) UZ(b) C M and Resy(Z) =
Z(c) U Z(d) (Claim 3 and 4). Hence, hl(Iz(c)uz(d)(lzlfO)) > 0 ([5], Lemma 5.1). Take
a general D € |Z;.1(1,0,0)|. We have Resp(Z(c) UZ(d)) C {cd}. Claim 1 implies
! (Z4,4(0,1,0)) = 0. Thus, Z(c) U Z(d) C D ([5], Lemma 5.1). Since D is general, we get
m(Z(c)UZ(d)) C ({m(c), m1(d)}). Taking different subsets of S with cardinality 2, we
get 11(Z(c)) C Nyes\ fe} ({e, x}) = {c}, because #77(S) = 4 and 71 (S) is linearly indepen-
dent. Therefore, deg(m1(Z(y))) = 1forally € S. Take y € S such that deg(Z(y)) = 2.
Since deg(m1(Z(y))) = 1, there is i € {2,3} such that deg(m;(Z(y))) = 2, and hence,
h! (Z74,)(0,1,1)) = 0. If y € S and deg(Z(y)) = 1, then obviously hl(IZ(y) (0,1,1)) = 0.
Fix A C S such that #4 = 3 and let D be the only element of |Oy(1,0,0)| containing A
because #711(S) = 4 and 711(S) is linearly independent. Set {y} := S\ A. We saw that
UgeaZ(a) C D, and hence, Resp(Z) = Z(y). Since h' (Z74,)(0,1,1)) = 0, we conclude
quoting [5] (Lemma 5.1). O

Proposition 12. Take Y = P3 x (P1)k~1, k > 5. Then, T(Y,4)' = @.

Proof. Take H; € |Oy(¢1)| containing 3 points of S. By Remark 14, H is uniquely de-
termined by Hy NS and #(H; N'S) = 3. Set z; := deg(Z N H;), Z; := Resy,(Z) and
S1:=Resy, (S). Since z; > 3,deg(Z;) =z —z; <5.Takei € {2,...,k} and H; € |Oy(¢;)]
such that z; := deg(Z; N Hy) is maximal, and set Z; := Respy,(Z1). Permuting the last
k — 1 factors of Y, we may assume i = 2. Takei € {3,...,k} and H3 € |Oy(¢;)| such
that z3 := deg(Z, N H3) is maximal, and set Z3 := Resy,(Z;). Permuting the last k — 2
factors of Y, we may assume i = 3. Note that z; > z3. We continue in the same way un-
til we obtain an integer ¢ > 2 such z, < 1; since k —1 > z — z1, we find some ¢ < k.
Since h!'(Zy) = 0 for any degree 1 zero-dimensional scheme, [5] (Lemma 5.1) gives
ze = 0,ie,Z C HHU:--UH,_1. Permuting the 1-dimensional factors of Y, we may
assume H; € |Oy(g;)| for all i. Since z,_1 > 2 and z — z; < 5, either z — z; = 5 and
zp =3and z3 = 2o0rz—z; =4andz; = z3 = 2orc = 2and z = z — z7. Since
h'(Zz,(0,0,1,...,1)) = 0 and deg(Z,) = z3 = 2, deg(m;(Z,)) = 1 foralli > 3.

Claim 1. z; > 3.

Proof of Claim 1. Assume z; = 3, ie, assume ZN H; = SN H;. Thus,
h'(Zznp, (1)) = 0 by Observation 1. Set H := Hy U - - - U H,_1. Since Resy(Z) C H1 N Z,
[1] (Lemma 5.1) gives Z C H. Observation 1 gives ¢ > 2, and hence, ¢ = 3 and either
z =282 =3andzz = 20rz = 7and z = z3 = 2. Since Resy,un,(Z) = Z3 has
degree 2 and h'(Zz(0,0,1,...,1)) > 0, deg(m;(Z3)) = 1 for alli > 3. First assume
Z3 = {a,b} with a # b, and call Y’ the minimal multiprojective space containing {a,b}.
Since deg(7;(Z3)) = 1 for all i > 3, we get §(2{a,b},Y) > 2 (Remark 4), a contradic-
tion. Thus, Z3 is connected. Since Z3 C Resy, (Z), Z3 = Z(p), where {p} := S\ SN H;.
Since ZNH; = S\ {p}, we have Z, = S\ {p}. Applying [5] (Lemma 5.1), we get
! (Zs\1(0,1,0,1,...,1)) > 0. Forany A C S\ {p} such that #4 = 2, there are at most
k — 3 integers i with #7;(A) = 1 by Lemma 2. Thus, there is i,j € {4,...,k} such that
i< j, M; € |Oy(€l‘)|, M] S |Oy(€i)‘ and #((S \ SN M)) = 2. Since ResH1UH3UMl-UM]- (Z) isa

single point, 1! (Zges oMM, 7)) = 0, contradicting [5] (Lemma 5.1). [

Claim 1 excludes the case ¢ = z, = 3, z3 = 2. Note that Claim 1 is true for each
H; € |Oy(g1)]| containing 3 points of S.

Claim 2. z = 8.

Proof of Claim 2. Assume z < 7, and write S = {a,b,c,d} with Z(d) = {d}.
Let H; be the only element of |Oy(e71)| containing {a,b,c} (Observation 1). By Claim
1 Z; := Resy, (Z) is the union of d and at most 2 points of {a,b,c}, say Z; = {d} U
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A with A C {a,b,c} and #4 < 2. Remark 4 gives that 71|z, is injective and hence
nt M, Ly, (z)(1,..., 1)) = h'(Zz,(¢1)) > 0. Proposition 1 gives that the minimal multipro-
jective space containing #1(Z;) is isomorphic to P! and hence the minimal multiprojective
space containing the set Z; is isomorphic to P##1~1 x P!, contradicting Remark 4. [J

Claim 3. c = 2.

Proof of Claim 3. Assume ¢ # 2. By Claims 1 and 2 we getc = 3,z; =4, z0 = 2 and
z3 =2.Fixp € Sand set B:= S\ {p}. Let H; be the only element of |Oy(e1)| containing
B. We have Z; = Z(p) U Awith A C B and #A = 2. There is M; € |Oy(e2)| containing
Z(p), and hence, E := Resy,um,(Z) C A. Since h'(Z(0,0,1...,1)) > 0 ([5], Lemma
5.1), we first get #E = 2 and then 6(2E,Y) > 0 (Remark 4), contradicting the assumption
SeT(Y,4). O

By Claim 3, Z; C H for any choice of H; containing 3 points of S. Set {p} := S\ SN H.
Since z = 8, Observation 1 gives Z(p) C Z; with deg(Z(p)) = 2.

Claim 4. z, = 4.

Proof of Claim 4. Recall that z = 8 and z; > 4. Assume z; > 5. We have Z; = Z(p) U
{a} witha € H; N S. By Remark 4 there is i > 2 such that 77;(p) # 7t;(a). Take M € |Oy(g;)]
such that p € M. We have Resy,um(Z) - {p,a}.
Since hl(IResHluM(Z)(O, 1,...,1)(—¢&)) > 0, we get Resy,um(Z) = {p,a} and 7;(p) =
mj(a) forallj € {2,...,k} \ {k}. Thus, 5(2{p,a},Y) > 2, a contradiction. [J

The previous claims give the existence of E C SN Hj such that #£ = 2 and Z; =
Z(p)UE C Hy. Write E = {b,c} and {a} = HN H; \ E. We have Resy, (Z) = Z(a) U {b,c}.
By Lemma 2 there is j > 2 such that 7;(a) # 7;(b). Hence W := Resy, m(Z) C {a,b,c}
and W # @. Observation 1 gives h! (Zyy(e1)) = 0, and hence, h! (T ((1,...,1) —ep — €)=
0, contradicting [5] (Lemma 5.1). O

Proposition 13. Take Y = P3 x (P2)" x (P')S with m > 1and s > 2. Then T(Y,4)" = @.

Proof. To simplify the notation, we take Y = P® x P2 x P! x P!, but the general case is

very similar and all other cases are easier. Assume the existence of S € T(Y,4)’ and take

Z C Y such that Z,.q4 = S, for each p € S the connected component of Z with p as its

reduction has degree < 2, h'(Zz(1,...,1)) > 0and h'(Z,(1,...,1)) =0 forevery Z' C Z

(Lemma 4). Set z := deg(Z).

Claim 1. Take any C € |Oy(1,1,0,0)| such that S C C and deg(ZNC) > min{z,5}.

Then, Z C C.

