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Abstract: Fix a format (n1 + 1)× · · · × (nk + 1), k > 1, for real or complex tensors and the associated
multiprojective space Y. Let V be the vector space of all tensors of the prescribed format. Let
S(Y, x) denote the set of all subsets of Y with cardinality x. Elements of S(Y, x) are associated to
rank 1 decompositions of tensors T ∈ V. We study the dimension δ(2S, Y) of the kernel at S of the
differential of the associated algebraic map S(Y, x) −→ PV. The set T1(Y, x) of all S ∈ S(Y, x) such
that δ(2S, Y) > 0 is the largest and less interesting x-Terracini locus for tensors T ∈ V. Moreover, we
consider the one (minimally Terracini) such that δ(2A, Y) = 0 for all A * S. We define and study two
different types of subsets of T1(Y, x) (primitive Terracini and solution sets). A previous work (Ballico,
Bernardi, and Santarsiero) provided a complete classification for the cases x = 2, 3. We consider the
case x = 4 and several extremal cases for arbitrary x.

Keywords: Terracini locus; secant variety; Segre variety; multiprojective space
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1. Introduction

Fix a format (n1 + 1) × · · · × (nk + 1), k > 1, for real or complex tensors and the
associated multiprojective space Y. Let V be the vector space of all tensors of the prescribed
format. Let S(Y, x) denote the set of all finite subsets of Y with cardinality x. Elements of
S(Y, x) are associated to rank 1 decompositions of tensors of that format with x non-zero
terms and the associated has a differential S(Y, x) −→ PV, and we call δ(2S, Y) the kernel of
the differential of this algebraic map.

Let Y = Pn1 × · · · × Pnk be a multiprojective space and ν : Y −→ Pr, r = 1 + ∏k
i=1(ni + 1),

its Segre embedding, i.e., the embedding of Y induced by the complete linear system
|OY(1, . . . , 1)|. An element q ∈ Pr is an equivalence class of non-zero tensors of format
(n1 + 1) × · · · × (nk + 1), up to a non-zero scalar multiple. For any p ∈ Y let 2p or
(2p, Y) denote the closed subscheme of Y with (Ip)2 as its ideal sheaf. For any finite set
S ⊂ Y set 2S := ∪p∈S2p. Note that deg(2p) = 1 + dim Y. As in [1] for any positive
integer x let T1(Y, x) denote the set of all S ∈ S(Y, x) such that h0(I2S(1, . . . , 1)) > 0 and
h1(I2S(1, . . . , 1)) > 0. Let T(Y, x) denote the set of all S ∈ T1(Y, x) such that Y is the
minimal multiprojective space containing S.

The paper publised by [1] considered the set T(Y, 3). Herein, we mostly study T(Y, 4)
but also provide some general results, and study 3 remarkable subsets of T(Y, x). The
following results describe all multiprojective spaces Y such that T(Y, 4) 6= ∅.

Theorem 1. Set Y := Pn1 × · · ·×Pnk with k ≥ 1 and n1 ≥ · · · ≥ nk > 0. We have T(Y, 4) 6= ∅
if and only if k ≥ 3, n1 ≤ 3 and n3 ≤ 2.

For an arbitrary integer x > 4, we prove the following existence theorem.

Theorem 2. Set Y := Pn1 × · · · × Pnk with k ≥ 3 and n1 ≥ · · · ≥ nk > 0. Fix an integer x ≥ 5
and assume n1 ≤ x− 1 and one of the following set of conditions:
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(i) n2 ≤ x− 2.
(ii) k ≥ 4 and n3 ≤ x− 2.

Then, T(Y, x) 6= ∅.

Consider the following highly useful definition ([1], Definition 2.2).

Definition 1. Let Y be a multiprojective space and S ⊂ Y a finite set. The set S is said to be
minimally Terracini if δ(2S, Y) > 0 and δ(2A, Y) = 0 for all A ( S.

For each positive integer x, let T(Y, x)′ be the set of all S ∈ T(Y, x) which are mini-
mal Terracini.

In Section 6, we prove the following results.

Theorem 3. Fix integers k ≥ 4, x ≥ 4 and n1 ≥ · · · ≥ nk > 0, 1 ≤ i ≤ k, such that
n1 ≤ x− 1 and n1 + · · ·+ nk = 2x− 2. Set Y := Pn1 × · · · × Pnk . Then, T(Y, x)′ 6= ∅ and
dimT(Y, x)′ ≥ x− 4 + ∑k

i=1(n
2
i + 2ni).

Theorem 4. Fix integers x ≥ 3, k ≥ 3 and n1 ≥ · · · ≥ nk > 0 such that n1 = n2 = x − 1.
Set Y = Pn1 × · · · × Pnk . Then, T(Y, x)′ = ∅.

In Section 7, we prove the following result.

Theorem 5. Let Y be a multiprojective space with at least three factors and dim Y ≥ 7.
Then, T(Y, 4)′ = ∅.

Theorem 5 together with the results of Section 6 gives the following list of all multi-
projective spaces Y such that T(Y, 4)′ 6= ∅.

Theorem 6. Let Y = Pn1 × · · · × Pnk with n1 ≥ · · · ≥ nk > 0 for all i. We have T(Y, 4)′ 6= ∅
if and only if k ≥ 3, n1 ≤ 3 and either dim Y = 6 or Y ∈ {(P1)4, (P1)5,P2 × P2 × P1}.

We introduce the following definition.

Definition 2. Take S ∈ T(Y, x). We say that S is primitive if S′ /∈ T(Y, #S′) for any S′ ( S.
Let T̃(Y, x) denote the set of all primitive S ∈ T(Y, x). For any S ∈ T(Y, x) \ T̃(Y, x) any set
A ⊆ S such that A ∈ T̃(Y, #A) is called a primitive reduction of S.

Clearly, T(Y, x) ⊇ T̃(Y, x) ⊇ T(Y, x)′. By [1] (Proposition 1.8) T(Y, 2) = ∅. By [1]
(Theorem 4.12) T(Y, 3)′ = ∅ if Y 6= (P1)4. Remark 16 gives T((P1)4, 3)′ 6= ∅ and that
S ∈ T((P1)4, 3)′ if and only if #πi(S) = 3 for all i = 1, 2, 3, 4, where πi : (P1)4 −→ P1 is the
i-th projection.

For any set E in a projective space, Pm, let 〈E〉 denote the linear span of E in Pm.
For any q ∈ 〈ν(Y)〉, i.e., for any equivalence class of non-zero tensors, the rank rank(q)

of q is the minimal cardinality of a set S ⊂ Y such that q ∈ 〈ν(S)〉. Let S(Y, q) denote the
set of all S ∈ S(Y, rank(q)) such that q ∈ 〈ν(S)〉. The set S(Y, rank(q)) is often called the
solution set of q. Concision ([2], Proposition 3.1.3.1) says that if S ∈ S(Y, q) for some q, then
Y is the minimal multiprojective subspace containing S.

Let S(Y, x) denote the set of all S ∈ T(Y, x) such that S ∈ S(Y, q) for some q with rank
x. An element q ∈ 〈ν(Y)〉 is said to be concise if there is no multiprojective space Y′ ( Y
such that q ∈ 〈ν(Y′)〉. If q is concise, then each S ∈ S(Y, rank(q)) has the property that Y
is the minimal multiprojective space containing S ([2], Proposition 3.1.3.1). If S ∈ S(Y, q)
for some q and δ(2S, Y) = 0, then Terracini lemma gives that S is an isolated point of the
constructible algebraic set S(Y, q). This observation provided the main geometric reason to
study the Terracini loci.

Using the tangential variety of the Segre variety, we prove the following result.



Symmetry 2022, 14, 2440 3 of 32

Theorem 7. Take Y = (P1)k with k ≥ 5. Then S(Y, k) ∩ T(Y, k) 6= ∅ and S(Y, k) ∩ T̃(Y, k)
contains an element of the solution set of any concise q ∈ τ(ν(Y)).

We also prove some more precise results for (P1)k with low k. In the section “Conclu-
sions and open questions”, we raise and discuss 3 open questions.

We work over an algebraically closed field with characteristic zero K. The reader
may assume K = C. However, the non-existence results are clearly then true for all fields
contained in K, i.e., for all fields containing Q. When we mentioned a “general S ∈ S(Y, x)”
it is sufficient to take S in a Zariski dense subset of S(Y, x) and in particular, we may take
general real rank 1 decompositions of real tensors. For the existence results which use
rational normal curves, again we may find solution over R or over Q.

2. Preliminaries

For any variety W and any positive integer x let S(W, x) denote the sets of all subsets
of W with cardinality x. Let Y = Pn1 × · · · × Pnk , k > 0, ni > 0 for all i. Let ν : Y −→ Pr,
r = −1 + ∏k

i=1(ni + 1), denote the Segre embedding of i, i.e., the embedding of Y induced
by the complete linear system |OY(1, . . . , 1)|. Let πi : Y −→ Pni denote the projection of
Y onto its i-th factor. For any S ∈ S(Y, x) the multiprojective space ∏k

i=1〈πi(S)〉 is the
minimal multiprojective subspace containing S. If k ≥ 2, let Yi be the product of all factors
of Y, except the i-th one, and let ηi : Y −→ Yi denote the projection (ηi is the map that forgets
the i-th component of the Y elements).

For any E ( {1, . . . , k}, let YE be the product of all factors of Y associated to the integer
{1, . . . , k} \ E and ηE : Y −→ YE the projection. If E = {1, 2}, we may write η1,2 instead of
η{1,2}.

For any (a1, . . . , ak) ∈ Zk set OY(a1, . . . , ak) := ⊗k
i=1π∗i (OPni (ai)). For any i ∈ {1, . . . , k},

let εi (resp. ε̂i) be the element (a1, . . . , ak) ∈ Nk such that ai = 1 and aj = 0 for all
j 6= i (resp. ai = 0 and aj = 0 for all j 6= i). We will often use the line bundles OY(εi)

and OY(ε̂i). For any zero-dimensional scheme Z ⊂ Y set δ(Z, Y) := h1(IZ(1, . . . , 1)).
We often write δ(Z) instead of δ(Z, Y). For any p ∈ Y, let 2p or (2p, Y) denote the closed
subscheme of Y with (Ip)2 as its ideal sheaf. Note that if W is a hypersurface of Y and
p ∈ Sing(W), then 2p ⊂ W. Fix Y and the positive integer x. Terracini lemma and the
semicontinuity theorem for cohomology say that δ(2S, x) > 0 and h0(I2S(1, · · · , 1)) > 0 for
all S(Y, x) if and only if the x-secant variety σx(ν(Y)) of the Segre variety ν(Y) is defective,
i.e., σx(ν(Y)) ( 〈ν(Y)〉 and dim σx(ν(Y)) ≤ x(dim Y + 1)− 2.

Remark 1. Let S ⊂ Y = Pn1 × · · · × Pnk be a general subset of Y with cardinality s. The s-secant
variety σs(ν(Y)) is said to be defective if σs(Y) ( 〈ν(Y)〉 and dim σx(ν(Y)) ≤ x(dim Y + 1)− 2.
We recall that σs(ν(Y)) is not defective if and only if either δ(2S, Y) = 0 or h0(I2S(1, . . . , 1)) = 0
(or both if h0(OY(1, · · · , 1)) = s(1 + dim Y)). We assume k ≥ 3 and we use the convention
n1 ≥ · · · ≥ nk > 0.

(a) σ3(ν(Y)) is defective if and only if either Y = (P1)4 or k = 3, n1 ≥ 3 and n2 = n3 = 1 ([3],
Theorem 4.5).

(b) σ4(ν(Y)) is defective if and only if either Y = (P2)3 or k = 3, n2 = 2, n3 = 1 and n1 ≥ 4
([3], Theorem 4.6).

Remark 2. By the semicontinuity theorem for cohomology, σx(ν(Y)) is defective if and only if
T1(Y, x) = S(Y, x). Fix a general S ∈ S(Y, x). The multiprojective space Y is the minimal
multiprojective space containing S, i.e., S ∈ T(Y, x), if and only if each factor of Y has dimension
≤ x− 1.

For any zero-dimensional scheme Z ⊂ Y and every effective divisor M ⊂ Y, let
ResM(Z) denote the closed subscheme of Y with IZ : IM as its ideal sheaf. We have
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ResM(Z) ⊆ Z, deg(Z) = deg(Z ∩M) + deg(ResM(Z)) and for every line bundle L on Y
we have the following exact sequence, which we call the residual sequence of M:

0 −→ IResM(Z) ⊗L(−M) −→−→ IZ∩M,M ⊗L|M −→ 0. (1)

We have ResM(2p) = p if p is a smooth point of M, ResM(2p) = ∅ if p ∈ Sing(M)
and ResM(2p) = 2p if p /∈ M. If Z = Z′ ∪ Z′′ with Z′ ∩ Z′′ = ∅, then ResM(Z) =
ResM(Z′) ∪ ResM(Z′′).

Remark 3. Fix any multiprojective space Y = Pn1 × · · · × Pnk , k > 0, ni > 0 for all i and
let w ⊂ Y be any connected degree 2 zero-dimensional scheme. Fix any q ∈ 〈ν(w)〉 such that
q 6= ν(wred). Set m := rank(q). We have 1 ≤ m ≤ k and the minimal multiprojective space Y′

containing w is isomorphic to (P1)m. If m > 1 (and hence k > 1), then ηi|w is an embedding for
all i = 1, . . . , k. Now assume m = 1 and k > 1. Let i be the only element of {1, . . . , k} such that
π1(Y′) is isomorphic to P1 or, equivalently, such that #πi(Y′) 6= 1. The map ηj|w is an embedding
if and only if j 6= i.

Lemma 1. Take any Y, any q and any S ∈ S(Y, q). Then all maps ηi|S, i = 1, . . . , k, are injective.

Proof. Assume the existence of i ∈ {1, . . . , k} and a, b ∈ S such that a 6= b and ηi(a) = ηi(b),
i.e., πj(a) = πj(b) for all j ∈ {1, . . . , k} \ {i}. Set S′ := S \ {a, b}. Since a 6= b, πi(a) 6= πi(b).
Let L ⊂ Pni be the line spanned by πi(a) and πi(b). Let Y′ ⊂ Y be the dimension 1
multiprojective subspace of Y with L as its i-th factor and πj(a) as its j-th factor for all
j 6= i. Note that ν(Y′) is a line containing {ν(a), ν(b)}. Therefore, there is e ∈ L such that
q ∈ 〈ν(S′) ∪ {ν(e)}〉. Thus, rank(q) < #S, is a contradiction.

Remark 4. Take any Y with k ≥ 3 factors, any integer x > 2 and any S ∈ T(Y, x)′. Fix any
A ⊂ S such that #A = 2 and let Y′ be the minimal multiprojective subspace containing A. We
have Y′ ∼= (P1)m for some m ≤ k. The integer m is the number of integers i ∈ {1, . . . , k} such
that #πi(A) > 1. We have m ≥ 3, because δ(2A, Y) ≥ δ(2A, Y′) and δ(2E, (P1)m) = 2 for any
E ⊂ (P1)m with 1 ≤ m ≤ 2 and (P1)m the minimal multiprojective space containing E.

Lemma 2. Take any Y with k ≥ 3 factors, x > 2, S ∈ T(Y, x)′ and any 1 ≤ i < j ≤ k.
Then ηi,j|S is injective.

Proof. Assume that ηi,j|S is not injective. Take A ⊂ S such that #A = 2 and #ηi,j(A) = 1,
i.e., πh(A) = 1 for all h ∈ {1, . . . , k} \ {i, j}. Thus, the minimal multiprojective space Y′

containing A is isomorphic to P1 or P1 × P1. By [1] (Lemma 2.3) δ(2A, Y) ≥ δ(2A, Y′) = 2,
contradicting the assumption S ∈ T(Y, x)′.