Proof of Claim 1. Since the case z < 5 is trivial, we may assume z > 5. Assume

Z ¢ C. The scheme W := Resc(Z) is a subset of S with cardinality < 3. Since W # @,

W' (Zw(0,0,1,1)) > 0. Thus, either there is A C E such that #4 = 2 and #m3(A) =

#14(A) = 1 (with 6(2A4,Y) > 2, a contradiction) or #E = 3 and there is i € {3,4} such

that #71;(E) = 1 (Proposition 1). In the latter case (with, say #m4(E) = 1), 6(2E,Y) > 0,

unless the minimal multiprojective space Y’ containing E is isomorphic to P? x P2 x P!,

ie., (mp(E)) = P? and #m3(E) > 1. Set {p} := S\ {p}. Take D € |Oy(es)| containing

Z(p) and let M be the only element of |Oy(¢4)| containing p. We have Respp(Z) C E.

Since h'(Zg(1,0,0,0)) = 0, [5] (Lemma 5.1) gives Respum(Z) = @, i.e., Z C DU M. Set

W := Resy((Z). We have W C Z(p) UE. Since (mr2(E)) = P?, there is N € |Oy(e1)| such

that p € Nand E € N. Since Resyup(Z) # @, Resyum(Z) C S and h1(Z5(1,0,0,0)) =0,

[5] (Lemma 5.1) gives a contradiction. [J
Fix p € Sand set B := S\ {p}. Let H be the only element of |Oy(e1)| containing

B. Take D € |ZI;,)(e2)|. Claim 1 gives Z C HU D. Note that Resy(Z) = Z(p) U A with

A C B. Since Resy(Z) C D and Y is the minimal multiprojective space containing S,

A#E, e, deg(ZNH) > 4.

(@) Assume deg(ZNH) = 6. Thus, Resy(Z) = Z(p). Since hl(IZ(p)(O, 1,1,1)) > 0([5],
Lemma 5.1), we get z = 8 and deg(7;(Z(p))) = 1foralli = 2,3,4. Write SN H =
{a,b,c}. Set {M3} := |TZ,(e3)| and {My} := |Z,(e4)|. Note that Z(p) C M. Take
M, € |Oy(ey)]| containing {b, c}, except that if b € Mz U My (resp. ¢ € M3 U My)),
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(b)

(©

O

we take Mj not containing b (resp. c); this is possible unless (b)) = ma(c); if
mo(b) = mo(c) (and hence 7, (a) # mp(b)), we reverse the role of a and b. Since
Respumaum, (Z) C {a,b,c} and h'(Zs(1,0,0,0)) = 0, we get Z C Mp U M3 U My,
Set W := Respr,um, (Z). If W = @, we are in a case handles in the proof of Claim 1.
Assume W # @. We get h! (Ziy(1,0,1,0)) > 0. Hence 711 (W) is linearly dependent.
Note that Z(p) "W = @ and that W C Z(a) U {b, c}. By Observation 1, (r1(Z(a))) N
{m1(b), mi(c)} <1, say 71 (b) & (7r1(Z(a))).

Assume deg(ZNH) = 4. Write B = {a,b,c} with ZNH = Z(a) U{b,c} and
deg(Z(a)) = 2. By Remark 4 there is i € {3,4}, say i = 4, such that r14(a) #
mt4({b,c}). Let N be the only element of |Oy(¢e4)| containing a. We have W :=
Respun(Z) C {a,b,c}, and hence, h' (Z(1,0,0,0)) = 0. Thus, W = @ ([5], Lemma
5.1),i.e., Z C DU N. We conclude as in the proof of Claim 1.

Assume deg(Z N H) = 5. Since we proved the other cases for every choice of p € S,
we may assume that deg(Z N H) = 5 for every choice of p € S. Write ZNH =
Z(a) U Z(b) U{c}. We have Resy(Z) = {c} UZ(p) and h! (Zresyy(2)(0,1,1,1)) > 0.
By Lemma 2 there are at least two integers i € {2,3,4} such that 7;(p) # m;(c).
Call i; and i, these integers with iy < ip. Hence i € {3,4}. With no loss of generality,
we may assume iy = 4. Let My denotes the only element of |Z,(e4)|. We have W :=
Respum, (Z) = {c,p'} with p’ = pif Z(p) € My and p’ = @ if Z(p) C M,. In both
cases W # @. Using i3 in both cases, we get h!' (Zy(0,1,1,0)) = 0, contradicting [5]
(Lemma 5.1).

Proposition 14. Take Y = (P?)" x (PY)* withm > 0,s > 0 and 2m +s > 7. Then, T(Y,4)" =

Q.

Proof. The reader easily check (after the proof) that the proofs we give for 1 < m < 4 and
s := max{0,7 — 2m} prove the general case in which s is larger. Moreover, the proof of the
case Y = (P?)? x P! gives the case Y = (P?)*. Thus, we only write the cases 1 < m < 3
and s =7 — 3m.

(a)

(al)

Assume Y = (P?)3 x PL. Takei € {1,2,3} such that there is H; € |Oy(e;)| with
z1 := deg(Z N Hy) maximal. Since dim |Oy(¢;)| = 2, we have z; > 2. With no
loss of generality, we may assume i = 1. Set Z; := Resy, (Z). Take i € {2,3}
such that there is Hy € |Oy(g;)| with z; := deg(Z; N Hy) maximal. Since
dim |Oy (¢;)| = 2, we have z; > min{z — z1,2}. With no loss of generality, we
may assume i = 2.
Set Z; := Resp,(Z;1). Take Hz € |Oy(e3)| such that z3 := deg(Hsz N Zy) is
maximal. Set Zz := Resy,(Z). Note that z; > zp > z3. We have z3 >
min{z — z; — zp,2}. Thus, deg(Z3) =z —2z1 —zp — 23 < 2.

Assume deg(Z3) < 1. Since Kl (Z7,(0,0,0,1)) = 0, [5] (Lemma 5.1) gives Z3 = @,
ie., Z C H; UH; U Hs. In the same way, we get that either z3 = 0, i.e, Z C
Hi U Hjp, or z3 > 2.

(@l.1) Assume Z C H; U Hj. Since S C Z, and Y is the minimal multiprojective space

containing S, zo > 0. Since hl(IZ1 (0,1,1,1)) > 0,z > 2. Note that z; < [z/2].

(@l.2)  Assume z3 > 2. Since z1 > zp > z3 and z < 8, z3 = 2. By [5] (Lemma 5.1), we

have h'(Z,(0,0,1,1)) = 0, i.e., deg(7;(Z3)) = 1, for i = 3,4. Since z < 8, either
zp =2orz=28and z; =z, = 3.

(al2.1) Assume zp = 2. Note that deg(Resp,un,(Z)) < 2. The minimality of Hj gives

deg(Resy,un,(Z)) = 2. Using Hy U Hz, we get deg(7;(Resy, n,(Z))) = 1 for
i =2,4. Since z3 > 0, there is D € |Oy/(ey)| such that deg(D N Z;) > 2, contra-
dicting the definition of zj.

(al.2.2) Assume z = 8 and z; = zp = 3. Remember that deg(m;(Z3)) = 1, fori = 3,4.

Set {My} := |Zz,(e4)| and W := Resyy, (Z). We have w := deg(W) <z -2 =6.
Take i € {1,2,3} such that there is M; € |Oy(¢;)| with wy := deg(W N M;)
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maximal and set Wy := Resy;,(W). Take j € {1,2,3} \ {i} such that there is
M; € |Oy(gj)| with wy := deg(W1 N M; maximal and set W, := Resy, (W). Set
{h}:={1,2,3}\ {i,j}. Take M, € |Oy(g;)| with w; := deg(W, N M;) maximal.
We have wy > wy > w3 > 0. Since dim |Op2(1)| = 2, forany i € {1,2} ifw; <1,
then w; 1 = 0. Thus, w = w1 + w + w3. Assume w3 = 1. Using My U M; U M;
and [5] (Lemma 5.1), we get a contradiction. Thus, either w3 > 2 or w3 = 0.