Remark 5. Let Y be a multiprojectve space, and Z ⊂ Y a zero-dimensional scheme. If deg(Z) ≤ 2,
then ν(Z) is linearly independent. Now assume deg(Z) = 3. Since ν(Y) is scheme-theoretically
cut out by quadrics, ν(Z) is linearly dependent, i.e., 〈ν(Z)〉 is a line, if and only if 〈Z〉 ⊆ Y, i.e., if
and only if 〈Z〉 is a line contained in a ruling of Y.

Proposition 1. Take an integer e ∈ {1, 2, 3}, a set E ⊂ Y = Pn1 × · · · × Pnk such that #E = e
and a connected degree 2 scheme v ⊂ Y \ E. Set Z := E ∪ v. Assume h1(IZ(1, . . . , 1)) > 0.
Let W be the minimal subscheme of Z such that h1(IW(1, . . . , 1)) > 0. Assume that Y is the
minimal multiprojective space containing W.

(i) If e = 1, then k = 1, n1 = 1 and Z = W.
(ii) Assume e = 2 and k > 1. Then, k = 2, n1 = n2 = 1 and W = Z. Moreover, there is

C ∈ |OY(1, 1)| containing W and the converse holds.
(iii) Assume e = 3 and k > 2. Then, W = Z, k = 3 and n1 = n2 = n3 = 1.
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Proof. Note that deg(Z) = e + 2. Part (a) is true by Remark 5. From now on we assume
k > 1. We have deg(W) ≤ e + 2 and deg(W) = e + 2 if and only if W = Z. We just proved
that deg(W) ≥ 4. If W = Wred, then we use [4] (Proposition 5.2).

Write W = v ∪W ′ with W ′ ∩ vs. = ∅. Since h1(IW(1, . . . , 1)) > 0, there is q ∈
〈ν(W ′)〉 ∩ 〈ν(v)〉. The minimality of W gives q /∈ 〈ν(W1)〉 if either W1 ( W ′ or W1 ( W ′.
Note that q is in the tangential variety of ν(Y). If q 6= ν(Y), then it has rank ≤ deg(W ′) ≤ 3
and rank 3 only if e = 3 and Z = W. Thus, Y ∼= (P1)k with k ≤ 3 and k = 3 only if e = 3
and W = Z.

Lemma 3. Take two-degree 2 connected zero-dimensional schemes u, v ⊂ Y such that u ∩ v =
∅, Y is the minimal mutiprojective space containing Z := u ∪ v, h1(IZ(1, . . . , 1)) > 0 and
h1(IZ′(1, . . . , 1)) = 0 for all Z′ ( Z. Then, k ≤ 2 and Y = P1 × P1 if k = 2.

Proof. Assume k ≥ 3. By assumption 〈ν(u)〉 ∩ 〈ν(v)〉 is a single point, q. Take C ∈
|OY(1, 1)| such that deg(Z ∩ C) ≥ 3. By [5] (Lemma 5.1) we have Z ⊂ C. Let i be any
integer i ∈ {1, . . . , k} such that there is H1 ∈ |OY(εi)| such that e1 := deg(Z ∩ H1) is
maximal. Set Z1 := ResH1(Z). Note that deg(Z1) = z − e1. Set E1 := H1 ∩ Z. Note
that deg(E1) = e1. Let e2 be the maximal integer such that there is j ∈ {2, . . . , k} and
H2 ∈ |OY(ε j)| such that e2 := Hj ∩ Z1 is maximal. With no loss of generality (we do not
impose that the integer ni is non-increasing) we may assume j = 2. We then continue in
the same way, defining the integers e3, . . . , the divisors H3, . . . and the zero-dimensional
schemes E3, . . . and Z3, . . . such that Ei := Hi ∩ Zi, ei = #Ei, Zi+1 = ResH1(Zi) and at each
step the integer i is maximal. Note that e1 ≥ e2 ≥ · · · ≥ ei ≥ ei+1 and that ei = 0 if and
only if Z ⊂ H1 ∪ · · · ∪ Hi−1. Since k ≥ deg(Z)− 1 there is a maximal integer c ≤ k such
that ec ≤ 1 (it exists, because k ≥ deg(Z)− 1. Since OY is globally generated, [5] (Lemma
5.1) gives ec = 0 and ec−1 ≥ 2. We get e1 = e2 = 2 and Z ⊂ H1 ∪ H2. By [5] (Lemma
5.1) we have h1(IZ1(ε̂1)) > 0. Since the Segre embedding of Y1 is an embedding, we get
deg(η1(Z1)) = 1. Set {a} := ured and {b} = vred. First assume that Z1 is connected, say
Z1 = v. The set ν(η−1

1 (η1(a))) is contained in a line contained in ν(Y), and hence q ∈ ν(Y).
Since h1(IZ′(1, . . . , 1)) = 0 for all Z′ ( Z, q 6= ν(a). Since ν(Y) is cut out by quadrics and
the intersection of the line 〈ν(u)〉with ν(Y) contains the degree 3 scheme ν(u)∪ {q}, we get
〈ν(u)〉 ⊂ Y, and hence Y = P1 × P1. Now assume Z1 = {a, b}. We get πi(a) = πi(b) for all
i > 1. We also get {a, b} = E1, and hence if n1 = 1 we obtain π1(a) = π1(b). Hence, a = b,
a contradiction, if n1 = 1. Assume π1(a) 6= π1(b), and hence π1(a) and π1(b) are linearly
independent. Take M ∈ |OY(ε3)| containing a. Since π3(a) = π3(b), b ∈ M and hence
ResM(Z) ⊆ {a, b}. As above, we get πi(a) = πi(b) for all i 6= 3. Thus, π1(a) = π1(b), is
a contradiction.

We recall the following lemma which we learned from K. Chandler ([6,7]).

Lemma 4. Let W be an integral projective variety, L a line bundle on W with h1(L) = 0 and
S ⊂Wreg a finite set. Then:

(i) h1(I(2S,W) ⊗L) > 0 if and only if for each a ∈ S there is a degree 2 scheme v(a) ⊂W such
that v(a)red = 2 and h1(IZ ⊗L) > 0, where Z := ∪a∈Sv(a).

(ii) Assume h1(IS,W ⊗L) = 0. Take a minimal Z′ ⊆ Z containing S and such that h1(IZ′ ⊗
L) > 0. Then, h1(IZ′ ⊗L) = 1.

Lemma 5. Fix S ∈ T(Y, x)′ and take Z as in Lemma 4, i.e., assume Zred ⊇ S, that each connected
component of Z has degree ≤ 2, h1(IZ(1, . . . , 1)) = 1 and h1(IZ′(1, . . . , 1)) = 0 for all Z′ ( Z.
Then Zred = S.

Proof. Assume S′ := Zred 6= S. The “if” part of Lemma 4 gives δ(2S′, Y) > 0.
Thus, S * T(Y, x)′, is a contradiction.
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Remark 6. Take Z as in Lemma 4 for x = 4 and assume S ∈ T(Y, 4)′. Take a closed subscheme
W ( Z such that 3 ≤ deg(W) ≤ 4 and #Wred = 3. Let Y′ be the minimal multiprojective
space containing Wred. Assume the existence of at least k− 3 indices such that #πi(Wred) = 1,
i.e., Y′ ∼= Pm1 × Pm2 × Pm3 with 0 ≤ mi ≤ 2 for all i. By [1] (Theorem 4.12) and a dimensional
count, we get #Wred 6= 3.

Remark 7. Take Y = Pn1 × · · · × Pnk , k ≥ 2. As in [8] (Examples 2 and 3), let C(Y) denote the
set of all curves f (P1), where f : P1 −→ Y is a morphism with πi ◦ f an isomorphism if ni = 1,
while πi ◦ f is an embedding with as its image a rational normal curve if ni ≥ 2. Each C ∈ C(Y)
is called a rational normal curve of Y. The set C(Y) is an integral quasi-projective variety and
dim C(Y) = −3 + ∑k

i=1(n
2
i + 2ni).

3. The Tangential Variety

Among the Terracini loci we obtain an interesting family from the tangential vari-
ety τ(ν(Y)) of the Segre variety. Since ν(Y) is smooth, τ(ν(Y)) is the union of all lines
L ⊂ 〈ν(Y)〉 such that L ∩ ν(Y) contains a degree 2 connected zero-dimensional scheme.

From now on in this section, we only consider concise q ∈ τ(ν(Y)), i.e., we take
Y = (P1)k, k ≥ 2, and take q ∈ τ(ν(Y)) such that rank(q) = k.

Lemma 6. Take Y = (P1)k, k ≥ 3. Take q ∈ τ(ν(Y)) such that rank(q) = k. Then there is a
unique connected degree 2 zero-dimensional scheme v such that q ∈ 〈ν(v)〉.

Proof. The existence part is true because ν(Y) is smooth. Assume the existence of another
such a scheme w and set Z := v ∪ w. Thus, 3 ≤ deg(Z) ≤ 4. The case deg(Z) = 4,
i.e., u ∩ v = ∅ is excluded by Lemma 3. The case deg(Z) = 3, i.e., ured = vred is excluded,
because in this case Z is not Gorenstein ([9], Lemma 2.3).

Lemma 7. Take Y with k ≥ 3 factors. Let Z ⊂ Y be the union of two degree 2 connected
zero-dimensional scheme, u and v, and a point, c. Let Y′ be the minimal multiprojective space
containing Z. Assume h1(IZ(1, . . . , 1)) > 0 and take a minimal subscheme W ⊆ Z such that
h1(IW(1, . . . , 1)) > 0. Then., W = Z and Y′ ∼= P1 × P1 × P1.

Proof. If W 6= Z, we obtain a contradiction by Lemma 3 and Proposition 1. Thus, we may
assume W = Z and that either k ≥ 4 or ni ≥ 2 for at least one integer i. We do not assume
that the dimensions of the Y factors are non-increasing and hence we may permute the
factors of Y to simplify the notation. Let e1 be the maximal integer deg(Z ∩ H1) for some
i ∈ {1, . . . , k} and some H1 ∈ |OY(εi)|. Note that e1 ≥ max{n1, . . . , nk}. Permuting the
factors of Y, we may assume i = 1. Set Z1 := ResH1(Z). Let e2 be the maximal integer
deg(Z1 ∩ H2) for some i ∈ {2, . . . , k} and some H2 ∈ |OY(εi)|. With no loss of generality,
we may assume i = 2. Set Z2 := ResH2(Z1). We define in the same way e3, e4, Z3, Z4.
Since either k ≥ 4 or ni ≥ 2 for at least one integer i, e1 + · · · + e4 ≥ 4, and hence
deg(Z4) ≤ 1. Thus, h1(IZ4) = 0. By [5] (Lemma 5.1) we have Z ⊂ H1 ∪ · · · ∪ H4. We
also get that the last integer i with ei > 0 satisfies ei ≥ 2. Thus, e1 = 3 and e2 = 2. Since
h1(IZ1(ε̂1)) > 0, deg(πi(Z1)) = 1 for al i > 1. Set W1 := ResH2(Z). Since h1(IW1(ε̂2)) > 0,
Remark 4 gives that there is either G ⊆ W1 with deg(G) = 2 and deg(η2(G)) = 1 or
deg(W1) = 3 and there is i ∈ {1, . . . , k} \ {2} with deg(πj(W1)) = 1 for all j ∈ {1, . . . , k} \
{i, 2} and dim〈π1(W1)〉 = 1. Since deg(η2(Z1)) = 1, 〈ν(Z1)〉 is contained in the second
ruling of ν(Y). Thus, the plane 〈ν(Z ∩ H1)〉 intersects another point α = ν(β) of ν(Y).
Proposition 1 implies that the minimal multiprojective space Y′′ containing Z ∩ H1 is
contained in P1×P1 and that Z∩H1 ∪ β is contained in a curve of bidegree (1, 1) of P1×P1.
Thus, n1 = 1 and, since k ≥ 3, there are ai ∈ Pni , 1 ≤ i ≤ k, a1 ∈ π1(Y′), a2 ∈ π2(Y′) such
that Y′ = P1 × P1 × {a3} × · · · × {ak} and β = (a1, . . . , ak). The line 〈ν(Z1)〉 contains α.
Hence, πi(Z1) = ai, except for at most one i. Since k ≥ 3, we get Y′ ∼= P1 × P1 × P1.

We recall the following result ([8], Proposition 7).
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Lemma 8. Fix a concise q ∈ τ(ν(Y)) \ ν(Y) and set k := rank(q). Then, Y = (P1)k and
dimS(Y, q) ≥ 2k− 2.

Proposition 2. Take Y = (P1)4. Then S(Y, 4) ∩T(Y, 4)′ contains a 9-dimensional family associ-
ated to rank 4 points q ∈ τ(ν(Y)) and each S ∈ S(Y, q) satisfies δ(2S) ≥ 6,
h0(I2S(1, 1, 1, 1)) ≥ 2.

Proof. Since h0(OY(1, 1, 1, 1)) = 16 and 4(1 + dim Y) = 20, the proposition follows from
Lemma 8, Terracini lemma and the fact that Y is the minimal multiprojective space contain-
ing a set evincing the rank of a concise q ∈ 〈ν(Y)〉.

Proof of Theorem 7. Fix any q ∈ τ(ν(Y)) with is concise, i.e., rank(q) = k, and let v ⊂ Y
be the only degree 2 connected zero-dimensional scheme such that q ∈ 〈ν(v)〉 (Lemma 6).
Set {o} := vred, say o = (o1, . . . , ok). Take Σ = Σ1 ∪ · · · ∪ Σk as in Remark 7. Take a general
hyperplane M of 〈ν(Y)〉 passing through q and let H ∈ |OY(1, . . . , 1)| be the element
corresponding to M. Since ν(o) 6= q and M is general, o /∈ H. Thus, for i = 1, . . . , k there is
a unique a(i) ∈ Σi ∩ H, and a(i) 6= o. Set S := {a(1), . . . , a(k)}. Note that 〈Σ〉 = Tν(o)ν(Y),
and that 〈Σ〉 = {ν(o) ∪ ν(S)}. Since q is contained in the hyperplane M ∩ 〈Σ〉, and M
is associated to H, q ∈ 〈S〉. Since rank(q) = k, S ∈ S(Y, q). Varying M among the
hyperplanes of 〈ν(Y)〉 containing q, we get that S is not an isolated point of S(Y, q).
Thus, δ(2S) > 0. Since dim Y = k ≥ 5, we have k(k + 1) ≤ 2k, and hence h0(I2S(1, . . . , 1)) > 0.
Thus, S ∈ T(Y, k). To check that S ∈ T̃(Y, k) it is sufficient to observe that for any a(i) ∈ S
the (k− 1)-dimensional multiprojective space π−1

i (oi) contains the set S \ {a(i)}.

4. The Usual Terracini Sets and the Solution Sets

Remark 8. We have S(Y, 2) = ∅ for any Y, because T(Y, 2) = ∅ ([1], Proposition 1.8).

Remark 9. Obviously T(Pn, x) = ∅ for all x > 0.

Lemma 9. Take Y = Pn1 × Pn2 with n1 ≥ n2 > 0. Then, T(Y, n1 + 1) = ∅

Proof. First assume n1 = n2. Since Y is the minimal multiprojective space containing Y,
T(Y, n1 + 1) = ∅ by [1] (Lemma 2.4).

Now assume n1 > n2. We use induction on the non-negative integer n1 − n2.
Assume the existence of S ∈ T(Y, n1 + 1). To obtain a contradiction, it is sufficient to
prove that h0(I2S(1, 1)) = 0. Since Y is the minimal multiprojective space containing S,
〈π1(S)〉 = Pn1 , i.e., π1|S is injective and π1(S) is linearly independent. Since #S > n2 + 1,
there is S′ ⊂ S such that #S′ = n1 and 〈π2(S′)〉 = Pn2 . Set {p} := S \ S′. Let H be the only
element of |OY(ε1)| containing S′. Since 〈π2(S′)〉 = Pn2 , H is the minimal multiprojective
space containing S′. Hence, the inductive assumption gives h0(H, I2(S∩H,H(1, 1)) = 0. We
have ResH(2S) = 2p ∪ S′. Since h0(I2p(0, 1)) = 0, the residual exact sequence of H gives
h0(I2S(1, 1)) = 0.

Theorem 8. If Y = Pn1 × Pn2 , then T(Y, x) = ∅ for all x.

Proof. We may assume n1 ≥ n2 > 0. Assume the existence of S ∈ T(Y, x). The definition
of T(Y, x), gives x ≥ n1 + 1 and the existence of A ⊆ S such that #A = n1 + 1 and
〈π1(A)〉 = Pn1 , i.e., π1|A is injective and π1(A) is linearly independent. To obtain a
contradiction, it is sufficient to find S′ ⊆ S such that h0(I2S′(1, 1)) = 0. Let Y′ be the
minimal multiprojective space containing A. Since 〈π1(A)〉 = Pn1 , Y′ ∼= Pn1 × Ps for some
integer s ∈ {0, . . . , n2}. If s = n2, then we may take S′ = A by Lemma 9. Assume s < n2.
We use induction on n2 − s allowing the case s = 0. Thus, we reduce to prove the existence
of S′ in the case s = n2 − 1 for some n2 ≥ 1. In this case Y′ ∈ |OY(0, 1)|. Since Y is the
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minimal multiprojective space containing S there is o ∈ S \ A such that o /∈ H. We claim
that we may take S′ = A ∪ {o}. Consider the residual exact sequence

0 −→ I2o∪A(1, 0) −→ I2S′(1, 1) −→ I(2A,H),H(1, 1) −→ 0 (2)

of H. Lemma 9 gives h0(H, I(2A,H),H(1, 1)) = 0. Clearly h0(I2o(1, 0)) = 0
(Remark 9).

We recall the following result ([10], Proposition 2.3).

Lemma 10. Take Y := Pm × Pm × Pm, m ≥ 3. Then, each secant variety of ν(Y) has the expected
dimension.

Proposition 3. Take k ≥ 3 and Y = Pn1 × · · · × Pnk with n1 = n2 = n3 = m ≥ 3.
Then, T(Y, m + 1) = ∅.

Proof. Let π1,2,3 : Y −→ Y′ := (Pm)3 denote the projection of Y onto its first three factors.
Assume the existence of S ∈ T(Y, m + 1). In particular, Y is the minimal multiprojective
space containing Y and hence #π4,...,4(S) = m + 1 and Y′ is the minimal multiprojective
space containing S′ := π1,2,3(S). Thus, S′ is in the open orbit for the action of (Aut(Pm))3

of S(Y′, m + 1). Lemma 10 gives dim σm+1(ν(Y′)) = (m + 1)(3m + 1) − 1 < (m + 1)3.
Hence, δ(2S′, Y′) = 0. If k = 3, then Y = Y′. If k ≥ 4 we see Y′ as a multiprojective
subspace of Y fixing pi ∈ Pni , 4 ≤ i ≤ k, and applying k− 3 times [1] (Proposition 2.7), we
get δ(2S, Y) = 0.

Lemma 11. Fix a finite set S ⊂ Y and a ∈ Y \ S. Assume the existence of i ∈ {1, . . . , k} such
that πi(a) ∈ πi(S). Then, δ(2S, Y) < δ(2(S ∪ {a}), Y).

Proof. The thesis of the lemma is equivalent to proving the following statement: Tν(a)ν(Y)∩
〈∪b∈STν(b)ν(Y)〉 6= ∅. By assumption, there are i ∈ {1, . . . , k} and b ∈ S such that
πi(a) = πi(b). Thus, Tν(a)ν(Y) ∩ Tν(b)ν(Y) contains a point of ν(Y).

Lemma 12. Fix integers x > m > 0 and E ⊂ Pm such that #E = x and 〈E〉 = Pm.
Set Y := Pm × (P1)k−1 for some k ≥ 2. Fix o2, . . . , ok ∈ P1 and let A ⊂ Y be the set of
all (a, o2, . . . , ak), a ∈ E. Fix u ∈ Y \ A such that π1(u) ∈ E. Then, δ(2(A ∪ {u}), Y) >
δ(2A, Y) ≥ (x− 1)(m + 1).

Proof. The first inequality is true by Lemma 11. We have δ(2A, Y) ≥ δ(2E,Pm) ([1], Lemma
2.3). Clearly, δ(2E,Pm) = (x− 1)(m + 1).

Remark 10. Take k = 4, m = 1 and x = 3 in the set-up of Lemma 15. Thus, Y = (P1)4. We get
elements of T(Y, 4), because h0(OY(1, 1, 1, 1)) = 16, 4(dim Y + 1) = 20 and 1 + (x− 1)(m +
1) = 5.

Lemma 13. Take Y = (P1)3 and any S ∈ S(Y, 3). Let Y′ be the minimal multiprojective space
containing S.

1. If Y′ = Y, then h0(I2S(1, 1, 1)) ≤ 1; h0(IY(1, 1, 1)) > 0, if and only if S is as in [1]
(Proposition 3.2 (iv)). If S is as in [1] (Proposition 3.2 (iv)) with {i, j} = {1, 2}, then the only
element, W, of |I2S(1, 1, 1)| is of the form W = W1 ∪W2 ∪W3 with Wi ∈ |OY(εi)|. If S is
as in [1] (Proposition 3.2 (iv)) with Wi ∈ |OY(εi)|. Moreover, dim Sing(W) = 1.

2. If Y′ ∼= P1 × P1, then h0(I2S(1, 1, 1)) = 1.
3. If Y′ ∼= P1, then 1 ≤ h0(I2S(1, 1, 1)) ≤ 2.

Proof. The case Y′ = Y is proved in the proof of [1] (Lemma 4.2) with the description of all
cases with h0(I2S(1, 1, 1)) = 1. It is easy to see that a reducible surface W = W1 ∪W2 ∪W3
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is singular at all points of S. Thus, W is the only element of |I2S(1, 1, 1)|. Note that Sing(Y)
is the union of 3 curves.

Assume Y′ ∼= P1 × P1. Obviously, h0(Y′, I(2S,Y′)(1, 1, 1)) = 0. Thus, δ(2S, Y′) = 5.
With no loss of generality, we may assume #π3(S) = 1, i.e., Y′ ∈ |OY(ε3). Consider the
residual exact sequence of Y′:

0 −→ IS(1, 1, 0) −→ I2S(1, 1, 1) −→ I(2S,Y′)(1, 1, 1) −→ 0. (3)

We have h0(IS(1, 1, 0) = 1, because Y′ is the minimal multiprojective space containing
S. Therefore, h1(IS(1, 1, 0)) = 0. Thus, δ(2S, Y) = δ(2S, Y′) = 5 and h0(I2S(1, 1, 1)) = 1,
concluding the proof of this case.

Assume Y′ ∼= P1. Clearly, δ(2S, Y′) = 4. With no loss of generality, we may assume
#πi(S) = 1 for i = 2, 3, i.e., the existence of o2, o3 ∈ P1 such that Y′ = P1 × {o2} × {o3}.
Set Y′′ := P1 × P1 × {o3}. Thus, Y′ ∈ |OY′′(0, 1)|. Consider the residual exact sequence of
Y′ in Y′′:

0 −→ IS,Y′′(1, 0) −→ I2S,Y′′(1, 1) −→ I(2S,Y′)(1, 1, 1) −→ 0. (4)

Since h0(Y′′, I(S,Y′′)(1, 0)) = h0(Y′, I2S,Y′(1, 1)) = 0, (4) gives h0(Y′′, I2S,Y′′(1, 1)) = 0,
and hence δ(2S, Y′′) = 5. Then, the exact sequence (3) with Y′′ instead of Y′ gives 1 ≤
h0(I2S(1, 1, 1)) ≤ 2.

Remark 11. Take any multiprojective space Y and any positive integer x. Assume the existence
of S ∈ T(Y, x) and W ∈ |I2S(1, . . . , 1)| such that Sing(W) ) S and take any p ∈ Sing(W) \ S.
Since δ(2(S ∪ {p}), Y) ≥ δ(2S, Y) > 0, Y is the minimal multiprojective space containing
S ∪ {p} and W ∈ |I2(S∪{p})(1, . . . , 1)|, S ∪ {p} ∈ T(Y, x + 1). Hence, if dim Sing(W) > 0,
then T(Y, y) 6= ∅ for all y > x.

Remark 12. We claim that (P2)3 is the only multiprojective space such that T1(Y, 4) = S(Y, 4).
If k ≥ 3 it is sufficient to use part (b) of Remark 1. If k ≤ 2 use Remark 9 and Theorem 8.

Proposition 4. Fix any multiprojective space Y. Set n := dim Y,

w := d(1 + h0(OY(1, . . . , 1)))/(n + 1)e, z := max{n + 1, w}.

Then, T̃(Y, x) = ∅ for all x > z.

Proof. Fix A ⊂ Y such that #A ≥ z. Since dim σx(ν(Y)) ≤ (x + 1)(n + 1)− 1, the semi-
continuity theorem for cohomology gives h1(I2A(1, . . . , 1)) > 0. Take any x > z and any
S ∈ T(Y, x). We saw that every A ⊂ S with #A = z has h1(I2A(1, . . . , 1)) > 0. Since A ⊂ S,
h0(I2A(1, . . . , 1)) > 0. Thus, to prove that S /∈ T̃(Y, x) it is sufficient to find A with the
additional condition that Y is the minimal multiprojective space containing A. We claim
the existence of E ⊂ S such that #E ≤ n + 1 and Y is the minimal multiprojective space
containing E. Take any a1 ∈ S. The set Y(1) := {a1} is the minimal multiprojective space
containing a1. Since Y is the minimal multiprojective space containing S, there is a(2) ∈ S
such that the minimal multiprojective space Y(2) containing {a1, a2} strictly contains Y(1),
and hence, dim Y(2) > dim Y(1). Furthermore, so on to get E after at most n− 1 steps.

Almost always w ≥ n + 1. For instance, if ni = 1 for all i (and hence n = k) we have
w ≥ n + 1 if and only if k ≥ 5.

Proposition 5. Fix integers x ≥ 3 and k ≥ 3. Fix n1 ≥ · · · ≥ nk > 0 such that n1 ≤ x − 1,
n2 ≤ x − 1 and n3 ≤ x − 2. Set Y := Pn1 × · · · × Pnk . Assume σx−1(ν(Y)) 6= 〈ν(Y)〉. Fix
lines L ⊂ Pn1 , R ⊂ Pn2 and points oi ∈ Pni , 3 ≤ i ≤ k. Let Y′ ⊂ Y the multiprojective space
with L as its first factor R as its second factors and {oi} as its i-th factor 3 ≤ i ≤ k. Fix a general
(a, b) ∈ Y′ ×Y′ and a general S′ ⊂ Y with #S′ = x− 2. Set S := S′ ∪ {a, b}. Let q be a general
element of 〈ν(S)〉. Then, rank(q) = x and Y is the minimal multiprojective space containing S.
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Proof. Y′ is the minimal multiprojective space containing {a, b}. Since n1 ≥ · · · ≥ nk > 0,
n1 ≤ x − 1, n2 ≤ x − 1, n3 ≤ x − 2, and S′ is general, Y is the minimal multiprojective
space containing S. Assume rank(q) ≤ x − 1. Thus, q ∈ σx−1(ν(Y)). Since Aut(Pnh),
h = 1, 2, acts transitively on the Grassmannian of the lines of Pnh , Aut(Pni ), i = 3, . . . , k, a is
general in Y′ and S′ is general in Y, S′ ∪ {a} is a general subset of Y with cardinality x− 1.
Hence, varying S′ and a the union of the sets 〈ν(S′ ∪ {a})〉 covers a non-empty open subset
of σx−1(ν(Y)). Since for a fixed S′ ∪ {a} the point b is a general point of Y′, the closure of
the union of all 〈ν(S)〉 is the join, J, of ν(Y′) and σx−1(ν(Y)). Since q ∈ σx−1(ν(Y)), we get
that σx−1(ν(Y)) is a cone with vertex containing ν(Y′). Since Y is the image of Y′ by the
action of the group ∏k

h=1 Aut(Pnh), we get that σx−1(ν(Y)) is a cone with vertex containing
ν(Y). Thus, σx−1(ν(Y)) = 〈ν(Y)〉, a contradiction.

Remark 13. Note that T(Y, n1 + 1) = T̃(Y, n1 + 1).

Lemma 14. Take Y = Pn1 × Pn2 × Pn3 . We have T(Y, 4) 6= ∅ if (n1, n2, n3) ∈
{(3, 1, 1), (2, 1, 1), (2, 2, 1)}.

Proof. Fix a line L ⊂ Pn1 , a1, b1 ∈ L such that a1 6= b1 and oi ∈ Pni , i = 2, 3.
Set Y′ := L × {o2} × {o3}, a = (a1, o2, o3), and b = (b1, o2, o3). Since δ(2{a, b}, Y′) = 2,
δ(2{a, b}, Y) ≥ 2.

Take Hi, i = 2, 3, such that oi ∈ πi(Hi). Take a general H1 ∈ |OY(ε1)| and set
W := H1 ∪ H2 ∪ H3. Note that {a, b} ⊂ H2 ∩ H3 and hence {a, b} ⊂ Sing(H2 ∪ H3) ⊂
Sing(W). By Remark 11, it is sufficient to find c, d ∈ Sing(W) \ {a, b} such that c 6= d
and Y is the minimal multiprojective space containing S := {a, b, c, d}. Since M is general,
Pn3 = 〈L ∪ π1(M)〉.

Assume (n1, n2, n3) ∈ {(3, 1, 1), (2, 1, 1), (2, 2, 1)}. Take a general c ∈ M ∩ H2 and
a general d ∈ M ∩ H3. Since π1(H2) = π1(H3) = Pn1 , Pn3 = 〈L ∪ π1(M)〉 and c, d are
general, 〈π1(S)〉 = Pn1 . Since c is general and π3(H2) = P1, π3(S) spans P1. Since c and d
are general, π2(H3) = Pn2 and 〈π2(S)〉 = Pn2 .

Lemma 15. Assume k ≥ 3, n1 ∈ {2, 3} and ni ≤ 2 for all i = 2, . . . , k. Then, T(Y, 4) 6= ∅.
If n1 = 3, then T̃(Y, 4) 6= ∅.