(al.2.2.1) Assume w3 > 2. Thus, w = 6 and wy; = wy = wp = 2. Using Mg U M; U M;

and [5] (Lemma 5.1), we get deg(7r;,(W3)) = 0. Since w; = wp, = w3 = 2,
we may take a different ordering of {1,2,3}. Using My U M; U M,,, we get
deg(m;(WNM;)) =1. If W € M;, then thereis N € |Oy(¢;)| such that WNN 2
W N M;, contradicting the definition of w;. Thus, W C M;. Since Y is the minimal
multiprojective space containing S, S ¢ M;. Thus, Z3 is connected and W is the
union of the 3 degree 2 connected components of Z with as its reduction the
3 points of SN M;. Since z; = zp = z3 = 2, we have deg(m;(A)) = 2 for all
i=1,23andall A C Z such that deg(A) = 2. Thus, 774y is an embedding,

and hence, hl(Y4,I,74(W) (1,1,1)) = k' (ZTw(1,1,1,0)) > 0. Let Y’ be the minimal
multiprojective space containing S N M;. If Y’ is not isomorphic to (P!)*, then
thereis A C SN M; such that 5(2A,Y’) > 2, and hence, §(24,Y) > 2 ([5], Lemma
2.3). Assume Y’ = (P1)% We would find x € {1,2,3} and N € |Oy(ey)| such

that #(Weq N N) = 3, contradicting the assumption wy = 2.

(al.2.2.2) Assume w3 = 0, and hence, W C M; U M;. Since we are in the set up of (al.2.2),

(a2)

(b)

(b1)

(b.1)

we have w) = w; = 3, and we may takei =1,j =2, M; = Hy and M; = Hp. We
getdeg(73(Z3)) = 1. By Remark 4 Z3 is connected, say Z3 = Z(p) forsome p € S
and W is the union of the connected components of Z with Wy.q = S\ {p}. Asin
step (al.2.2.1), we get W & M;. Thus, Z C M; U M; U My. Using [5] (Lemma 5.1),
we get wy > 2. First assume wp = 2. Using My U M;, we get deg(1x(Wp)) =1
for x € {1,2,3} \ {i} and hence z; > 2, a contradiction. Now assume w; > 3,
and hence, w; = wy =3 and w = 6.

Assume deg(Z3) > 1. Thus, z = 8, and deg(Z3) = z; = zp = z3 = 2. Note that
the role of the first three factors of Y are symmetric and that in this case if we
take D € |Oy(¢;)|, i = 1,2,3 such that deg(DNZ) > 2, thendeg(DNZ) =2
and D is the only element of |Oy(¢;)| containing D N Z. Write S = {a,b,c,d},
and fix a point of S, say d. Set {Mi} = |Zy(e1)|, {Ma} = [Tz (e1)l,
{Mz} == |Zy)(e3)|. We have Resy,umums(Z) = Z(d). By [5] (Lemma 5.1),
deg(m4(Z(d))) = 1, and hence, there is My € |Oy(e4)| containing Z(p). Taking
a instead of d, we get deg(m4(Z(a))) = 1. We have Resy,umum, (Z) = Z(a).
By [5] (Lemma 5.1), we have hl(IZ(a)(l,O,O,O)) > 0, ie, deg(m(Z(a))) =
1. Take {Nl} = |IZ(b)(€1)|/ {Nz} = |IZ({1)<£2>|' Using N1 U M3 U My, we
get deg(m2(Z(a))) = 1. In a similar way, we get deg(713(Z(a))) = 0. Since
deg(Z(a)) = 2, vis not an embedding, a contradiction.

Assume Y = (P2)2 x (P!)3. Since dim |Oy(e1)| = dim |Oy(e,)], there are H; €
|Oy(e1)| and H; € |Oy(ez)| such that S € Hy; U Hp. Since S C Hy U Hp and each
connected component of Z has degree < 2, W := Resy,n,(Z) C S.

In this step, we prove that W = @. Assume w := #W > 0. Since W # @,
h'(Zw(0,0,1,1,1)) > 0. Fixi € {3,4,5} such that there is H3 € |Oy(g;)| such
that wy := deg(W N H3) is maximal. Permuting the last three factors of Y,
we may assume i = 3. Take i € {4,5} such that there is Hy € |Oy(g;)| with
wy := deg(Resp, (W) N Hy) maximal. Permuting the last two factors of Y, we
may assume i = 4. Take H5 € |Oy(e5)| such that w3 := deg(Resp,um, (W) N Hy)
is maximal. Since w < 4, w — wy; — wy — w3 < 1. By [5] (Lemma 5.1), there is
c € {1,2,3} such thatw, > 2and wy + - - - + w, = w. Since w < 4, wy > wy > ws
and w, > 2eitherc=1orc =2, w; =wy =2and w = 4.

Assume w1 = wy, =2 and w = 4, and hence, W = Sand z = 8. Since Hy "W =
Resp, (W) = Resp,um,um; (Z), bt (Zresyy, ()(0,0,0,1,1)) > 0, e, (W N H3)) =
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(b1.2)

(b2)

(b2.1)

1 for i = 4,5. By construction #713(W N H3) = 1. Thus, W N H3 depends only on
two factors of Y, contradicting Lemma 2.

Assume ¢ = 1. Since Y is the minimal multiprojective space containing S,
2 < wy < 3. First assume w; = 2. Since h! (Zw(0,0,1,1,1)) > 0, WN H3 only
depends on the first two factors of Y, contradicting Lemma 2. Now assume
wy = 3. Since h' (Zy(0,0,1,1,1)) > 0, there is either A C Y such that #4 = 2 and
#1712(A) = 1 (excluded by Lemma 4) or #;2(W) depends on only one factor of
Y1 5, say the last one. Thus, #77;(W) = 1fori = 3,4. Set { M;} := |Zy(¢;)|,i = 3,4.
Note that z = 7. Set {p} := S\ W and W := U,cZ(0). Since Sing) M3 U M) D
W, W C M3 U M. Since Y is the minimal multiprojective space containing Y,
p ¢ (M3U Mz). Thus, Resy,um, (Z) = Z(p). Recall that deg(Z(p)) = 2 and
deg(mi(Z(p))) = 1 for all i > 0. Since hl(IResM3UM4(Z)(1/1/0r011)) > 0 ([5],
Lemma 5.1), we get deg(m1(Z(p))) = 1, contradicting the very ampleness of
Oy(1,...,1).

By step (bl), Z C Hy U H; for all H; € |Oy(¢;)|,i = 1,2, such that S C H; U Hp.
Claim 1. Assume z = 8 and z; = 4. For any i = 1,2, and any E C S such that
#E = 3, we have #71;(S) = 4, and ;(E) is linearly independent.

Proof of Claim 1. It is sufficient to prove the second statement of Claim 1.
Since (71;(S)) = P2, any fiber of 71; contains two points of S at most. With no
loss of generality, we prove the case i = 1. Assume that (7rg) is a line L and
set Hy := m; '(L). Write S = {a,b,c,d} with E = {a,b,c}. Take a general
Hj € |Z;(ez)]. By step (b1), Z C Hy U Hy. Since Hj is general and each connected
component of Z has degree < 2, HyNZ = 1, (my(a)) N Z. Since z; = 4
and z = 8, deg(H1 N Z) = 4, deg(H>, N Z) = 4 and deg(Resp,(Z) = 4. Since
#((m,'ma(d) N S)) < 2, we get #((7, 'ma(d) NS)) = 2, say (m, ' ma(d)) NS =
{c,d}. Thus, ZN Hy = Z(c) U Z(d). Take M € |Oy(¢) containing d and b. We
get ZNM D Z(c) U Z(d) U {b}, and hence, z; > 4, a contradiction. [

Claim 2. Assume z = 8 and z; = 4. Then, deg(m;(Z(0))) = 1foralli = 1,2,
and all 0 € S, and for each U; € |Oy(¢;)|,i = 1,2, such that S C Uy U Uy, we
have #(SNHy) = #(SNU,) =2, SNU; NUp = @, and ZNU; = Upesny, Z(0),
i=1,2.

Proof of Claim 2. Claim 1 gives #71,(S) = 4, and that 77;(S) is linearly indepen-
dent. Thus, #(SN Hy) = #(SNHy) =2and SN Hy N Hy = @. Since Z C Hy U Hy,
weget ZNHy = Z(a) UZ(b) and G = Z(c) U Z(d) with S = {a,b,c,d}. Set
{Mp} :=|Z 4(e2)| and {M;} := |Z, 4(¢1)|. Step (b1) and Claim 1 give M1 N Z =
Z(a)UZ(d) and My N Z = Z(c) U Z(b). Hence Z(a) C 7, ' (71(a)). Taking dif-
ferent partitions of S into two subsets of cardinality 2 we get deg(7;(Z(0))) =1
foralli=0,1andalloe S. O

With no loss of generality, we may assume z; := deg(Z N H;j) > deg(Z N Hy).
Set G := Resy, (Z) and g := deg(G). Fixi € {3,4,5} such that there is N3 €
|Oy (¢&;)| with e; := deg(G N N3) maximal. Permuting the last three factors of
Y, we may assume i = 3. Take i € {4,5} such that there is Ny € |Oy(¢;)| with
2; := deg(Resn, (G) N Ng) maximal. Permuting the last two factors of Y, we may
assume i = 4. Take N5 € |Oy(e5)| such that e3 := deg(Resn,un, (W) N Ns) is
maximal. Since ¢ < 4, ¢ —e; —ex —e3 < 1. Asin step (bl), we get that either
g=4e=e=2andes =0o0re; =g € {2,3,4},and e; = e3 = 0. The main
difference with respect to step (b1) is that G is not a finite set, in general.
Assume ¢ =4, e; = ey =2and e3 = 0. Thus, z = 8 and deg(Z N H;) = 4. Taking
Hj U N3, we get h! (IRQSN3(G) (0,1,0,1,1)) > 0. Since deg(Resy, (G)) = 2, Lemma
2 implies that Resy;, (G) is connected, say Resy, (G) = Z(a) for some a € S. Since
Resy, (G) € G N N3, we get Resy, (G) = GN Nz and that GN Ny = Z(b) for
some b € S\ {a}. Since G = Z(a) UZ(b), we obtain ZN H; = Z(c) U Z(d) with
S = {a,b,c,d}, deg(m;j(Z(a))) = 1fori = 2,4,5, and deg(m;(Z(b))) = 1 for
i = 2,3,5. Taking N5 € |Zy(,)(e5)| instead of N3, we get deg(m3(Z(a))) = 1.
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(b2.2.1)

(b2.2.2)

Using Ni € |Z;;)(es5)| instead of Ny, we get deg(m4(Z(b))) = 1. Recall that
Resy,(Z)) = Z(c) U Z(d). Using Resy, (Z) instead G, we get deg(;(Z(c))) =
deg(m;(Z(d)) = 1fori = 1,3,4,5. By Lemma 2 there is i € {3,4,5} such
that 7r;(a) # m;(b). Permuting the last three factors (we are allowed to do
this at this point, since we run in a situation symmetric with respect to the
last three factors), we may assume i = 3. Fix M € |Oy(e5)| containing Z(c),
D € |Oy(eq)| containing Z(d), and T € |Oy(e3)| such that TN {a,b} = {b}.
We have Restun,upum(Z) = {b}. Since h'(Z,) = 0, [5] (Lemma 5.1) gives
a contradiction.

Assume e = g € {2,3,4} and e; = e3 = 0. We often use the inequality
n'(Zs(0,1,1,1,1)) > 0.

Assume the non-existence of A C G such that A is connected, deg(A) = 2
and deg(m;j(A)) = 1fori = 2,3,4,5. Thus, #Grq > 1. By Lemma 2, 1
is an embedding and hence hl(Yl,Im(G)(l, 1,1,1)) = h'(Z5(0,1,1,1,1)) > 0.
Since deg(G) < 4, there are j,h € {2,3,4,5} such that j # h and deg(7;(G)) =
deg(m;,(G)) = 1. Since (mp(S)) = P?,j # 2and h # 2. If ¢ < 3 there is a
third index with the same property, contradicting Lemma 2. Now assume g = 4,
and hence, z = 8 and z; = 4. Write ZN Hy; = Z(a) U Z(b) and G = Z(c) U Z(d)
with S = {a,b,¢,d} and deg(7;(Z(0))) = 1foralli =1,2and all 0 € S (Claims
1 and 2). Take a general M, € |Z.(e2)|. Since Resy,um,(Z) = Z(d), we have
hl(IZ(c) (0,0,1,1,1)) > 0, and hence, deg(m;(Z(d))) = 1 for all i > 2. Thus,
deg(m;(Z(d))) = 1forall1 <i <5, a contradiction.

Assume the existence of A C G such that A is connected, deg(A) = 2 and
deg(m;(A)) = 1fori = 2,3,4,5. We have A = Z(p) for some p € §' :=
S \ SN Hj.

(b2.2.2.1) Assume ¢ = 3. Thus, G = Z(p) U {a} for some a € S\ {p}. By Lemma

4, there is i € {2,3,4,5} such that 7r;(a) # m;(p). Take M € |Z,(e;)|. Since
Resp,um(Z) = {a} and h!(Z,) = 0, we conclude quoting [5] (Lemma 5.1).

(b2.2.2.2) Assume ¢ = 4, and hence, z = 8. Either G = Z(p)U Z(a) or G = Z(p) U

{a,b}. First assume G = Z(p) U {a,b}. By Lemma 4 there are i € {3,4,5}
such that 7t;(p) # m(a) and j € {2,3,4,5} \ {i} such that m;j(a) # m;(b).
Take M € |Oy(g;)| containing p and D € |Oy(gj) containing b. Note that
Resp,umup (Z) = {a}. Since h'(Z,) = 0, we conclude by [5] (Lemma 5.1). Now
assume G = Z(p) U Z(a). Assume for the moment the existence of i € {2,3,4,5}
such that deg(7;(Z(a))) = 2, and take M; € |Oy(g;)| such that a € M; and
Z(a) € M;. By Lemma 4 thereis j € {2,3,4,5} \ {i} such that 7j(p) # mj(a).
Take M; € |Oy(gj)| such that p € M;and a ¢ M;. Since Resy,um,um; (Z) = {a},
we conclude as above. Now assume deg(7t;(Z(a))) = 1 for all i > 1. Note
that ZNH; = Z(b)U Z(c) and ZN Hy N H, = @. Using H, instead of Hy,
we get deg(m;(Z(b))) = deg(mj(Z(c))) = 1foralli = 1,3,4,5. Note the
deg(m (Z(p))) = deg(mi (Z(a))) = deg(ma(Z(1))) = deg(ma(Z(c))) = 2. Take
U; € |Oy(e1)| containing {p, b} and U, € |Oy(e2)| containing {a, c}. Note that
ZNUy 2 Z(b)U{p}tand ZNU, DO Z(a)U{c}. By step (bl), Z C U; U U,.
Assume for the moment p ¢ Up and ¢ ¢ Uy. Weget ZNU; = Z(p) U Z(a) and
ZNUy = Z(b) U Z(c). Thus, running the previous proof, we get deg(m1(Z(b)) =
1, contradicting the very ampleness of Oy(1,1,1,1,1). Now assume for instance
p € Up. Therefore, Uy, NZ DO Z(a) U {p,c}. The maximality property of H;
gives Uy N Z = Z(a) U {p,c} and Resy,(Z) = Z(b) U {p,c}. We excluded all
such cases.

(b2.2.2.3) Assume g =2. Weget ZNHy = Z(a) U Z(b) UZ(c) with S = {a,b,c, p}. Since

S ¢ Hy, p ¢ Hy, and hence, Resy, (Z) = Z(p). Set Z' := Z(a) U Z(b) U Z(c).
Recall that h! (Z7()(é1)) > 0, and hence, deg(7;(Z(p))) = 1 foralli > 1. Thus,
deg(m1(Z(p)) = 2.
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Claim 3. We have (71,(S")) = P2, i.e., #15(S') = 3, and 71»(S’) is linearly inde-
pendent.

Proof of Claim 3. Assume L := (715(S’)) contained in a line. Since (715(S)) = P?,
Lisaline. Set M := 7, ' (L) € |Oy(e2)|. Since S € M, p ¢ M. Take a general
line R C P? containing 71 (p). Set D := 77 }(R). Since S € MUD, Z C MUD
(Claim 1). Since p ¢ M, Z(p) C D. Since deg(71(Z(p))) = 2 and R is general,
Z(p) ¢ M, a contradiction. [

Claim 4. Set R := (m1(Z(p))). We have #( RN 11 (S')) = 1.