Proof. With no loss of generality, we may assume n1 ≥ · · · ≥ nk > 0. Since T(Y, 4) =
T̃(Y, 4) if n1 = 3 (Remark 13) it is sufficient to prove that T(Y, 4) 6= ∅. Fix a line L ⊂ Pn1 ,
a1, b1 ∈ L such that a1 6= b1 and oi ∈ Pni , 2 ≤ i ≤ k. Set a := (a1, o2, ok), b := (b1, o2, . . . , ok)
and Y′ := L × {o2} × · · · × {ok}. Since δ(2({a, b}), Y′) = 2, δ(2({a, b}, Y)) ≥ 2. Fix a
general (c, d) ∈ Y×Y and set S := {a, b, c, d}. Note that Y is the minimal multiprojective
space containing S. We have δ(2S, Y) ≥ δ(2({a, b}), Y) ≥ 2. Thus, to prove that S ∈ T(Y, 4)
it is sufficient to prove that h0(I2S(1, . . . , 1)) > 0. Since δ(2S, Y) ≥ 2, it is sufficient to
prove that

4(n1 + · · ·+ nk + 1) ≤ 1 +
k

∏
i=1

(ni + 1). (5)

Since k ≥ 3, the difference ψ(n1, . . . , nk) between the right-hand side and the left-hand
side of (5) is a non-decreasing function of each ni. If n1 = 1 (and hence ni = 1 for all
i, then (5) is satisfied if and only if k ≥ 5. Theorems 10 and 11 in the next section give
T((P1)k, 4) 6= ∅ for k = 3, 4. For k ≥ 3 we have ψ(n1, . . . , nk) < ψ(n1, . . . , nk, 1). We have
ψ(3, 3, 1) = 1, ψ(3, 2, 2) = 5, ψ(3, 2, 1, 1) = 17, ψ(2, 2, 1, 1) = 8, ψ(3, 1, 1, 1) = 1. Thus, it is
sufficient to check all (n1, . . . , nk) in the following list (2, 1, 1), (2, 2, 1), (3, 1, 1), (2, 1, 1, 1).
This is done in Lemma 14.

Lemma 16. Assume k ≥ 3, n1 = n2 = 3 and n3 ≤ 2. Then, T(Y, 4) 6= ∅.
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Proof. Fix lines L, R ⊂ P3 and oi ∈ Pni , 3 ≤ i ≤ k. Set Y′ := L× R× {o3} × · · · × {ok}.
Fix a general (a, b) ∈ Y′ × Y′. Since δ(2{a, b}, Y′) = 2, we have δ(2{a, b}, Y) ≥ 2. Fix a
general (c, d) ∈ Y×Y and set S := {a, b, c, d}. Note that Y is the minimal multiprojective
space containing S and that δ(S, Y) ≥ δ(2{a, b}, Y) ≥ 2. Thus, to prove that S ∈ T(Y, 4) it
is sufficient to prove that the inequality (5) is satisfied. As in the proof of Lemma 15, it is
sufficient to observe that it is satisfied if k = 3 and n3 = 1.

Proposition 6. Take Y = Pn1 × · · · × Pnk with k > 0 and n1 ≥ · · · ≥ nk > 0.

(i) We have S(Y, 3) 6= ∅ if and only if k ≥ 3 and n1 ≤ 2.
(ii) If Y 6= (P1)4, all S ∈ S(Y, 3) are as in [1] (Proposition 3.2).
(iii) Assume Y = (P1)4; S ∈ S(Y, 3) if and only if either S ∈ S(Y, q) for some q such that

rank(q) = 3 or it is as in [1] (Proposition 3.2).

Proof. Since T(Y, 3) 6= ∅, k ≥ 3 and n1 ≤ 2 ([1], Theorem 4.12) and all S ∈ T(Y, 3) are as
described in [1] (Theorem 4.12).

(a) If Y 6= (P1)4, S ∈ T(Y, 3) if and only if either S ∈ S(Y, q) for some q such that
rank(q) = 3 or it is as in [1] (Propositions 3.1 and 3.2, Theorem 4.12). The case [1]
(Proposition 3.1) is excluded by Lemma 1, because in this case η1|S is not injective.
Proposition 5 proves that a general S as in [1] (Proposition 3.2) is an element of
T(Y, 3). In (iii), we claim a stronger statement. Fix S as in [1] (Proposition 3.2) and
a general q ∈ 〈ν(S)〉. We need to prove that rank(q) = 3. Assume rank(q) ≤ 2
and take A ∈ S(Y, q). Set U := S ∪ A. We have #U ≤ 5 and h1(IU(1, . . . , 1)) > 0.
Note that h1(IS(1, . . . , 1)) = 0. Let V be the minimal subset of U containing S and
with h1(IV(1, . . . , 1)) > 0. Since V contains S, Y is the minimal multiprojective space
containing V. Since k ≥ 3, [4] (Theorem 1.1 and Proposition 5.2) gives #V = 5 (hence
V = U, rank(q) = 2 and A ∩ S = ∅) and Y = (P1)3. In this case, all possible sets V
are described in [4] (Lemma 5.8) and πi|V is injective for all i. However, πi|S is not
injective for one i by the definition of the example described in [4] (Proposition 3.1),
a contradiction.

(b) Now assume Y = (P1)4. S ∈ T(Y, 3) if and only if either S ∈ S(Y, q) for some q such
that rank(q) = 3 or it is described in part (a) ([1], Theorem 4.12).

Theorem 9. Take Y = (P2)3. Then, T1(Y, 4) = S(Y, 4), T(Y, 4)′ 6= ∅ and S(Y, 4) 6= ∅.
Moreover, S ∈ T(Y, 4)′ if and only if the following conditions are satisfied:

(i) πi|S is injective for all i = 1, 2, 3;
(ii) for each A ⊂ S such that #A = 3, we have 〈πi(A)〉 = P2 for at least two i ∈ {1, 2, 3}.

Proof. Take a general U ⊂ Y such that #U = 4. Since σ4(Y) is defective (Remark 1), U ∈
T(Y, 4). The semicontinuity theorem for cohomology gives T1(Y, 4) = S(Y, 4). The solution
set of any q ∈ 〈ν(Y)〉 with rank 4 is an element of S(Y, 4). Since σ3(Y) is not defective
and 3(1 + dim Y) < h0(OY(1, 1, 1)), δ(2A, Y) = 0 for all A ( U, and hence, U ∈ T(Y, 4)′.
Fix S ∈ S(Y, 3). By Remark 15 the injectivity of all πi|S is a necessary condition to have
S ∈ T(Y, 4)′. Condition (ii) is also necessary by Terracini Lemma and the inequalities
h0(OP1×P1×P1(1, 1, 1)) = 8 < 3(1 + dimP1 × P1 × P1) and h0(OP2×P1×P1(1, 1, 1)) = 12 <
3(1 + dimP2 × P1 × P1). Now assume (i) and (ii) for the set S. By (i) δ(2A, Y) = 0 for all
A ⊂ S such that #A = 2. Now take A ⊂ S such that #A = 3. First assume 〈πi(A)〉 = P2.
In this case A is the open orbit of S(Y, 3) for the action of Aut(P2)×Aut(P1)×Aut(P1).
Since σ3(Y) is not defective, we get δ(2A, Y) = 0. Now assume dim〈πi(A)〉 = 1 for exactly
one i, say for i = 3. Thus, the minimal multiprojective space Y′ containing A is isomorphic
to P2 × P2 × P1. Since #π3(A) = 3 and 〈πi(A)〉 = P2 for i = 1, 2, A is in the open orbit for
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the action on S(Y′, 3) of the connected component Aut(Y′) and dim σ3(Y′) = 17 (Remark 1),
we get δ(2A, Y′) = 0. We have Y′ ∈ |OY(ε3)|. Consider the residual exact sequence of Y′:

0 −→ IA(1, 1, 0) −→ I2A(1, 1, 1) −→ I(2A,Y′),Y′(1, 1, 1) −→ 0. (6)

Since 〈π1(A)〉 = P2, we have h1(IA(1, 1, 0)) = 0. Since δ(2A, Y′) = 0, (6) gives
δ(2A, Y) = 0. Thus, S is minimally Terracini.

5. Proofs of Theorems 1 and 2

Lemma 17. Fix integers k ≥ 4, x ≥ 4 and n1 ≥ · · · ≥ nk > 0, 1 ≤ i ≤ k, such that n1 ≤ x− 1
and n1 + · · ·+ nk = 2x− 2. Then,

k

∏
i=1

(ni + 1) ≥ x(2x− 1). (7)

Proof. We fix the integer x ≥ 4.
Observation 1: Fix an integer a ≥ 3. The real function h(t) := t(a− t) has a unique

maximum in the interval [1, a− 1] and the integers ba/2c and da/2e are the only one with
maximum value for the integers 1 ≤ x ≤ a− 1.

First assume k = 4. Applying several times Observation 1, we see that the right hand
side of (7) has a minimum with n1 = x− 1, n2 = x− 3 and n3 = n4 = 1. For these integers,
(7) is satisfied.

Now assume k ≥ 5. Since n1 ≥ · · · ≥ nk > 0 and n1 + · · · + nk = 2x − 2,
nk−1 + nk ≤ x − 1. We apply Observation 1 to the integer a = n1 + nk and the induc-
tive assumption for the integers n1, . . . , nk−2, nk−1 + nk (after permuting them to get a
non-increasing sequence).

Proof of Theorem 1. Assume T(Y, 4) 6= ∅. For any S ∈ T(Y, 4), Y is the minimal multi-
projective space containing S, and hence, n1 ≤ 3 . Obviously k > 1 (Remark 9). Theorem 8
excludes the case k = 2. Proposition 3 gives n3 ≤ 2.

If k ≥ 3 and ni = 1 for all i, then T(Y, 4) 6= ∅ by Theorem 10 (the case k = 3) and the
case m = 1 of Theorem 11. If k ≥ 3, 2 ≤ n1 ≤ 3 and n2 ≤ 2, then T(Y, 4) 6= ∅ by Lemma 16.
If k ≥ 3, n1 = n2 = 3 and n3 ≤ 2, then T(Y, 4) 6= ∅ by Lemma 16.

Theorem 10. Take Y = (P1)3. Then, T(Y, x) 6= ∅ and T̃(Y, x) = ∅ for all x ≥ 4.
Moreover, for all x ≥ 4 each set A ∈ T(Y, 3) as in [1] (Proposition 3.2) is a primitive reduc-
tion of some S ∈ T(Y, x).

Proof. We have T(Y, x) 6= ∅ for all x ≥ 4 by Remark 11 and part (1) of Lemma 13.
Thus, the “Moreover” part is proved.

Take S ∈ T(Y, x), x ≥ 4. For each S′ ⊂ S such that #S′ = 3 we have δ(S′, Y) > 0.
Thus, to prove that T̃(Y, x) = ∅ it is sufficient to find S′ such that Y is the minimal
multiprojective space containing Y.

Claim 1. There is u, v ∈ S such that u 6= v and the minimal multiprojective space
containing {u, v} is not isomorphic to P1.

Proof of Claim 1. Assume that Claim 1 is not true, i.e., assume that for all a, b ∈ S
such that a 6= b, there is A(a, b) ⊂ {1, 2, 3} such that #A(a, b) = 2 and πi(a) = πi(b) for
all i ∈ A(a, b). For any u ∈ S set ui := πi(u). By assumption #πi(S) ≥ 2 for all i = 1, 2, 3.
Start with any a = (a1, a2, a3) ∈ S. There is b ∈ S such that b1 6= a1. Assume b = (b1, a2, a3).
There is c ∈ S such that c2 6= a2. If c1 = b1 take u = a and v = c.

Fix u, v ∈ S as in Claim 1 and let W be the minimal multiprojective space containing
{u, v}. If W = Y, then any w ∈ S \ {u, v} shows that S is not primitive. If W ∼= P1 × P1,
then any w ∈ S such that w /∈W shows that S is not primitive.
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Theorem 11. Take Y = Pm × (P1)k−1 with m ∈ {1, 2} and k ≥ 4. For any integer x ≥ 4,
there is S ∈ T(Y, x) with as a primitive reduction an element A ∈ T(Y, 3) described in [1]
(Proposition 3.1).

Proof. Take any A ∈ T(Y, 3) described by [1] (Proposition 3.1). By Remark 11 it is sufficient
to find W ∈ |I2S(1, . . . , 1)| such that dim Sing(W) > 0. As in [1] (Proposition 3.2) take
A = {a, b, c} with a = (a1, u2 . . . , uk), b = (b1, u2, . . . , uk), c = (c1, . . . , ck), ci 6= ui for all
i > 1, #{a1, b1, c1} = 3 and a1, b1, c1 spanning Pm. Set H2 and H3) be the only element of
|OY(εi)|, i = 2, 3, containing a. Note that b ∈ H2 ∩ H3, and hence, {a, b} ∈ Sing(H2 ∪ H3).
Let H4 be the only element of |OY(ε4)| containing c. Let H1 be an element of |OY(ε1)|
containing c. Note that A ⊂ Sing(H1 ∪ H2 ∪ H3 ∪ H4) and that Sing(H1 ∪ H2 ∪ H3 ∪ H4)
has codimension 2 in Y. If k > 4, use the union of H1 ∪ H2 ∪ H3 ∪ H4 and an arbitrary
element of |OY(0, 0, 0, 0, 1 . . . , 1)|.

Theorem 12. Fix integers x ≥ 4, k ≥ 3, n1 ∈ {1, 2} and n2 ∈ {1, 2}. Set Y := Pn1 × Pn2 ×
(P1)k−2. Fix any A ∈ T(Y, 3) as in [1] (Proposition 3.2). Then, there is S ∈ T(Y, x) such that A
is a primitive reduction of S.

Proof. The set A is primitive, because T(Y, y) = ∅ for y < 3 (the case y = 1 is trivial
and [1] (Proposition 1.8) gives the case y = 2. By Remark 11 it is sufficient to find W ∈
|OY(1, . . . , 1)| such that A ⊂ Sing(W) and dim Sing(W) > 0. Write A = {u, v, o} with
u, v, o as in [1] (Proposition 3.2).

(a) Assume k ≥ 4. For i = 3, 4 let Hi be the only element of |OY(εi)| containing u.
Note that v ∈ H2 ∩H3 and hence {u, v} ⊂ Sing(H2 ∪H3). Take Hi ∈ |OY(εi)|, i = 1, 2,
containing o. Thus, A ⊂ Sing(H1 ∪ H2 ∪ H3 ∪ H4). The set Sing(H1 ∪ H2 ∪ H3 ∪ H4)
has codimension 2 in Y. If k > 4, use the union of H1 ∪ H2 ∪ H3 ∪ H4 and an arbitrary
element of |OY(0, 0, 0, 0, 1 . . . , 1)|.

(b) Assume k = 3. Since the case n1 = n2 = 1 is true by Theorem 10, we may assume
n1 + n2 ≥ 3, say n1 = 2. Let H3 be the only element of |OY(ε1)| containing u.
Note that v ∈ H3.

(b1) Assume n1 = n2 = 2. Take H1 ∈ |OY(ε1)| containing {o, u} and H2 ∈ |OY(ε2)|
containing {o, v}. Use H1 ∪ H2 ∪ H3.

(b2) Assume n1 = 2 and n2 = 1. Since o is as in [1] (Proposition 3.2 (v)), there π2(o) ∈
{π2(u), π2(v)}, say π2(o) = π2(v). Take H1 ∈ |OY(ε1)| containing {o, u} and H2 ∈
|OY(ε2)| containing o and hence containing v. Use H1 ∪ H2 ∪ H3.

Proof of Theorem 2. Assume n2 ≤ x− 2. Fix a line L ⊂ Pn1 and points oi ∈ Pni , 2 ≤ i ≤ k.
Let Y′ ⊂ Y the multiprojective space with L as its first factor and {oi} as its i-th factor
2 ≤ i ≤ k. Fix a general (a, b) ∈ Y′ ×Y′. Since h1(Y′, I2{a,b},Y′) = 2, δ(2{a, b}, Y) ≥ 2.

Claim 1. We have 2(n1 + · · ·+ nk + 1) ≤ 1 + ∏k
i=1(ni + 1).

Proof of Claim 1. Let ψ(n1, . . . , nk) be the difference between the right hand side and
the left hand side of the inequality in Claim 1. Since k ≥ 3, ψ(n1, . . . , nk) is an increasing
function in [1,+∞)k. Thus, it is sufficient to check that ϕ(k) := ψ(1, . . . , 1) ≥ 0. Since the
function ϕ is an increasing function of k, it is sufficient to observe that ϕ(3) = 1.