Proof of Claim 4. Since S ¢ D := 7r; '(R), #(RN 11 (S')) < 2. Assume #(R N
m1(S")) = 2,say 711 (b) € Rand 711 (c) € R. Since (711 (S')) isaline, 711 (b) = 71 (c),
and hence, (r1(S")) = ({m1(a), 11(b)}). Take a general line L C P? containing
1y (a), and set M := 7, }(L). Since S C DUM, Z C D U M (Claim 1). Since L is
general, Claim 3 gives {b,c} "M = @. Sincea ¢ D, we get Z(c) UZ(b) UZ(p) =
Z N D. Taking Resp(Z), we get deg(7;(a))) for all i > 1. Since deg(Z(a)) = 2,
we get deg(1(Z(a))) = 2, and hence, (711(Z(a)) = (m1(S")). Using D instead of
H; and M instead of H, in the proof of Claim 3, we get that (2 ({b,c, p})) = P2.
Let M’ be the only element of |Oy(e;)| containing {b,c}. Take D’ € |Oy(e1)|
containing {a, p}. Claim 1 gives Z C D’ UM'. Sincea ¢ M', Z(a) C D'. Since
(m1(Z(a))) = (m1(S)), p & (m1(Z(a))). Thus, Z(a) ¢ D’, a contradiction. [
Now assume 711 (S') N R = @. Since P? = (m5(S')) there are b/, ¢’ € S’ such that
b # " and mp(p) ¢ ({ma(V'), ma(c’)). With no loss of generality, we may assume
b' =band ¢’ = c. Take {D"} := |Z,4(e1)| and M" := |Z;(e2)| (Claim 3). Claim
1 gives Z C D" UM". Since p ¢ M", Z(p) C D" contradicting the assumption
ag¢ R. O

We just proved that #(R N 711 (S")) =1, say RNy (S') = {mi(c)}. Set {M;} :=
|Z(p,c} (e2)| and note that a ¢ M; (Claim 3). Set {D1} := |Zy,,y(e1)|. Claim 1
gives Z C Dy U M. Since r1(a) € R, p € My, i.e., ma(p) € ({ma(b), m2(c)). Us-
ing a instead of b, we get 12 (p) € ({m2(a), 2(c)). Claim 3 gives ({7r2(b), 7r2(c)) N
({ma(a), ma(c)) = {ma(c)}. Therefore, po(p) = ma(c). Set {Ma} = |Z.p(e2)|-
Claim 3 gives a ¢ M;. Take a general D, € |Z,(e1)|. Since S C Dy U My,
Z C DyUMpanda ¢ My, Z(a) C Dy and Z(c) C Mjy. Since D; is general,
deg(m1(Z(a))) = 1. Using M3 := |Z4(e2)| instead of M, we getdeg(m1(Z(b))) =
land Z(c) C Ms. Since My N M3 = 7, !(c), we get deg(ma(Z(c))) = 1.

Fix a general Dy € |Z,(¢1)| and a general My € |Z.(ez)|. Since Dy and M, are
general, we just proved that ZN (Dy U My) = Z(a) U Z(c) U Z(p), and hence,
deg(7;(Z(b))) = 1fori = 3,4,5. Since deg(m1(Z(b))) = 1, deg(m2(Z(b))) = 2.
Taking a general D5 € |Z,(e1)| and using D5 U My, we get deg(7t;(Z(a))) = 1 for
i =3,4,5. Since deg(m1(Z(a))) = 1, deg(m2(Z(a))) = 2. Thus, we proved that
h! (Z7(0)(1,1,0,0,0)) = Oforallo € S. Lete; be the maximal integer e := #(S N M)
for some i € {3,4,5}. Obviously e > 1. Since S ¢ M, e < 3. First assume e = 3.
Thus, Respy(Z) = Z(o0) for some 0 € Z. We conclude, because (since i > 2)
hl(IZ(O)(si)) < hl(IZ(O)(l, 1,0,0,0)) = 0. Now assume e = 1. The maximality
of the integer e gives #71;(S) = 4 foralli = 3,4,5. Set {U3} := [Ty(e3)|, {Us} :=
|Za(e3)| and {Us} := |Zy(e5)|. Since Resy,uu,uus(Z) = Z(c), it is sufficient to
use that 1! (IZ(O) (1,1,0,0,0)) = 0. Now assume e = 2. With no loss of generality,
we may assume M € |Oy(e3)|. Set S; := M NS and Sy := S\ S;. First assume
the existence of i € {4,5} such that #77;(Sp) = 1. Take M’ € |Oy(¢;)| containing
exactly one point of S; and use that Resy v (Z) = Z(0) for some 0 € S. Now
assume #77;(Sy) = 1fori = 4,5, and set {U;} := |Zs, (¢&;)|,7 = 4,5. Using Uy (resp.
Us), instead of M, and the maximality of the integer e, we get #(715(S1)) = 2
and #713(Sy) = 2 (resp. #714(S1) = 2). Thus, #m;(S) = 2 forall i = 3,4,5 and
S1U Sy is the partition of S obtained as fibers of the maps 7; 5, i = 3,4, 5. Since
my(c) = mp(p), Lemma 2 gives that p and c are in different sets S and S5, say
p € Sy and ¢ € Sy, and that mp(p) € {m(a), ma(b)}. Now the situation is
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symmetric for a2 and b. Therefore, we may assume S; = {p,a} and S, = {c, b}.
Take {Q3} := |Zy(e3)| and take a general Q; € |Z,(e2)|. Since m2(p) # m2(b),
deg(m2(Z(b))) = 2 and Q, is general, Resp, 0,(Z) = Z(a) U {b}. First assume
my(a) # m(b) and take a general Qp € |Z,(eq)|. Since deg(m1(Z(a)) = 1, we
get Resp, 0,00, (Z) = {b}, concluding because h'(Z,(0,0,0,1,1)) = 0. Now
assume 71 (a) = 711(b) and set {U;} := |Z;(e1)|. Since. m1(a) ¢ (rr1(Z(p))),
deg(m1(Z(a))) = deg(m1(Z(b))) = 1 and (m1(S")) is a line, Resy, (Z) = Z(c) U
{p}. Take {U3} := |Z.(e3)|, and use that Resy,uy, (Z) = {p}.

Assume Y = P? x (P'). Take H; € |Oy(e1)| such that z; := deg(Z N Hy) is
maximal. Note that z; > 2 = dim|Oy(g;)|. Set W := Resy, (Z) and w :=
deg(W) = z — z1. Fixi € {2,3,4,5} such that there is H, € |Oy(g;)| with w; :=
deg(W N H;) maximal. Permuting the last five factors of Y we may assume i = 2.
Set W, := Respy, (W). We continue defining the integers w; and H; € |Oy(g;)|
(up to a permutation of the last 7 — i factors of Y) with w; > --- > ws. Let
e be the last integer such that w, > 1. Since dimY = 7 > z —1, e is well-
defined. By [5] (Lemma 5.1), we have w, > 2. Thus, either z = 8, ¢ = 3 and
z1=w =wy, = w3 =2o0r1 <e <2 Wehaveh!(Zy(¢;)) > 0 ([5], Lemma 5.1).
For any o € Sset6 := {o} if deg(Z(0)) =2and 6 := @ if Z(0) = {0}. For any
A C Ssuch that #A € {2,3} call J(A) (resp. I(A)) the setof all i € {3,4,5,6}
(resp. i € {2,3,4,5,6}) such that #m;(A) > 2. Lemma 2 gives #J(A) > 3,
and #I(A) > 4 for all A such that#A = 2.

Observation 1: Fix A C S such that #4 = 3. By [1] (Th. 4.12), #m;(A) > 2 for at
least 5 integers i € {1,2,3,4,5,6}.

Claim 5. There is x € S’ such that (711 (Z(d)) U {rr1(x)}) = P? and x is unique if
and only if #(7r1(S"\ {x})) = 1.

Proof of Claim 5. We saw that R := (711(Z(d))) is a line. A point x € S’ satisfies
Claim 5 if and only if 7r1(x) ¢ R. Since Y is the minimal multiprojective space
containing S and 711 (d) € S, there is at least one x € S’ satisfying Claim 5. O
Since (111(S)) = P?, (mr1(S')) is a line L # R. Since #(RN L) = 1, x is unique
if and only if 711(S"\ {x}) = LN R. Let X be the set of all x € S’ such that
(1 (Z(d)) U {m (x)}) = P2,

Observation 2: z; = 2 if and only if 77| is an embedding and (71 (E)) = P? for
every degree 3 subscheme of Z.