Claim 1 and the inequality δ(2{a, b}, Y) ≥ 2 give h0(I2{a,b},Y(1, . . . , 1)) > 0. By Re-
mark 2 it is sufficient to find W ∈ |I2{a,b}(1, . . . , 1)| such that Sing(W) contains a set S′

such that #S′ = x − 2, S′ ∩ {a, b} = ∅ and Y is the minimal multiprojective space con-
taining S := S′ ∪ {a, b}. Take a general Hi ∈ |Ia(εi)|, i = 2, 3. Since {a, b} ⊂ H2 ∩ H3,
{a, b} ⊂ Sing(H2 ∪ H3). Fix general H1 ∈ |OY(ε1) and set W := H1 ∪ H2 ∪ H3. Since H1
is general, 〈L ∪ π1(H1)〉 = Pn1 . Fix a general S′′ ⊂ H1 ∩ H2 such that #S′′ = x− 3 and a
general c ∈ H1 ∩ H3. Set S′ := S′′ ∪ {c}. Obviously, S′ ∩ {a, b} = ∅ and S := S′ ∪ {a, b} ⊂
Sing(W). Note that L = 〈{π1(a), π1(b)〉 and that π1(H1 ∩ H2) = π1(H1 ∩ H3) = π1(H1).
Hence 〈π1(S)〉 = Pn1 . Since R = 〈{p2(a), π2(b)}〉, 〈R ∪ π2(H2)〉Pn2 and S′ is general,
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〈π2(S)〉 = Pn2 . Obviously, 〈πi(oi) ∪ πi(S′)〉 = Pni for all i > 2. Thus, Y is the minimal
multiprojective space containing S.

Now assume k ≥ 4 and n3 ≤ x− 2.
By Claim 1 and the inequality δ(2{a, b}, Y) ≥ 2 we have h0(I2{a,b},Y(1, . . . , 1)) > 0.

By Remark 2 it is sufficient to find W ∈ |I2{a,b}(1, . . . , 1)| such that Sing(W) contains a
set S′ such that #S′ = x − 2, S′ ∩ {a, b} = ∅ and Y is the minimal multiprojective space
containing S := S′ ∪ {a, b}. Take a general Hi ∈ |Ia(εi)|, i = 3, 4. Since {a, b} ⊂ H3 ∩ H4,
{a, b} ⊂ Sing(H3 ∪H4). Fix general Hi ∈ |OY(εi), i = 1, 2, and set W := H1 ∪H2 ∪H3 ∪H4.
Since H1 and H2 are general, 〈L ∪ π1(H1)〉 = Pn1 and 〈π2(H2)〉 = Pn2 . Fix a general S′ ⊂
H1 ∩ H2 such that #S′ = x− 2. Obviously S′ ∩ {a, b} = ∅ and S := S′ ∪ {a, b} ⊂ Sing(W).
Note that L = 〈{π1(a), π1(b)〉 and that π1(H1 ∩ H2) = π1(H1). We conclude as in the
proof of (i).

6. Minimally Terracini

Remark 14. Take Y = Pn1 × · · · × Pnk . Fix any S ⊂ Y such that #S = 4 and Y is the minimal
multiprojective space containing S, i.e., 〈πi(S)〉 = Pni for all i. If ni = 1, then #πi(S) > 1.
If ni = 2, then #πi(S) > 2 and πi(S) is not contained in a line. If ni = 3, then πi|S is injective and
πi(S) is linearly independent. If E ∈ T(Y, x)′ and ni = x + 1, then πi|E is injective and πi(E) is
linearly independent.

Proof of Theorem 3. Since h0(OY(1, . . . , 1)) ≥ x(1 + dim Y) (Lemma 17), we have
h0(I2S(1, . . . , 1)) > 0 if #S = x and δ(2S, Y) > 0. Fix C ∈ C(Y) (Remark 7) and a general
S ⊂ C such that #S = x. For any o ∈ S, let W(o) be the degree 2 zero-dimensional sub-
scheme of the smooth curve C with o has its reduction. Set W := ∪o∈SW(o). Note that
deg(W) = 2x, W ⊂ C. Since x ≥ ni + 1 for all i and either πi(C) = P1 (case ni = 1) or
πi(C) is a rational normal curve of Pni if ni > 1, Y is the minimal multiprojective space
containing S. Since ν(C) is a degree dim Y = 2x− 2 rational normal curve in its linear span
and deg(W) = 2x, h1(C, IZ,C(1, . . . , 1)) > 0. Thus, δ(2S, Y) > 0, and hence, S ∈ T(Y, x).
Assume S /∈ T(Y, x)′ and take a minimal S′ ( S such that δ(2S′, Y) > 0. Set y := #S′. We
have 2 ≤ y ≤ x− 1. By Lemma 4 and the minimality of y there is a zero-dimensional scheme
Z = ∪o∈S′Z(o) ⊂ Y with Z(o)red = {o}, deg(Z(o)) ≤ 2 for all o ∈ S′, h1(IZ(1, . . . , 1)) > 0
and h1(IZ′(1, . . . , 1)) = 0 for all Z′ ( Z.

Observation 1: Each πi|S′ is injective and each πi(S′) is in linear independent position
in Pni , i.e., each subset of πi(S′) with cardinality ≤ ni + 1 is linearly independent.

Observation 1 gives h1(IS′(1, . . . , 1)) = 0. Thus, Z 6= S′, i.e., there is o ∈ S′ such that
deg(Z(o)) = 2.

Take H1 ∈ |Io(ε1)| containing min{ni, y} points of S′. Since π1|S′ is injective and each
π1(S′) is in linear independent position in Pn1 , #(H1 ∩ S′) = min{y, n1}. If y > n1, we take
in H1 ∩ S′ as much points x ∈ S′ with deg(Z(x)) = 2 as possible. Set Z1 := ResH1(Z) and
S1 := (Z1)red.

(a) Assume Z(o) * H1. Note that {o} is a connected component of Z1. We take
H2 ∈ |OY(ε2)| such that o /∈ H2 and H2 contains min{−1 + #S1, n2} points of S1,
taking first the ones which are not connected components of Z1. Set Z2 := ResH2(Z1).
Note that o is a connected component of Z2. We continue in this way, until we get Zc, Sc
and Hc ∈ |OY(εc)| with #Sc ≤ nc and o /∈ Hc (we find c ≤ k, because n1 + · · ·+ nk ≥
x > y). Set Zc+1 := ResHc(Zc). First assume Zc \ {o} ⊂ Hc. In this case Zc+1 = {o}
and since h1(Io) = 0 we obtain a contradiction. Now assume Zc \ {o} * Hc.
In this case, Zc+1 is a reduced set containing o and with cardinality at most nc.
Set u := (u1, . . . , un) ∈ Nk with u1 = 0 if i ≤ c and ui = 1 if c + 1 ≤ i ≤ k. By Obser-
vation 1, to prove that h1(IZc+1(u)) = 0 (and hence to conclude the proof of this case)
it is sufficient to prove that #Zc+1 ≤ nc+1 + · · ·+ nk + 1. We started with Z such that
deg(Z) ≤ 2y ≤ 2x− 2. We have #Zc+1 ≤ deg(Z)− n1 − · · · − nc−1 − deg(Hc ∩ Zc)
and #Zc+1 ≤ 1 + deg(Hc ∩ Zc). Since n1 + · · ·+ nk ≥ 2x− 2, we conclude.
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(b) Assume Z(o) ⊂ H1 and Z * H1. Since we required that H1 contains as much points
x ∈ S′ with deg(Z(x)) = 2, Z1 has at least one connected component, o′, of degree 1.
We continue as in Step (a), using o′ instead of o.

(c) Assume Z ⊂ H1. Hence S′ ⊂ H1. Thus, y ≤ n1. First assume deg(Z) = 2y and
deg(η1(Z(x))) = 1 for all x ∈ S′.

(c1) Assume the existence of x ∈ S′ such that either deg(Z(x)) = 1 or deg(η1(Z(x))) = 2.
The latter condition is equivalent to the existence of i > 1 such that deg(πi(Z(x))) = 2.
Instead of H1, we take M1 ∈ |IS′\{x}(ε1)| such that x /∈ M1. The scheme E :=
ResM1(Z) is the union of Z(x) and a subset S′′ of S′ \ {x}. Thus, deg(E) ≤ n1 + 1.
Lemma 2 and the assumption on Z(x) give that η1|E is an embedding. Since n2 + · · ·+
nk ≥ x − 1 ≥ y and deg(πi(Z(x))) = 2 for some i > 1, Observation 1 and step (a)
applied to η1(E) ⊂ Y1 prove this case.

(c2) Assume deg(Z) = 2y and deg(η1(Z(x)) = 1 for all x ∈ S′. Thus, deg(π1(Z(x))) = 2
for all x ∈ S′. We order the points o1, . . . , oy of S′ and use Mi ∈ |OY(εi)|, 2 ≤ i ≤ k,
first with Mk, but never taking a divisor Mi containing o1. Set Zk := ResMk (Z),
Zk−1 := ResMk−1(Zk), and so on. Note that all the connected components of all
schemes Zi have degree 2 and that either deg(Zi) = 2y− 2nk − · · · − 2ni+1 or Zi =
Z(x). Then, we use that h1(IZ(x)(ε1)) = 0, because deg(π1(Z(x))) = 2.

We have dim C(Y) = −3 + ∑k
i=1(n

2
i + 2ni) (Remark 7) and each C ∈ C(Y) has ∞x−1

subsets with cardinality x − 1. Take C, C′ ∈ C such that C 6= C′. Since C ∩ C′ is a finite
set, 2 different rational normal curves may only have finitely many common elements of
T(Y, x)′. Thus, dimT(Y, x) ≥ x− 4 + ∑k

i=1(n
2
i + 2ni).

Remark 15. Take any Y with three factors and take A ⊂ Y such that #A = 2 and δ(2A, Y) = 0.
Then, [1] (Propositions 3.1 and 3.2) show that πi|A is injective for all i = 1, 2, 3. Hence, for every
every S ∈ T(Y, x)′, x ≥ 4, all πi|S, 1 ≤ i ≤ 3, are injective.

Remark 16. Take Y = (P1)4 and any S ⊂ Y such that #S = 3. We have S ∈ T(Y, 3), and in
particular, h1(I2S(1, 1, 1, 1)) > 0 and h0(I2S(1, 1, 1, 1)) > 0. Thus, S is minimally Terracini if
and only if each A ⊂ S such that #A = 2 satisfies h1(I2A(1, . . . , 1)) = 0. By [1] (Propositions 3.1
and 3.2) this is the case if and only if for each A ⊂ S such that #A = 2 we have #πi(A) = 2 for at
least 3 indices i ∈ {1, 2, 3, 4}. Thus, S ∈ T(Y, 3)′ if and only if πi|S is injective for all i = 1, 2, 3, 4.

Proposition 7. Take as Y one of the following multiprojective spaces: P3 × (P1)3, P2 × (P1)4,
(P1)6. Then, T(Y, 4)′ 6= ∅. In the first (resp. second, resp. third) case we have dimT(Y, 4)′ ≥ 25
(resp. 21, resp. 19).

Proof. In all cases, we have dim Y = 6 and h0(OY(1, . . . , 1)) ≥ 4(1 + dim Y).
Thus, S ∈ T(Y, 4) if and only if δ(2S, Y) > 0. Let C ⊂ Y be a rational normal curve
(Remark 7). Fix a general S ∈ S(C, 4). Since h0(OC(1, . . . , 1)) = dim Y + 1 = 7 and
deg((2S, Y) ∩ C) = deg((2S, C)) = 8, we have h1(I(2S,C)(1, . . . , 1)) > 0. Since (2S, C)
is a subscheme of the zero-dimensional scheme (2S, Y), h1(I2S(1, . . . , 1)) > 0. Thus,
S ∈ T(Y, 4). Fix A ⊂ S such that a := #A ∈ {2, 3}. Fix i ∈ {1, . . . , k}. If ni = 1, then
πi(C) = P1. The generality of S gives that πi(A) are x general points of P1. Recall that
Aut(P1) is 3-transitive. If ni ≥ 2, then πi(C) is a rational normal curve of Pni , and hence,
the generality of S ⊂ C gives that πi(A) is in the open orbit for the action of Aut(Pni ).
Thus, A is in the open orbit for the action on S(Y, x) of the connected component of the
identity of Aut(Y). Since σ2(Y) and σ3(A) are not defective (Remark 1), S ∈ T(Y, 4)′.

Since in the first (resp. second, resp. third) case we have dim C = 21 (resp. 17, resp.
15), we get the last assertion of the proposition.

We do not claim that all S ∈ T(Y, 4)′ are the ones described in the proof of Proposition 7.
The following example for Y = (P1)6 is in the limit of the family constructed to prove
Proposition 7.
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Example 1. Take (P1)6. Fix a partition E t F of {1, 2, 3, 4, 5, 6} such that #E = #F = 3.
Take aE := (a1, . . . , a6) with ai = 1 if i ∈ E and ai = 0 if i ∈ F. Let aF be the multidegree
(1, . . . , 1)− aE. Let C1 be an integral curve of multidegree aE (all of them are in the same orbit
for the action of (Aut(P1))6 and the stabilizer for this action acts transitively on C1). Using πi
for some i ∈ E, we see that C1

∼= P1. Let C2 ⊂ Y be an integral curve of multidegree aF such
that C1 ∩ C2 6= ∅. It is easy to see that #(C1 ∩ C2) = 1 and that C1 ∪ C2 is a nodal curve of
arithmetic genus 0. Fix a general (E1, E2) ⊂ C1 × C2 such that #E1 = #E2 = 2. Note that C1 and
C2 are isomorphic to rational normal curves of (P1)3. Since 2 general points of (P1)3 are contained
in a rational normal curve of (P1)3 and σ2((P1)3) = P7 ([10], Example 2.1), Ei /∈ T(Y, 2).
Fix A ⊂ S such that x := #A ≤ 3, A ∩ E1 6= ∅ and E2 6= ∅. Y is the minimal multiprojective
space containing A. Since #πj(Ei) = 2 for 3 indices j, [1] (Theorem 4.12) gives A /∈ T(Y, x).
Thus, S ∈ T(Y, 4)′.

Proposition 8. Take Y = P2 × P2 × P1 × P1. Then:

1. T(Y, 4)′ 6= ∅;
2. for a general A ∈ S(Y, 3), there are ∞5 S ∈ T(Y, 4)′ containing A;
3. dimT(Y, 4)′ = 23.

Proof. Fix any smooth C ∈ |OY(0, 0, 1, 1)| and a general S ⊂ C such that #S = 4.
Obviously, h0(I2S(1, 1, 1, 1)) ≥ 32 − 4 × 8 > 0. Note that C ∼= P2 × P2 × P1 and that
ν|C is the embedding of C by the complete linear system |OP2×P2×P1(1, 1, 2)|. We have
h0(OP2×P2×P1(1, 1, 2)) = 27 and 4(1 + dim C) = 24. Since the fourth secant variety of P2 ×
P2 × P1 embedded by |OP2×P2×P1(1, 1, 2)| is defective ([11], Theorem 4.13), δ(2S, ν(C)) >
0. Since the scheme 2S ∩ C does not impose independent conditions to |OY(1, 1, 1, 1)|,
δ(2S, Y) > 0. Thus, S ∈ T(Y, 4). Since S is general in C, #πi(S) = 4 for all i = 1, 2, 3, 4 and
no 3 of the points of πi(S), i = 1, 2, are collinear. Thus, every subset of S with cardinality
x ≤ 3 is the open orbit for the action of the connected component of the identity of Aut(Y)
on S(Y, x). Since the second and third secant varieties of Y are not defective (Remark 1),
S ∈ T(Y, 4)′.