Assumez = 8,¢ =3 and z1 = w| = wy = w3 = 2. Since w; = wy = w3 = 2, we
may permute the divisors Hp, H3 and Hy, and still obtain residual schemes with
the same degrees. Since h'(Zy, (0,0,0,1,1)) > 0, we get deg(7,(W N H;)) = 1 for
i=2,3,4,and h = 5,6 and for h = i. Hence there are M, € |Oy(¢j,)|, h = 4,5,6,
such that W C My U M5 U M. Since z; = 2 and P? = (r1;(A)) forall A C Z
such that deg(A) = 3, we conclude, unless Z C My U Ms U M. Permuting
the last three factors of Y, we may assume that deg(Z N M;) has the maximum
for i = 4 and that deg(Resy,(Z) N Ms) > deg(Resy, (Z) N Mg). Since z; =
w1 = 2,deg(Z N My) < 4. First assume Z C My U Ms and hence deg(Z N M;) =
deg(Resy,(Z)) = 4fori = 4,5. We have ! (Zesy (z)(€1)) > 0,i = 4,5. Since S €
M;, we get that either #((Z N M;)) =2 fori = 4,50r #((ZNM;)) =2fori=4,5.
First assume #((ZNM;)) =2,say ZN My = Z(a) UZ(b) and ZN Ms = Z(c) U
Z(d). Since z; = wq = wp = 2, and deg(75(Z N Ms5)) = 1, Remark 4 and Lemma
2 give the existence of at least one i € {2,3,6} such that deg(m;(Z N Ms)) > 1.
Take D; € |Oy(g;)| such that ZN D; # @. Since ZN D; # Z NResyy, (Z), we have
1 < deg(Resp,up,(Z)) < 3 and hence hl(IResM4UDi(Z)(£1)) = 0. Now assume
#((ZNM;)) =3,say ZNMy = Z(a) U{b,c} and ZN M5 = {b,c} U Z(d) with
{b,c} € MyN Ms. Thereisi € {2,3,6} such that deg(m;(Z N Ms)) > 1. Take
U; € |Oy(¢;)| and use My U U;. Now assume Z ¢ My U Ms. Since deg(Z) < 9,
we get Resy,um; (Z) < 2, and hence, h! (IReSM4uM5(Z)(€1)) = 0, concluding
the proof.
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Assume e = 2. Hence, Z C Hy U H, U H3. Since wy > 2, either wy, =2 orz = 8§,
z1 = 2and wy = wy = 3. We have Resy, n,(Z) € ZN Hy. Now assume z; = 2
and Z C Hy U H3. We conclude using Hy U H3 instead of My U M5 as in step (c1).
Now assume z; = 2, and Resp,up,(Z) # @ . Since Resyy,uH,(Z) C Hy, we have
deg(Resy,uH,(Z)) < 2, and hence, we conclude by Observation 2.

Now assume z1 > 2. Since wy > wy > 2and z < §, we get wp = 2, wy + 21 =
z—2and (z;,w1) € {(4,2),(3,3),(3,2)}. Lemma 2 gives Resy, jm,(Z) = Z(d)
for some d € S such that deg(Z(d)) = 2 and deg(m;(Z(d))) = 1foralli > 2.
Hence, deg(7t;(Z(d))) = 2 for at least one i € {1,2}.

Assume w1 = z; = 3, and hence, z = 8. By Remark 4, neither Z N Hj nor H N
Respy, (Z) are reduced, and hence, Z N Hy = Z(a) U {b}, ZN Hy = Resy, (Z) N
H, = Z(C) U {b} with § = {a, b,c, d} Since h! (IRGSH1UH3(Z) (?11 — 83)) > 0, either
deg(m;(Z(c))) = 1fori = 2,4,5,6, or there are at least 3 indices i € {2,4,5,6}
such that 71;(Z(c)) = m1(b) (Proposition 1). Since hl(IResHZUHB(Z)(éz —e3)) >0,
either deg(m;(Z(a))) = 1 fori = 1,4,5,6 or there are at least 3 indices i €
{1,4,5,6} such that 71;(Z(a)) = 11 (b) as schemes (Proposition 1). First assume
the existence of i € {4,5,6} such that deg(7;(Z(a))) = 1, and 7t;(a) # 7;(). Set
{U;} := |Za(e;)|- Since Resp,up,uu, (Z) = {b} and h'(Z,(1,0,...)) = 0, we con-
clude. Since h'(Z,(1,0...,0)) = 0, we also conclude if there is j € {4,5,6} such
that

deg(mj(Z(a))) = 2 and 7tj(a) = mj(b). Now assume that no suchi,j € {4,5,6}
exist. It implies deg(7r,(ZNH)) = 1for h = 4,5,6. Take h € {4,5,6} such that
my(d) # mp(a) (Proposition 1). Set {Uj} := |Za(e)|. We have Resp,uy, (Z) =
Z(d). Since Resp,uu, (Z) = Z(d), we conclude if deg(7r1(Z(d))) = 2. Now as-
sume deg(71(Z(d))) = 1, and hence, deg(m(Z(d))) = 2. Weuse H; and Hy N Z
instead of H, and Hy N Z.

Assume z; = 4, and hence, w; = 2 and z = 8. Using H; U H3, we get
ZNH, = Z(c) for some ¢ € S\ {d} such that deg(7;(Z(c))) = 1 for all
i € {2,4,5,6}. Thus, ZNH; = Z(a)UZ(b) with S = {a,b,c,d}. Using
H, U Hj, we get h! (IZ(a)UZ( y(1,0,0,1,1,1)) > 0. First assume deg(71(Z(a))) =
deg(m1(Z(b))) = 1 and hence m(b) # my(a).
Taking Hy U M; U Dj for some 3 < i < j we conclude, unless Z(a) C M;, ie.,
deg(rt;(Z(a))) = 1, and Z(b) C Dj, i.e.deg(mj(Z(b))) = 1. Thus, we may
assume that deg(7;(Z(a))) = deg(m;(Z(b))) = 1foralli € J({a,b}). First
assume deg(m1(Z(0))) = 2 for at least one 0 € {c,d}, say for o = c. We take
i,j € J({a,b}) such that i # j and set U; := |Z,(¢;)| and {U;} := |Z,(¢;)|. We
conclude using H3 U U; U Uj, unless Z(c) C Hz U U; U U;. Since wy = 2, ¢ ¢ Hs.
Thus, Z(c) C Hz U U; U U; if and only if either c € U; NU; or Z(c) C U; or
Z(c) C U;. Totakei, jsuchthatc ¢ U; N Uj, itis sufficient to use that #] ({a, b})) >
3 and deg(7;(Z(a))) = deg(m;(Z(b))) = 1 for all i € J({a,b}). Now as-
sume deg(m (Z(c))) = deg(m(Z(d))) = 1. We get deg(m(Z(c))) = 2 and
deg(mp(Z(d))) = 2. Takei € ]({c d}), say i = 4. Set {Us} := |Z(eq4)]. We
conclude using Hy U Uy, because h! (Zz(¢)(0, O 0,0,1,1,1)) = 0.

Assume z; = 3, and hence, wy = 2 and z = 7. We get that Resy, (Z) N H, = Z(c)
and ZN Hy = Z(a) U {b} (up to the names of the elements of S’). Using H; U H3
we get deg(m;(Z(c))) = 1 fori = 2,4,5,6. Hence deg(m;(Z(c))) = 2 for at
least one i € {1,3}. Using H, U H3 we get that either deg(m;(Z(a))) = 1 for
i = 1,4,5,6 or there are at least 3 indices i € {1,4,5,6} such that 7;(Z(a)) =
m11(b) (Proposition 1). Since z; < 4, there is at most one 0 € S such that
deg(m(Z(0))) = 1.

Assume for the moment the existence of i € {4,5,6} such that m;(a) # m;(b),
say i = 4. First assume 711 (a) # m11(b). Take {T4} := |Z;(e4)|. We have {b} C
Rest,um,un, (Z) C {a,b} and we use that h'(Z,,(¢1)) = 0 by the assumption
my(a) # m1(b). Now assume 71(a) = m1(b). Since z; = 3, deg(m1(Z(x))) = 2
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(c3.4.1)

forall x € S. Thus, deg(7r1(Z(a))) = 2, and hence h! (Zz(a)(e1)) = 0. Set {Dy} :=
|Zy(e4)| and use that Resp,um,uH;(Z) = Z(a). Now assume 71;(a) = m;(b) for
alli =4,5,6. Lemma 2 gives 7;(a) # m;(b) foralli = 1,2,3. Set My := |Z,(eq)|.
Use the residual exact sequence with respect to My U E; if deg(m1(Z(d))) = 2,
and the residual exact sequence with respect to My U Hj if deg(m1(Z(c))) = 2.
Assumee = 1. Weget Z C Hj UHy, and wy = z — z; withw; > 2 and z; > 2.
Thus, h! (IRest (z)(£2)) > 0. If z; = 2t is sufficient to use Observation 1. Thus,
we only need to test the cases 3 < z; < 6.