Fix a general A ∈ S(Y, 3). Since h0(OY(0, 0, 1, 1)) = 4 and A is general, there
is a unique C ∈ |IA(0, 0, 1, 1)| and C is smooth. We proved that A ∪ {p} ∈ T(Y, 4)′.
Thus, dimT(Y, 4)′ ≥ 23. Since dim(Y) = 6 and dim σ4(Y) = 27, the set of all S ∈ T(Y, 4)
has dimension ≤ 23. We get parts (ii) and (iii) with equality, not just the inequality ∞x with
x ≥ 5.

Lemma 18. Take either Y = P3 × P1 × P1 or Y = P2 × P1 × P1. Then, T(Y, 4)′ = ∅.

Proof. Assume the existence of S ∈ T(Y, 4)′. By Remark 15 each πi|S is injective.
Fix A ⊂ S such that #A = 3 and let Y′ be the minimal multiprojective space containing A.
Since δ(2A, Y) ≥ δ(2A, Y′) ([1], Lemma 2.3), to a contradiction it is sufficient to prove that
δ(2A, Y′) > 0.

(a) Assume Y = P3 × P1 × P1. Since Y is the minimal multiprojective space containing S,
〈π1(S)〉 = P3. Thus, Y′ ∼= P2 × P1 × P1. Since h0(OY′(1, 1, 1)) = 12 < 3(1 + dim Y′),
δ(A, Y′) > 0.

(b) Assume Y = P2×P1×P1. If Y′ ∼= (P1)3, then δ(2A, Y′) > 0, because h0(OY′(1, 1, 1)) =
8 < 3(1 + dim Y′). Now assume Y′ = Y. Since h0(OY(1, 1, 1)) = 12 < 3(1 + dim Y),
δ(2A, Y) > 0.

Proposition 9. Take either Y = P2 × P2 × P1 or Y = P2 × (P1)3 or Y = (P1)5.
Then, T(Y, 4)′ 6= ∅.

Proof. Write Y = Pn1 × · · · × Pnk with n1 ≥ · · · ≥ nk > 0. Let f : P1 −→ Y be the
embedding induced by f = ( f1, . . . , fk), fi : P1 −→ Pni with fi an isomorphism if ni = 1,
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while fi is an embedding with fi(P1) ⊂ Pni a degree ni rational normal curve. Set C :=
f (P1). Note that ν(C) is a degree 5 rational normal curve in its linear span. Let W ⊂ C
be a connected degree 3 zero-dimensional scheme. Fix a general q ∈ 〈ν(W)〉. A theorem
of Sylvester gives the existence of a one-dimensional family U of set S ⊂ C such that
#S = 4 and each S evinces the ν(C)-rank of q. Since dimU > 0 and each ν(S), S ∈ U
irredundantly span q, Terracini lemma gives δ(2S, Y) > 0. Fix A ⊂ Y such that #A ≤ 3
and let Y′ be the minimal multiprojective space containing A. First assume #A = 2. Since
each fi is injective, Y′ ∼= (P1)k and A is in the open orbit for the action on S(Y′, 2) of
(Aut(P1)k. Since dim σ2(Y′) = 2k + 1, we get δ(2A, Y′) = 0. If n1 = 1 we get δ(2A, Y′) = 0.
Now assume n1 = n2 = 2. Since #πi(A) = 2, h1(IA(εi)) = 0 for all i. Take H1 ∈ |OY(ε1)|
and H2 ∈ |OY(ε2)| such that Y′ = H1 ∩ H2. Taking the residual exact sequence of Y′ in
H1 and using that h1(IA(ε3)) = 0, we get δ(2A, H1) = 0. Then, using the residual exact
sequence of H1 in Y we get δ(2A, Y) = 0.

Now assume #A = 3. Since each fi is injective, ni ≤ 2 for all i and fi(C) is a rational
normal curve if ni = 2, then Y′ = Y and A is in the open orbit of S(Y, 3) for the action of
the connected component of the identity of Aut(Y). Since dim σ3(Y) = 17 (Remark 1), we
get δ(2A, Y) = 0. Thus, S is minimally Terracini.

Lemma 19. Take Y = Pm × Pm × Ps with s > 0. Fix S ⊂ Y such that #S = m + 1, Y is the
minimal multiprojective space containing S and #π3(S) = m + 1. Then h1(I2S(1, 1, 1)) = 0.

Proof. Taking linear projections in the 3-rd coordinate, if necessary we reduce to the case
s = 1. In this case, Y is the minimal multiprojective space containing S and (m+ 1)(dim Y +
1) = h0(OY(1, 1, 1)). Thus, if the lemma fails, then S ∈ T(Y, m + 1). The case m = 1 follows
from [1] (Proposition 1.8). Assume m > 1. Fix a general q ∈ 〈ν(S)〉. By Terracini’s lemma, it
is sufficient to prove that S(q) = {S}. This is a simple consequence of [8] (Theorem 3).

Proof of Theorem 4. Assume the existence of S ∈ T(Y, x)′. Since S ∈ T(Y, x),
h0(I2S(1, . . . , 1)) > 0 and δ(2S, Y) > 0. Since S ∈ T(Y, x)′, Y is the minimal multipro-
jective space containing S, πi|S is injective and πi(S) is linearly independent for i = 1, 2.
Assume for the moment k = 3. Since δ(2A, Y) = 0 for all A ⊂ S such that #A = 2,
Remark 15 gives that π3|S is injective. Lemma 19 gives h1(I2S(1, . . . , 1)) = 0, a contra-
diction. Now assume k ≥ 4. Let π1,2,3 : Y −→ Pm × Pm × Ps denote the projection onto
the first three factors of Y. Since π1|S is injective, #π1,2,3(S) = m + 1. The case k = 3 of
Lemma 19 shows that {π1,2,3(S)} = S(Pm × Pm × Ps, q′) for a general q′ ∈ 〈ν(π1,2,3(S)〉.
Since #π1,2,3(S) = #S, we get {S} = S(Y, q) for a general q ∈ 〈ν(S)〉. Thus, Terracini
Lemma gives h1(I2S(1, . . . , 1)) = 0.

7. Proof of Theorems 5 and 6

We divide the long proof of Theorem 5 into five different propositions, and then join
them together. In Section 6 we proved Theorem 4, which covers some cases of Theorem 5.
Since the proofs of Propositions 10–14 have the same beginning, we write here the starting
sentences of all 5 proofs and avoid duplications.

Notation 1. Assume the existence of S ∈ T(Y, 4)′. By Lemmas 4 and 5, there is a zero-
dimensional scheme Z ⊂ Y such that Zred = S, each connected component of Z has degree
≤ 2, h1(IZ(1, . . . , 1)) > 0 and h1(IZ′(1, . . . , 1)) = 0 for all Z′ ( Z. Set z := deg(Z) ≤ 8.
For each p ∈ S, let Z(p) denote the connected component of Z containing p.

Proposition 10. Take Y = (P1)k, k ≥ 7. Then T(Y, 4)′ = ∅.

Proof. For any a ∈ S, let e(a) be the dimension of the minimal multiprojective space
containing Z(a) with the convention e(a) = 0 if Z(a) = {a}. We take a partition S = S′ t S′′

of S with #S′ = #S′′ = 2 and set Z′ := Z ∩ (∪a∈S′Z(a)) and Z′′ := Z ∩ (∪a∈S′Z(a)).
Note that Z′ ∩ Z′′ = ∅, Z′ 6= ∅ and Z′′ 6= ∅. Since S ∈ T(Y, 4)′, h1(IZ′(1, . . . , 1)) =



Symmetry 2022, 14, 2440 18 of 32

h1(IZ′′(1, . . . , 1)) = 0. Since h1(IZ(1, . . . , 1)) > 0, 〈ν(Z′)〉 ∩ 〈ν(Z′′)〉 6= ∅. Fix a general
q ∈ 〈ν(Z′)〉 ∩ 〈ν(Z′′)〉. There are minimal V′ ⊆ Z′ and V′′ ⊆ Z′′ such that q ∈ 〈ν(V′)〉 ∩
〈ν(V′′)〉. The minimality property of Z gives V′ = Z′ and V′′ = Z′′; however, we typically
do not utilize it. Instead, we use U′ ∪U′′ in place of Z in the construction we provided.

Write S = {p(1), p(2), p(3), p(4)}. Fix a divisor C ∈ |OY(ε1 + ε2)| containing
{p(1), p(2), p(3)} and set U := ResC(Z). We have h1(IU(1, . . . , 1)(−ε1 − ε2)) > 0 ([5],
Lemma 5.1). Note that U ⊆ {p(1), p(2), p(3)} ∪ Z(p(4)). By [5] (Lemma 5.1), either U = ∅
or h1(IU(1, . . . , 1)) > 0. In steps (a), (b) and (c), we assume h1(IU(1, . . . , 1)) > 0, while
step (d) handles the case U = ∅.

(a) Assume for the moment that η1,2|U is an embedding and that U ⊇ S. We get
h1(Y1,2, Iη1,2(U)(1, . . . , 1)) > 0. Proposition 1 gives that the minimal multiprojec-
tive space containing η1,2(U) contains at most three factors, and hence, the minimal
multiprojective space containing S has at most five factors, a contradiction.

(b) Assume that η1,2|U is not an embedding. This assumption occurs for exactly two
reasons: either U ⊇ Z(p(4))), deg(Z(p(4))) = 2 and deg(η1,2(Z(p(4)))) = 1 or there
are i, j such that 1 ≤ i < j ≤ 4 and η1,2(p(i)) = η1,2(p(j)). The latter possibility
is excluded by Lemma 2. If deg(Z(p4)) = 2 and deg(η1,2(Z(p(4)))) = 1, then
e(p(4)) ≤ 2 and deg(πi(Z(p(4)))) = 1 for all i > 2. We may avoid this case by instead
taking the first two factors, the factor associated to two of the integers in {1, . . . , k},
say i1 and i2, such that v(p(4)) depends on at least one factor of {1, . . . , k} \ {i1, i2}
(Lemma 2).

(c) Assume S * U. Note that either Ured = U or deg(U) = deg(Ured) + 1. We have
Ured 6= U if and only if p(4) /∈ C. Since #Ured ≤ 3 and h1(IU(1, . . . , 1)(−ε1− ε2)) > 0,
we get that η1(U) depends on at most three factors of Y1 (Remark 5 and Proposition
1), and hence, U depends on four factors at most. Thus, δ(2U, Y) > 0 (Remark 1) and
hence S is not minimally Terracini.

(d) Assume U = ∅, i.e., Z ⊂ C. Set C1,2 := C. Fix integer 1 ≤ i < j ≤ k and take
Ci,j ∈ |Ip(1),p(2),p(3)(εi + ε j)|. By steps (a), (b) and (c) we get (by exclusion) Z ⊂ Ci,j.

(e) Up to now, we only used (roughly speaking) that k ≥ 6, and we know (Proposition 7
and Example 1) that the statement of the theorem is not true if k = 6. From now on,
we use that k ≥ 7. More precisely, we use that z := deg(Z) ≤ k + 1. In steps (a)–(d),
we did not use any ordering of the set {1, . . . , k}, the only possible difference being
whether Ci,j is reducible or not. In the following steps, we freely permute the factors
of Y. Let i be any integer i ∈ {1, . . . , k} such that there is H1 ∈ |OY(εi)| such that
e1 := deg(Z ∩ H1) is maximal. Set Z1 := ResH1(Z). Note that deg(Z1) = z− e1. Set
E1 := H1 ∩ Z. Note that deg(E1) = e1. Let e2 be the maximal integer such that there
is j ∈ {2, . . . , k} and H2 ∈ |OY(ε j)| such that e2 := Hj ∩ Z1 is maximal. With no loss
of generality, we may assume j = 2. Then, we continue in the same way, defining
integers e3, . . . , the divisors H3, . . . and zero-dimensional schemes E3, . . . and Z3, . . .
such that Ei := Hi ∩ Zi, ei = #Ei, Zi+1 = ResH1(Zi) and at each step the integer
i is maximal. Note that e1 ≥ e2 ≥ · · · ≥ ei ≥ ei+1 and that ei = 0 if and only if
Z ⊂ H1 ∪ · · · ∪ Hi−1. Since k ≥ deg(Z)− 1 there is a maximal integer c ≤ k such that
ec ≤ 1. Assume for the moment ec = 1. We have deg(Zc) = 1, and hence, h1(IZc) = 0,
contradicting [5] (Lemma 5.1). Thus, ec = 0. In the same way, we get ec−1 ≥ 2. Since
e1 ≥ · · · ≥ ec ≥ 2, we have the following possibilities (for z = 8, for z < 8, the first
one does not arise, and the second, third, must be modified):

1. c = 5, e1 = e2 = e3 = e4 = 2;
2. c = 4, e1 = 4, e3 = e4 = 2;
3. c = 4, e1 = 3, e2 = 3, e4 = 2;
4. c = 3, dz/2e ≤ e1 ≤ z− 2, e2 = z− e1.

(e1) Assume c = 5, and thus, e1 = e2 = e3 = e4 = 2. By [1] (Lemma 5.1) we have
h1(IE4(0, 0, 0, 1, 1, 1, 1, 1)) > 0, and hence deg(πi(E4)) = 1 for all i ≥ 4. Fix j ∈
{1, 2, 3}. Using H4 instead of Hj we get deg(πi(Ej)) = 1 for i = j and for i ≥ 4.
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Then, we use {H} = |IE4(ε7)| and we also get deg(π4(Ej)) = 1. Thus, deg(πi(E1)) =
1 except at most for i = 2, 3. Using {H′} ∈ |IE2(ε7)| and {H′′} ∈ |IE3(ε7)|, we get
deg(π2(E1)) = 1 and deg(π3(E1)) = 1. Thus, e1 = 1, a contradiction.

(e2) Assume c < 5, i.e., e1 + e2 ≥ 5. Since each connected component of Z has de-
gree at most 2, we get that H1 ∪ H2 contains at least 3 points of S, and hence,
H1 ∪ H2 = C1,2. Hence, we excluded case (2) and (3), e1 ≥ 4 and e2 = z − e1.
By [5] (Lemma 5.1), we have h1(IZ1(ε̂1)) > 0. Therefore, either η1|Z1

is an embed-
ding and h1(Y1, Iη1(Z1)

(1, . . . , 1)) > 0 or there is a degree 2 scheme w ⊂ Z1 such
that deg(η1(w)) = 1. Lemma 2 gives that w is connected, i.e., w = Z(p(i) for some
i. Since w ⊆ Z1, p(i) /∈ H1. Since e1 ≥ dz/2e, H1 contains at least two points of S.
Take j ∈ {3, . . . , k} and Mj ∈ |Ip(i)(ε j)|. Since H1 ∪Mj contains at least three points
of S, steps (a)–(d) give Z ⊂ H1 ∪Mj, and hence, deg(πj(Z1)) = 1 for all j > 2. Since
deg(π2(Z1)) = 1, we also get #(Z1)red = 1 and hence Z1 = w. Thus, #(S ∩ H1) = 3,
S ∩ H1 = S \ {p(i)} and E1 is the union of the connected components of Z with
a point of S ∩ H1 as its reduction. For any p ∈ (S ∩ H1) set m(p) := {2, . . . , k} if
z(p) = {p}, while if deg(Z(p)) = 2 let m(p) denote the set of all j ∈ {2, . . . , k} such
that ηj|Z(p) is an embedding. Remark 3 gives #m(p) ≥ k− 2 for all p ∈ S ∩ H1. Since
#(S ∩ H1) = 3 and k ≥ 5, there is j ∈ m(p) for all p ∈ S ∩ H1. Fix j ∈ ∩p∈S∩H1 m(p)
and take M ∈ |Ip(i)(ε j)|. Set Z′ := ResM(Z) and Z′′ := ηj(Z′) ⊂ Yj. We have
h1(IZ′(ε̂ j)) > 0 ([5], Lemma 5.1). Since j ≥ 2, w ⊂ M and hence w ∩ Z′ = ∅.
By the definition of j each map ηj|Z(p) is an embedding. Since δ(2A, Y) = 0 for
all A ⊂ S ∩ H1 such that #A = 2, ηj|S∩H1

is injective. Thus, ηj|Z′ is an embedding
and hence h1(Yj, IZ′′(1, . . . , 1)) = h1(IZ′(ε̂ j)) > 0. Let Y′′ be the minimal multi-
projective subspace of Yj containing ηj(S ∩ H1). By [1] (Theorem 4.12), we have
Y′′ ∼= (P1)m for some m ≤ 4. Thus, there is h ∈ {2, . . . , k} and D ∈ |OY(εh)| such that
D ⊇ η−1

h (Y′′)|. Since Y is the minimal multiprojective space containing S, p(i) /∈ D.
Thus, ResD(Z) = w. Since deg(πi(w)) = 1 for all i > 1, π1|w is an embedding.
Therefore, h1(Iw(ε̂h)) ≤ h1(Iw(ε1)) = 0, contradicting [5] (Lemma 5.1).