Assume z; = 3. Thus, (after changing the names of the elements of S) either
ZNH; = {a,b,c} and Resy, (Z) = Z(d)uaubuéor ZNHy = Z(a) U {b},
and Resy, (Z) = ZNHy, = bU Z(c) U Z(d) with deg(Z(a)) = 2. First assume
ZNH; = {a,b,c} with, say, 7y (c) ¢ {r1(a), 71(b)}. Since S € Hy, {a,b,c} ¢ Hy.
Take j € J({a,b}), set {M;} := |Z,(¢;)| and use Hy U M;. Now assume Z N Hy =
Z(ﬂ) U {b} If 7'[1(&1) #+ m (b), use Hp U M] with {M]} = |Ia(€]‘)‘. If (a) =
m1(b), and hence, deg(7t1(Z(a))) = 2 use Hy U D; with {D;} := [T (g;)|.
Assume z; = 4. Since S ¢ Hj, after changing the names of the elements of S,
either ZN Hy = Z(a) U {b,c}, and Resy, (Z) = bU ¢ U Z(d) with deg(Z(a)) = 2
or ZN Hy = Z(a) UZ(b) with deg(Z(a)) = deg(Z(b)) = 2, and Resy,(Z) =
ZNHy =Z(c)UZ(d). There are at least 3 indices j > 2 such that 7;(a) # 7;(b),
say j1, jo, j3- Set {My} := |Za(ep)| and {Dy,} := |Z}(ey)|. H ZN Hy = Z(a) U{b, c},
my(b) # mi(c), b= ¢ =@),and {b,c} C Hy, itis sufficient to use Hy U M;,. Now
assume ZN Hy; = Z(a) U{b,c} and m1(b) = my1(c). Thus, my(a) # my(b). It
is sufficient to use Hy (case b = ¢ = @), {b,c} C H, and deg(m(Z(a)) =
2), Hy U M, (case b=¢=®)and {bc} C Hp and deg(m;(Z(a)) = 1) and
Hp U M;j, U M;j, U Dj, (all other cases with ¢ ¢ Hy UM; UM;, UD,). If c € Hy
and deg(Z(c)) = 1, we exchange the role of b and c.

Now assume ZNHy = Z(a) UZ(b) and Hy N {a,b} = @. Assume for the moment
deg(71(Z(0))) = 2foratleastoneo € {a,b}, say foro = a. Weuse Hy UDj, UD;,.
Now assume deg(71(Z(a))) = deg(m1(Z(b))) = 1, and hence, 711(a) # m1(b)
(by the definition of z1). We use Hy U M;, U Dj,. If Hy N {a,b} # @ (and hence,
#(Hy N {a,b}) = 1because S ¢ Hy), then we omit one or two of the divisors M},
D,

Assume z; = 5, and hence, w; = 3. Since S QZ Hj, (after changing the names of
the elements of S) we have ZN Hy = Z(a) U Z(b) U {c} and Resy, (Z) = ¢U Z(d)
with deg(Z(a)) = deg(Z(b)) = 2. Since wy = 3, ¢ = {c} anddeg(Z(d)) = 2. Fix
i,j € J({c,d}) such that i # j and use Hy U M; U M; with {M},} := |Z,(ej)|.
Assume z; = 6, and hence, w; = 2 and z = 8. By Lemma 2, the scheme
Respy, (Z) is a connected component Z(d) of Z, and hence, ZN H; = Z(a) U
Z(b)U Z(c) with S = {a,b,c,d}. Set S’ := {a,b,c}. Since deg(Z(d)) = 2 and
deg(m;j(Z(d))) = 1foralli > 1, deg(m1(Z(d))) = 2. Note that this case is
symmetric with respect to the permutation of the last five factors of Y.

Assume 71;(d) ¢ 71;(S') foralli = 2,3,4,5,6. Fix x € {a,b,c} such that 711 (x) ¢
(rr1(Z(d))). Since 7t;(d) ¢ m;(S') for alli = 2,3,4,5,6, there are M; € |Oy(¢;)|,
2 <i<6,suchthatd ¢ D := My U M3 U My U Ms U Mg (and hence, Resp(Z) 2
Z(d)) and Resp(Z) C Z(d) U {x}. Since hl(I{x}UZ(d)(el)) = 0, we conclude.
Claim 6. Let G; C G be the minimal subscheme such that 1! (Zg, (&)) > 0. There
iso € §' such that Z(0) C Gy and deg(176(Z(0))) = 1.

Proof of Claim 6. Assume the non-existence of any 0. By Remark 4, the map
6/G,eq 1S injective. Thus, the map 74, is an embedding and we have

nt (Yo, Zyy(G,)(L1,1,1,1)) = h(Zg,(8))) > 0. Let Y’ be the minimal multiprojec-
tive subspace of Y4 containing #6((G1)req), and Y the minimal multiprojective
space containing Gp. By [1] (Th. 4.14) either there are 1,7 € (Gj)yeq such that

u # vand m;(u) = 7;(v) for at least 3 integers i € {1,2,3,4,5} or #(G1)req = 3
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and Y’ = (P')%. Since deg(G) < 5 and hl(Yé,I}%(Gl)(l, 1,1,1,1)) > 0, Proposi-
tion 1 and Lemma 7 exclude the latter case. Assume the existence of u and v.
Since h! (Yé,I%(Gl) (1,1,1,1,1)) > 0, the minimality of G; and the injectivity of
16/G,.q 8ives that Gy contains Z(u) U Z(v) and that the minimal multiprojective
space containing #5(Z (1) U Z(v)) is isomorphic either to P! or to P! x PL. Thus,
we get deg(7;(Z(u) UZ(v))) = 1 for at least 3 integers i € {1,...,5} such that
mi(u) = m;(v). We may assume 715(Z(u)) = ma(Z(v)) = mp(u) and m3(Z(u)) =
3(Z(v)) = m3(u), but we need to distinguish the case 71 (1) = 71(v) and the
case 714 (u) = 7114(v). Write S’ = {u, v, z} with 74(z) = 7¢(d). Lemma 2 gives the
existence of at least 3 indices i € {1,2,3,4,5} such that 77;(z) # 7;(d). Remark 4
gives the existence of at least 2 indices i € {1,2,3,4,5} such that #(71;(S')) > 1.
Set My := |Z,(e2)| and W := Resyy, (Z). Wehave W # @ and W C Z(z) U Z(d).
Since deg(11(Z(d))) = 1, either Z(d) C Wor W C Z(z). If W = Z(d), we use
that k! (Zz(4)(e1)) = 0. We also conclude if W = {z} or if W = Z(d) U {z} and
z & Dy = |Iz(4)(e1)). By Lemma 2, there is i > 2 such that 7;(z) # 7;(d).
Set {D;} := |Z.(e1)|.- Using M, U D;, we conclude if W = Z(d) U {z}. Now
assume W = Z(z) U Z(d). Using M, U D;, we conclude if either z ¢ D; or
if deg(m;(Z(z))) = 2. If z € D; and deg(m1(Z(z))) = 2, we conclude using
My U Dy. Now assume z € D and deg(mj(Z(z))) = 1 for j = 1,i. Since
mi(d) # mi(z), Resp,up,(Z) = Z(d), and hence, h (IReSMZUDi(Z)(El)) =0. O

Assume 7;(d) ¢ m;(S') for all i = 2,3,4,5. Note that 74(0) # 7me(d) and
that deg(7t6(Z(0)) = 2. Write S’ = {u,v,0}. Set {Us} := |Z,(g6)|- We have
Resy, (Z) = Z(d) U{o} U Z(u)' U Z(v)" with deg(Z(u)") < 2, deg(Z(v)’) < 2,
Z(u)' (resp. Z(v)") with u (resp. v) as its reduction, unless it is empty. By Claim
5 there is x € S’ such that hl(Iz(d)u{x} (e1)) = 0. Assume for the moment that
we may take x = 0. Set {U;} := |Zy(¢;)| for i = 2,3, and {U;} = |Z,(e;)| for
i =4,5. Since Z(d) C Resy, u,uu,uusuu, (Z) € Z(d) U {o}, we conclude in this
case. We may use two different multidegrees among ¢;, 2 < i < 5, for u and the
remaining ones for v. We also conclude if deg(m;(Z(w))) = 1 for at least one
w € §"\ {z}, and at least one i € {2,3,4,5} (for instance if deg(m2(Z(u))) =1
instead of U3 we take the element {U}} := |Z,(e3)|). Assume deg(7;(Z(w))) =1
forallw € {u,v} and all 2 < i < 5. Assume for instance 711 (v) ¢ (7r1(Z(d))). Set
{Q4} :=1Zs(e2)] and use U, U U3 U Q4 U Us U Ug to conclude this case.