Proposition 11. Take Y = P3 × (P2)m × (P1)s with m ≥ 2 and s ≥ 0. Then, T(Y, 4)′ = ∅.

Proof. We only use the case Y = P3 × (P2)2, because the proofs are extremely similar in all
other cases, but far simpler.

Claim 1. #πi(S) = 4 for i = 2, 3.
Proof of Claim 1. Assume for instance #π3(S) ≤ 3, and take a, b ∈ S such that

π3(a) = π3(b) and a 6= b. The minimal multiprojective space Y′ containing is isomorphic
to either P1 (case π2(a) = π2(b)) or to P1 × P1 (case π2(a) 6= π2(b)). Since (2{a, b}, Y) ≥
(2{a, b}, Y′) = 2 ([1], Lemma 2.3), S /∈ T(Y, 4)′, a contradiction.

Claim 2. If H ∈ |OY(ε2)|, M ∈ |OY(ε3)| and S ⊂ H ∪M, then Z ⊂ H ∪M.
Proof of Claim 2. Assume Z * H ∪M, i.e., assume E := ResH∪M(Z) 6= ∅. Since E ⊆

S, π1|S is injective, π1(S) is linearly independent and #S = h0(OY(1, 0, 0), h1(IE(1, 0, 0)) =
0, contradicting [5] (Lemma 5.1).

Claim 3. None of the three points of πi(S), i ∈ {2, 3} are collinear.
Proof of Claim 3. Suppose the existence of A ⊂ S such that #A = 3 and L := 〈π3(A)〉

is a line. Set {p} := S \ A, M := π−1
3 (L). Since Y is the minimal multiprojective space

containing S, M ∩ S = A. Take a general H ∈ |Ip(ε2)|. Since S ⊂ H ∪M, Claim 2 gives
Z ⊂ H ∪ M. Since #π2(S) = 4 (Claim 1) and H is general, H ∩ S = {p}, and hence,
∪o∈AZ(o) ⊂ M. Since h1(IZ(p)(1, 1, 0)) > 0 ([5], Lemma 5.1), deg(Z(p)) = 2 and
deg(η3(Z(p))) = 1. Fix o ∈ A and take M′ ∈ |OY(ε3)| containing {p, o}, and H′ ∈
|OY(ε2)| containing A \ {o}. Since S ⊂ H′ ∪ M′, Claim 1 gives Z ⊂ H′ ∪ M′. Claim
1 gives Z(p) ∪ Z(o) ⊂ M′ and Z′ := ∪a∈A\{o}Z(a) ⊂ H′. Since deg(Z(p)) = 2 and
deg(η3(Z(p))) = 1, deg(π3(Z(p))) = 2. Thus, the line 〈π3(Z(p))〉 contains π3(o). Taking
another point o′ ∈ A, we get 〈π3(Z(p))〉 = L and hence S ⊂ M, a contradiction.
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Claim 4. Fix i ∈ {2, 3} and D ∈ |OY(εi)| such that #(D ∩ S) ≥ 2. Then, #(D ∩ S) = 2
and ∪o∈D∩SZ(o) ⊂ H.

Proof of Claim 4. Claims 1 and 3 give #(D ∩ S) = 2. The last assertion of Claim 4 was
proved in the proof of Claim 3.

Fix a, b ∈ S such that a 6= b and let M be the only element of |OY(0, 0, 1)| contain-
ing {a, b} (Claim 1). Write S = {a, b, c, d}. We have Z(a) ∪ Z(b) ⊂ M and ResM(Z) =
Z(c) ∪ Z(d) (Claim 3 and 4). Hence, h1(IZ(c)∪Z(d)(1, 1, 0)) > 0 ([5], Lemma 5.1). Take
a general D ∈ |I{c,d}(1, 0, 0)|. We have ResD(Z(c) ∪ Z(d)) ⊆ {c, d}. Claim 1 implies
h1(I{c,d}(0, 1, 0)) = 0. Thus, Z(c) ∪ Z(d) ⊂ D ([5], Lemma 5.1). Since D is general, we get
π1(Z(c) ∪ Z(d)) ⊂ 〈{π1(c), π1(d)}〉. Taking different subsets of S with cardinality 2, we
get π1(Z(c)) ⊆ ∩x∈S\{c}〈{c, x}〉 = {c}, because #π1(S) = 4 and π1(S) is linearly indepen-
dent. Therefore, deg(π1(Z(y))) = 1 for all y ∈ S. Take y ∈ S such that deg(Z(y)) = 2.
Since deg(π1(Z(y))) = 1, there is i ∈ {2, 3} such that deg(πi(Z(y))) = 2, and hence,
h1(IZ(y)(0, 1, 1)) = 0. If y ∈ S and deg(Z(y)) = 1, then obviously h1(IZ(y)(0, 1, 1)) = 0.
Fix A ⊂ S such that #A = 3 and let D be the only element of |OY(1, 0, 0)| containing A
because #π1(S) = 4 and π1(S) is linearly independent. Set {y} := S \ A. We saw that
∪a∈AZ(a) ⊂ D, and hence, ResD(Z) = Z(y). Since h1(IZ(y)(0, 1, 1)) = 0, we conclude
quoting [5] (Lemma 5.1).

Proposition 12. Take Y = P3 × (P1)k−1, k ≥ 5. Then, T(Y, 4)′ = ∅.

Proof. Take H1 ∈ |OY(ε1)| containing 3 points of S. By Remark 14, H1 is uniquely de-
termined by H1 ∩ S and #(H1 ∩ S) = 3. Set z1 := deg(Z ∩ H1), Z1 := ResH1(Z) and
S1 := ResH1(S). Since z1 ≥ 3, deg(Z1) = z− z1 ≤ 5. Take i ∈ {2, . . . , k} and H2 ∈ |OY(εi)|
such that z2 := deg(Z1 ∩ H2) is maximal, and set Z2 := ResH2(Z1). Permuting the last
k − 1 factors of Y, we may assume i = 2. Take i ∈ {3, . . . , k} and H3 ∈ |OY(εi)| such
that z3 := deg(Z2 ∩ H3) is maximal, and set Z3 := ResH3(Z2). Permuting the last k− 2
factors of Y, we may assume i = 3. Note that z2 ≥ z3. We continue in the same way un-
til we obtain an integer c ≥ 2 such zc ≤ 1; since k − 1 ≥ z − z1, we find some c ≤ k.
Since h1(IW) = 0 for any degree 1 zero-dimensional scheme, [5] (Lemma 5.1) gives
zc = 0, i.e., Z ⊂ H1 ∪ · · · ∪ Hc−1. Permuting the 1-dimensional factors of Y, we may
assume Hi ∈ |OY(εi)| for all i. Since zc−1 ≥ 2 and z − z1 ≤ 5, either z − z1 = 5 and
z2 = 3 and z3 = 2 or z − z1 = 4 and z2 = z3 = 2 or c = 2 and z2 = z − z1. Since
h1(IZ2(0, 0, 1, . . . , 1)) = 0 and deg(Z2) = z3 = 2, deg(πi(Z2)) = 1 for all i ≥ 3.

Claim 1. z1 > 3.
Proof of Claim 1. Assume z1 = 3, i.e., assume Z ∩ H1 = S ∩ H1. Thus,

h1(IZ∩H1(ε1)) = 0 by Observation 1. Set H := H2 ∪ · · · ∪ Hc−1. Since ResH(Z) ⊆ H1 ∩ Z,
[1] (Lemma 5.1) gives Z ⊂ H. Observation 1 gives c > 2, and hence, c = 3 and either
z = 8, z2 = 3 and z3 = 2 or z = 7 and z2 = z3 = 2. Since ResH1∪H2(Z) = Z3 has
degree 2 and h1(IZ3(0, 0, 1, . . . , 1)) > 0, deg(πi(Z3)) = 1 for all i ≥ 3. First assume
Z3 = {a, b} with a 6= b, and call Y′ the minimal multiprojective space containing {a, b}.
Since deg(πi(Z3)) = 1 for all i ≥ 3, we get δ(2{a, b}, Y) ≥ 2 (Remark 4), a contradic-
tion. Thus, Z3 is connected. Since Z3 ⊂ ResH1(Z), Z3 = Z(p), where {p} := S \ S ∩ H1.
Since Z ∩ H1 = S \ {p}, we have Z2 = S \ {p}. Applying [5] (Lemma 5.1), we get
h1(IS\{p}(0, 1, 0, 1, . . . , 1)) > 0. For any A ⊂ S \ {p} such that #A = 2, there are at most
k − 3 integers i with #πi(A) = 1 by Lemma 2. Thus, there is i, j ∈ {4, . . . , k} such that
i < j, Mi ∈ |OY(εi)|, Mj ∈ |OY(εi)| and #((S \ S ∩M)) = 2. Since ResH1∪H3∪Mi∪Mj(Z) is a
single point, h1(IResH1∪H3∪Mi∪Mj

(Z)) = 0, contradicting [5] (Lemma 5.1).

Claim 1 excludes the case c = z2 = 3, z3 = 2. Note that Claim 1 is true for each
H1 ∈ |OY(ε1)| containing 3 points of S.

Claim 2. z = 8.
Proof of Claim 2. Assume z ≤ 7, and write S = {a, b, c, d} with Z(d) = {d}.

Let H1 be the only element of |OY(ε1)| containing {a, b, c} (Observation 1). By Claim
1 Z1 := ResH1(Z) is the union of d and at most 2 points of {a, b, c}, say Z1 = {d} ∪
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A with A ⊂ {a, b, c} and #A ≤ 2. Remark 4 gives that η1|Z1
is injective and hence

h1(Y1, Iη1(Z1)
(1, . . . , 1)) = h1(IZ1(ε̂1)) > 0. Proposition 1 gives that the minimal multipro-

jective space containing η1(Z1) is isomorphic to P1 and hence the minimal multiprojective
space containing the set Z1 is isomorphic to P#Z1−1 × P1, contradicting Remark 4.

Claim 3. c = 2.
Proof of Claim 3. Assume c 6= 2. By Claims 1 and 2 we get c = 3, z1 = 4, z2 = 2 and

z3 = 2. Fix p ∈ S and set B := S \ {p}. Let H1 be the only element of |OY(ε1)| containing
B. We have Z1 = Z(p) ∪ A with A ⊂ B and #A = 2. There is M2 ∈ |OY(ε2)| containing
Z(p), and hence, E := ResH1∪M2(Z) ⊆ A. Since h1(IE(0, 0, 1 . . . , 1)) > 0 ([5], Lemma
5.1), we first get #E = 2 and then δ(2E, Y) > 0 (Remark 4), contradicting the assumption
S ∈ T(Y, 4)′.

By Claim 3, Z1 ⊂ H2 for any choice of H1 containing 3 points of S. Set {p} := S \ S∩H.
Since z = 8, Observation 1 gives Z(p) ⊆ Z1 with deg(Z(p)) = 2.

Claim 4. z2 = 4.
Proof of Claim 4. Recall that z = 8 and z1 ≥ 4. Assume z1 ≥ 5. We have Z1 = Z(p) ∪

{a}with a ∈ H1 ∩ S. By Remark 4 there is i > 2 such that πi(p) 6= πi(a). Take M ∈ |OY(εi)|
such that p ∈ M. We have ResH1∪M(Z) ⊆ {p, a}.
Since h1(IResH1∪M(Z)(0, 1, . . . , 1)(−εi)) > 0, we get ResH1∪M(Z) = {p, a} and πj(p) =

πj(a) for all j ∈ {2, . . . , k} \ {k}. Thus, δ(2{p, a}, Y) ≥ 2, a contradiction.
The previous claims give the existence of E ⊂ S ∩ H1 such that #E = 2 and Z1 =

Z(p)∪ E ⊂ H2. Write E = {b, c} and {a} = H ∩H1 \ E. We have ResH2(Z) = Z(a)∪ {b, c}.
By Lemma 2 there is j > 2 such that πj(a) 6= πj(b). Hence W := ResH2∪M(Z) ⊂ {a, b, c}
and W 6= ∅. Observation 1 gives h1(IW(ε1)) = 0, and hence, h1(IW((1, . . . , 1)− ε2− ε j)) =
0, contradicting [5] (Lemma 5.1).

Proposition 13. Take Y = P3 × (P2)m × (P1)s with m ≥ 1 and s ≥ 2. Then T(Y, 4)′ = ∅.

Proof. To simplify the notation, we take Y = P3 × P2 × P1 × P1, but the general case is
very similar and all other cases are easier. Assume the existence of S ∈ T(Y, 4)′ and take
Z ⊂ Y such that Zred = S, for each p ∈ S the connected component of Z with p as its
reduction has degree ≤ 2, h1(IZ(1, . . . , 1)) > 0 and h1(IZ′(1, . . . , 1)) = 0 for every Z′ ( Z
(Lemma 4). Set z := deg(Z).

Claim 1. Take any C ∈ |OY(1, 1, 0, 0)| such that S ⊂ C and deg(Z ∩ C) ≥ min{z, 5}.
Then, Z ⊂ C.

Proof of Claim 1. Since the case z ≤ 5 is trivial, we may assume z > 5. Assume
Z * C. The scheme W := ResC(Z) is a subset of S with cardinality ≤ 3. Since W 6= ∅,
h1(IW(0, 0, 1, 1)) > 0. Thus, either there is A ⊆ E such that #A = 2 and #π3(A) =
#π4(A) = 1 (with δ(2A, Y) ≥ 2, a contradiction) or #E = 3 and there is i ∈ {3, 4} such
that #πi(E) = 1 (Proposition 1). In the latter case (with, say #π4(E) = 1), δ(2E, Y) > 0,
unless the minimal multiprojective space Y′ containing E is isomorphic to P2 × P2 × P1,
i.e., 〈π2(E)〉 = P2 and #π3(E) > 1. Set {p} := S \ {p}. Take D ∈ |OY(ε2)| containing
Z(p) and let M be the only element of |OY(ε4)| containing p. We have ResD∪M(Z) ⊆ E.
Since h1(IE(1, 0, 0, 0)) = 0, [5] (Lemma 5.1) gives ResD∪M(Z) = ∅, i.e., Z ⊂ D ∪M. Set
W := ResM(Z). We have W ⊆ Z(p) ∪ E. Since 〈π2(E)〉 = P2, there is N ∈ |OY(ε1)| such
that p ∈ N and E * N. Since ResN∪M(Z) 6= ∅, ResN∪M(Z) ⊆ S and h1(IS(1, 0, 0, 0)) = 0,
[5] (Lemma 5.1) gives a contradiction.