(c3.4.2.1) By step ¢3.4.2, we may assume 71;(d) € 7;(S’) for at least one i € {2,3,4,5},

say for i = 5. Using |Z;(es5)| instead of Mg in Claim 6 we get the existence of
01 € S' such deg(n5(Z(01))) = 1. Since deg(m5(Z(01))) = 2, 01 # 0. Write
S" ={o,01,02}.

(c3.4.2.2) Assume 71;(d) ¢ 71;(S') fori = 2,3,4. Set { Dy} := |Z,(€2)|, {D3} := |Zo, (€3)| and

{Dy4} := |Zy,(e4)|- We have Z(d) C Resp,p,up,(Z) € Z(d) U {02}. It would be
sufficient to prove that h! (IReSDZUD3uD4(Z) (1,0,0,0,1,1)) = 0. This vanishing is
true if either deg(714(Z(02))) = 1 or oy € X or 7;(02) # 71;(d) for at least one i €
{5, 6}. Assume 7'[5(02) = 7T5(d), 7'[6(02) = 7T6(d),02 ¢ ¥ and deg(7T4(Z(02))) =2.
Permuting the set {2,3,4}, we may assume deg(72(Z(02))) = deg(r13(Z(02))) =
2. By Lemma 2, thereisaset | C {1,2,3,4,5,6} such that #] > 3 and 7;(0) #
mi(o1) for all i € J. Note that {5,6} C J. Set H := |Zy)(e1)|]. Note that
Resy(Z) C {02} UZ(0)UZ(07). Firstassume {02} C Resy(Z). Set N; := |Z,(¢;)|
and Q; := |Z,,(&;)|. Since 7t;(02) = m;(d) ¢ {0,071} for i = 5,6, it is sufficient
to use HU N5 U Q. Now assume Resy(Z) C Z(o) UZ(01). Since L # @,
Resj(Z) contains at least one among Z(0) and Z(01 ), say Z(0). If Resy(Z) = Z(0)
we use that deg(7t6(Z(0))) = 2 and hence h! (Zz(0)(81)) = 0. Now assume
Resy(Z) = Z(0) U Z'(07) with either Z'(01) = {01} or Z'(01) = Z(01). If ] #
{1,5,6}, i.e., thereisi € [ withi € {2,3,4}, it is sufficient to use HU N; and
that deg(7t5(Z(01))) = 2. Now assume | = {1,5,6} and hence Z'(01) = Z(01).
There are p; € P!, i = 2,3,4, such that {0,01} C A = (m(Z")) x {p2} x
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{ps} x {pa} x P! x PL. Since 1 (Z(0) UZ(01) C (r11(Z")) and deg(7t;(Z(0))) =
deg(mj(Z(01))) = 1fori = 2,3,4}, we get Z(0) UZ(01) C A. Set {Tp} :=
|Zp,(e2)| and {T4} := |Zo,(e4)|. Since Rest,ut,(Z) = Z(d) (by the assumption
7t;(d) ¢ m;(S") fori = 2,4) and deg(m1(Z(d))) = 2, we conclude.

(c3.4.2.3) Assume the existence of exactly one i € {2,3,4} such that 7;(d) € 7;(S"). Withno
loss of generality we may assume i = 4. As in Claim 6, we get the existence of
u € S such that deg(y;(Z(u))) = 1. Since i ¢ {5,6}, u = 0. By assumption,
mi(d) ¢ m;(S') fori = 2,3. Fix u € X. Assume for the moment 7t;(u) # 71;(d)
for at least one i € {4,5,6}. Write S’ = {u,uy, u}. We use the divisor D(2) U
D(3) UD(i) with {D(i)} := [Zo(&;)|, {D2} := |Zu, (¢2)] and {Ds3} := [Zu, (e3)]-
We conclude, because Z(d) C Resp(oyupzyup(i)(Z) € Z(d) U {u}. Now assume
mi(x) = m;(d) foralli = 4,5,6 and all x € X.. Remark 4 and [1] (Th. 4.12) applied
to 2 U {d} give #X = 1. Thus, 71 (u1) = m1(u2). Set H := |Zy(4)(e1)]. In this case,
we have deg(71(Z(w))) = 1forall w € S'. Thus, Resy(Z) = Z(u). Since there
isi € {4,5,6} with deg(7;(Z(u))) = 2, we conclude.

(c3.4.2.4) Assume the existence of at least 2 indices i € {2, 3,4} such that 77;(d) € 7;(S’), say
i = 3 and i = 4. The first part of step c34.2.2 gives the equality deg(174(Z(02))) =
1. Using i = 3 instead of i = 4, we get deg(#3(Z(02))) = 1, and hence,
deg(Z(0z)) = 1, a contradiction.

O

Proof of Theorem 5. Since we may assume k > 3 (Remark 9 and Theorem 8) and n; < 3,
all cases are covered by Propositions 9, 11-13. [

Proof of Theorem 6. Assume T(Y,4) # @. Remark 9 and Theorem 8 give k > 3. Theo-
rem 5 gives dim Y < 6. Theorem 10 excludes the case Y = (P')3. All cases with dimY = 6
are allowed by Theorem 3. The case Y = P® x P! x P! and Y = P? x P! x P! are ex-
cluded by Lemma 18. Proposition 9 gives the cases Y € {P? x P2 x P!, P2 x (P')3, (P!)°}.
Proposition 2 gives the case Y = (P1)*. O

8. Examples

Proposition 15. Fix an integer n > 1 and set Y = P" x P" x P! x P. Then, a general
S € S(Y,2n+1) isan element of T(Y,2n +1)' NS(Y,2n +1).

Proof. A general g € 03,41 (v(Y)) has rank exactly 21 + 1 and for a general g a general A €
S(Y,q) is a general element of S(Y,n + 1). By [3] (Prop. 4.7(i)), we have A € Ty (Y,2n+1).
Since A € S(Y,q), A € S(Y,2n+1). Since #A = 2n+1 > n and A is general, Y is
the minimal multiprojective space containing A (Remark 14). Thus, A € T(Y,2n + 1).
Fix EC A, E # @ and set e := #E. Since A is general, E is a general element of 5(Y,e).
Thus, to prove that §(2E,Y) = 0 it is sufficient to use that for each e < 2n the e-th secant
variety of Y is not defective ([3], Proposition 4.7(iii)). Thus, A € T(Y,2n+1)". O

Proposition 16. Tuke cither Y = PPxPPxP2orY = P2 x P2 x P! x PL. Then, a general
S € S(Y,5) is an element of T(Y,5)' N S(Y,5).

Proof. Take k > 3 an Y := P" x --- x P% with ny > --- > np > 0. The secant variety
o5(v(Y)) is defective if and only if either k = 3 and (11,12, n3) € {(3,3,2),(4,2,1),(a,3,1)}
for some a > 5 or k = 4 and (nq,np,n3,14) = (2,2,1,1) ([3], Th. 4.12). Since we are
looking at elements of S(Y, 5) such that Y is the minimal multiprojective space containing
S, we exclude to cases (a,3,1) and (a,2,1) with a > 5. If either Y = P3 x P3 x P2 or
Y = P2 x P2 x P! x P!, a general S € S(Y,5) is an element of T(Y,5) N S(Y,5). The set S
is an element of T(Y, 5)’, because any E C S may be seen as a general element of S(Y, #E)
and no secant variety of order < 4 of Y is defective (Remark 1). [
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9. Conclusions and Further Open Problems

In this paper, we consider four notions of Terracini loci, two of which are introduced
here, and provide several results for them with full proofs. Concerning the most interesting
one, minimally Terracini sets, T(Y, x), we raise the following two conjectures and the
following question.

Conjecture 13. Fix an integer x > 5 and set Y := (P')k. We conjecture that T(Y,x)" = @ if
k>2x—1.

Conjecture 14. Fix integers x > 5,m > 2and set Y := (P")K. We conjecture that T(Y,x) = @
ifkm > 2x — 1.

Question 15. Fix an integer x > 5. Find a small integer ex > 0 such that T(Y,x)" = @ for all

multiprojective spaces Y = P™ x - .- x P" such that ny > - -- > np > 0and n; < ny — ey.

The multiprojective spaces in Conjectures 13 and 14 are balanced and the dimensions of
their secant varieties are known, with one possible exception ([12]).
Question 15 concerns the “almost balanced” ones.
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