Fix p ∈ S and set B := S \ {p}. Let H be the only element of |OY(ε1)| containing
B. Take D ∈ |IZ(p)(ε2)|. Claim 1 gives Z ⊂ H ∪ D. Note that ResH(Z) = Z(p) ∪ A with
A ⊆ B. Since ResH(Z) ⊂ D and Y is the minimal multiprojective space containing S,
A 6= E, i.e., deg(Z ∩ H) ≥ 4.

(a) Assume deg(Z ∩ H) = 6. Thus, ResH(Z) = Z(p). Since h1(IZ(p)(0, 1, 1, 1)) > 0 ([5],
Lemma 5.1), we get z = 8 and deg(πi(Z(p))) = 1 for all i = 2, 3, 4. Write S ∩ H =
{a, b, c}. Set {M3} := |Ia(ε3)| and {M4} := |Ip(ε4)|. Note that Z(p) ⊂ M4. Take
M2 ∈ |OY(ε2)| containing {b, c}, except that if b ∈ M3 ∪M4 (resp. c ∈ M3 ∪M4)),
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we take M2 not containing b (resp. c); this is possible unless π2(b) = π2(c); if
π2(b) = π2(c) (and hence π2(a) 6= π2(b)), we reverse the role of a and b. Since
ResM2∪M3∪M4(Z) ⊂ {a, b, c} and h1(IS(1, 0, 0, 0)) = 0, we get Z ⊂ M2 ∪ M3 ∪ M4.
Set W := ResM2∪M4(Z). If W = ∅, we are in a case handles in the proof of Claim 1.
Assume W 6= ∅. We get h1(IW(1, 0, 1, 0)) > 0. Hence π1(W) is linearly dependent.
Note that Z(p) ∩W = ∅ and that W ⊆ Z(a) ∪ {b, c}. By Observation 1, 〈π1(Z(a))〉 ∩
{π1(b), π1(c)} ≤ 1, say π1(b) /∈ 〈π1(Z(a))〉.

(b) Assume deg(Z ∩ H) = 4. Write B = {a, b, c} with Z ∩ H = Z(a) ∪ {b, c} and
deg(Z(a)) = 2. By Remark 4 there is i ∈ {3, 4}, say i = 4, such that π4(a) 6=
π4({b, c}). Let N be the only element of |OY(ε4)| containing a. We have W :=
ResD∪N(Z) ⊂ {a, b, c}, and hence, h1(IW(1, 0, 0, 0)) = 0. Thus, W = ∅ ([5], Lemma
5.1), i.e., Z ⊂ D ∪ N. We conclude as in the proof of Claim 1.

(c) Assume deg(Z ∩ H) = 5. Since we proved the other cases for every choice of p ∈ S,
we may assume that deg(Z ∩ H) = 5 for every choice of p ∈ S. Write Z ∩ H =
Z(a) ∪ Z(b) ∪ {c}. We have ResH(Z) = {c} ∪ Z(p) and h1(IResH(Z)(0, 1, 1, 1)) > 0.
By Lemma 2 there are at least two integers i ∈ {2, 3, 4} such that πi(p) 6= πi(c).
Call i1 and i2 these integers with i1 < i2. Hence i2 ∈ {3, 4}. With no loss of generality,
we may assume i2 = 4. Let M4 denotes the only element of |Ip(ε4)|. We have W :=
ResH∪M4(Z) = {c, p′} with p′ = p if Z(p) * M4 and p′ = ∅ if Z(p) ⊂ M4. In both
cases W 6= ∅. Using i3 in both cases, we get h1(IW(0, 1, 1, 0)) = 0, contradicting [5]
(Lemma 5.1).

Proposition 14. Take Y = (P2)m × (P1)s with m > 0, s ≥ 0 and 2m + s ≥ 7. Then, T(Y, 4)′ =
∅.

Proof. The reader easily check (after the proof) that the proofs we give for 1 ≤ m ≤ 4 and
s := max{0, 7− 2m} prove the general case in which s is larger. Moreover, the proof of the
case Y = (P2)3 × P1 gives the case Y = (P2)4. Thus, we only write the cases 1 ≤ m ≤ 3
and s = 7− 3m.

(a) Assume Y = (P2)3 × P1. Take i ∈ {1, 2, 3} such that there is H1 ∈ |OY(εi)| with
z1 := deg(Z ∩ H1) maximal. Since dim |OY(εi)| = 2, we have z1 ≥ 2. With no
loss of generality, we may assume i = 1. Set Z1 := ResH1(Z). Take i ∈ {2, 3}
such that there is H2 ∈ |OY(εi)| with z2 := deg(Z1 ∩ H2) maximal. Since
dim |OY(εi)| = 2, we have z2 ≥ min{z− z1, 2}. With no loss of generality, we
may assume i = 2.
Set Z2 := ResH2(Z1). Take H3 ∈ |OY(ε3)| such that z3 := deg(H3 ∩ Z2) is
maximal. Set Z3 := ResH3(Z2). Note that z1 ≥ z2 ≥ z3. We have z3 ≥
min{z− z1 − z2, 2}. Thus, deg(Z3) = z− z1 − z2 − z3 ≤ 2.

(a1) Assume deg(Z3) ≤ 1. Since h1(IZ3(0, 0, 0, 1)) = 0, [5] (Lemma 5.1) gives Z3 = ∅,
i.e., Z ⊂ H1 ∪ H2 ∪ H3. In the same way, we get that either z3 = 0, i.e., Z ⊂
H1 ∪ H2, or z3 ≥ 2.

(a1.1) Assume Z ⊂ H1 ∪ H2. Since S ⊆ Z, and Y is the minimal multiprojective space
containing S, z2 > 0. Since h1(IZ1(0, 1, 1, 1)) > 0, z2 ≥ 2. Note that z2 ≤ bz/2c.

(a1.2) Assume z3 ≥ 2. Since z1 ≥ z2 ≥ z3 and z ≤ 8, z3 = 2. By [5] (Lemma 5.1), we
have h1(IZ3(0, 0, 1, 1)) = 0, i.e., deg(πi(Z3)) = 1, for i = 3, 4. Since z ≤ 8, either
z2 = 2 or z = 8 and z1 = z2 = 3.

(a1.2.1) Assume z2 = 2. Note that deg(ResH1∪H3(Z)) ≤ 2. The minimality of H2 gives
deg(ResH1∪H3(Z)) = 2. Using H1 ∪ H3, we get deg(πi(ResH1∪H3(Z))) = 1 for
i = 2, 4. Since z3 > 0, there is D ∈ |OY(ε2)| such that deg(D ∩ Z1) > 2, contra-
dicting the definition of z2.

(a1.2.2) Assume z = 8 and z1 = z2 = 3. Remember that deg(πi(Z3)) = 1, for i = 3, 4.
Set {M4} := |IZ3(ε4)| and W := ResM4(Z). We have w := deg(W) ≤ z− 2 = 6.
Take i ∈ {1, 2, 3} such that there is Mi ∈ |OY(εi)| with w1 := deg(W ∩ Mi)
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maximal and set W1 := ResMi (W). Take j ∈ {1, 2, 3} \ {i} such that there is
Mj ∈ |OY(ε j)| with w2 := deg(W1 ∩Mj maximal and set W2 := ResMj(W). Set
{h} := {1, 2, 3} \ {i, j}. Take Mh ∈ |OY(εh)| with w3 := deg(W2 ∩Mi) maximal.
We have w1 ≥ w2 ≥ w3 ≥ 0. Since dim |OP2(1)| = 2, for any i ∈ {1, 2} if wi ≤ 1,
then wi+1 = 0. Thus, w = w1 + w2 + w3. Assume w3 = 1. Using M4 ∪Mi ∪Mj
and [5] (Lemma 5.1), we get a contradiction. Thus, either w3 ≥ 2 or w3 = 0.

(a1.2.2.1) Assume w3 ≥ 2. Thus, w = 6 and w1 = w2 = w2 = 2. Using M4 ∪ Mi ∪ Mj
and [5] (Lemma 5.1), we get deg(πh(W3)) = 0. Since w1 = w2 = w3 = 2,
we may take a different ordering of {1, 2, 3}. Using M4 ∪ Mj ∪ Mh, we get
deg(πi(W ∩Mi)) = 1. If W * Mi, then there is N ∈ |OY(εi)| such that W ∩ N )
W ∩Mi, contradicting the definition of w1. Thus, W ⊂ Mi. Since Y is the minimal
multiprojective space containing S, S * Mi. Thus, Z3 is connected and W is the
union of the 3 degree 2 connected components of Z with as its reduction the
3 points of S ∩ Mi. Since z1 = z2 = z3 = 2, we have deg(πi(A)) = 2 for all
i = 1, 2, 3 and all A ⊂ Z such that deg(A) = 2. Thus, η4|W is an embedding,
and hence, h1(Y4, Iη4(W)(1, 1, 1)) = h1(IW(1, 1, 1, 0)) > 0. Let Y′ be the minimal
multiprojective space containing S ∩M1. If Y′ is not isomorphic to (P1)4, then
there is A ⊂ S∩Mi such that δ(2A, Y′) ≥ 2, and hence, δ(2A, Y) ≥ 2 ([5], Lemma
2.3). Assume Y′ ∼= (P1)4. We would find x ∈ {1, 2, 3} and N ∈ |OY(εx)| such
that #(Wred ∩ N) = 3, contradicting the assumption w1 = 2.

(a1.2.2.2) Assume w3 = 0, and hence, W ⊂ Mi ∪Mj. Since we are in the set up of (a1.2.2),
we have w1 = w2 = 3, and we may take i = 1, j = 2, Mi = H1 and Mj = H2. We
get deg(π3(Z3)) = 1. By Remark 4 Z3 is connected, say Z3 = Z(p) for some p ∈ S
and W is the union of the connected components of Z with Wred = S \ {p}. As in
step (a1.2.2.1), we get W * Mi. Thus, Z ⊂ Mi ∪Mj ∪M4. Using [5] (Lemma 5.1),
we get w2 ≥ 2. First assume w2 = 2. Using M4 ∪Mi, we get deg(πx(W1)) = 1
for x ∈ {1, 2, 3} \ {i} and hence z1 > 2, a contradiction. Now assume w2 ≥ 3,
and hence, w1 = w2 = 3 and w = 6.

(a2) Assume deg(Z3) > 1. Thus, z = 8, and deg(Z3) = z1 = z2 = z3 = 2. Note that
the role of the first three factors of Y are symmetric and that in this case if we
take D ∈ |OY(εi)|, i = 1, 2, 3 such that deg(D ∩ Z) ≥ 2, then deg(D ∩ Z) = 2
and D is the only element of |OY(εi)| containing D ∩ Z. Write S = {a, b, c, d},
and fix a point of S, say d. Set {M1} := |IZ(a)(ε1)|, {M2} := |IZ(b)(ε1)|,
{M3} := |IZ(c)(ε3)|. We have ResM1∪M2∪M3(Z) = Z(d). By [5] (Lemma 5.1),
deg(π4(Z(d))) = 1, and hence, there is M4 ∈ |OY(ε4)| containing Z(p). Taking
a instead of d, we get deg(π4(Z(a))) = 1. We have ResM2∪M3∪M4(Z) = Z(a).
By [5] (Lemma 5.1), we have h1(IZ(a)(1, 0, 0, 0)) > 0, i.e., deg(π1(Z(a))) =
1. Take {N1} = |IZ(b)(ε1)|, {N2} = |IZ(a)(ε2)|. Using N1 ∪ M3 ∪ M4, we
get deg(π2(Z(a))) = 1. In a similar way, we get deg(π3(Z(a))) = 0. Since
deg(Z(a)) = 2, ν is not an embedding, a contradiction.

(b) Assume Y = (P2)2 × (P1)3. Since dim |OY(ε1)| = dim |OY(ε2)|, there are H1 ∈
|OY(ε1)| and H2 ∈ |OY(ε2)| such that S ⊂ H1 ∪ H2. Since S ⊂ H1 ∪ H2 and each
connected component of Z has degree ≤ 2, W := ResH1∪H2(Z) ⊆ S.

(b1) In this step, we prove that W = ∅. Assume w := #W > 0. Since W 6= ∅,
h1(IW(0, 0, 1, 1, 1)) > 0. Fix i ∈ {3, 4, 5} such that there is H3 ∈ |OY(εi)| such
that w1 := deg(W ∩ H3) is maximal. Permuting the last three factors of Y,
we may assume i = 3. Take i ∈ {4, 5} such that there is H4 ∈ |OY(εi)| with
w2 := deg(ResH3(W) ∩ H4) maximal. Permuting the last two factors of Y, we
may assume i = 4. Take H5 ∈ |OY(ε5)| such that w3 := deg(ResH3∪H4(W) ∩ H4)
is maximal. Since w ≤ 4, w− w1 − w2 − w3 ≤ 1. By [5] (Lemma 5.1), there is
c ∈ {1, 2, 3} such that wc ≥ 2 and w1 + · · ·+ wc = w. Since w ≤ 4, w1 ≥ w2 ≥ w3
and wc ≥ 2 either c = 1 or c = 2, w1 = w2 = 2 and w = 4.

(b.1) Assume w1 = w2 = 2 and w = 4, and hence, W = S and z = 8. Since H4 ∩W =

ResH3(W) = ResH1∪H2∪H3(Z), h1(IResH3 (W)(0, 0, 0, 1, 1)) > 0, i.e., πi(W ∩H3)) =
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1 for i = 4, 5. By construction #π3(W ∩ H3) = 1. Thus, W ∩ H3 depends only on
two factors of Y, contradicting Lemma 2.

(b1.2) Assume c = 1. Since Y is the minimal multiprojective space containing S,
2 ≤ w1 ≤ 3. First assume w1 = 2. Since h1(IW(0, 0, 1, 1, 1)) > 0, W ∩ H3 only
depends on the first two factors of Y, contradicting Lemma 2. Now assume
w1 = 3. Since h1(IW(0, 0, 1, 1, 1)) > 0, there is either A ⊂ Y such that #A = 2 and
#η1,2(A) = 1 (excluded by Lemma 4) or η1,2(W) depends on only one factor of
Y1,2, say the last one. Thus, #πi(W) = 1 for i = 3, 4. Set {Mi} := |IW(εi)|, i = 3, 4.
Note that z = 7. Set {p} := S \W and W̃ := ∪o∈W Z(o). Since Sing)M3 ∪M4) ⊃
W, W̃ ⊂ M3 ∪M4. Since Y is the minimal multiprojective space containing Y,
p /∈ (M3 ∪ M3). Thus, ResM3∪M4(Z) = Z(p). Recall that deg(Z(p)) = 2 and
deg(πi(Z(p))) = 1 for all i > 0. Since h1(IResM3∪M4 (Z)(1, 1, 0, 0, 1)) > 0 ([5],
Lemma 5.1), we get deg(π1(Z(p))) = 1, contradicting the very ampleness of
OY(1, . . . , 1).

(b2) By step (b1), Z ⊂ H1 ∪ H2 for all Hi ∈ |OY(εi)|, i = 1, 2, such that S ⊂ H1 ∪ H2.
Claim 1. Assume z = 8 and z1 = 4. For any i = 1, 2, and any E ⊂ S such that
#E = 3, we have #πi(S) = 4, and πi(E) is linearly independent.
Proof of Claim 1. It is sufficient to prove the second statement of Claim 1.
Since 〈πi(S)〉 = P2, any fiber of πi contains two points of S at most. With no
loss of generality, we prove the case i = 1. Assume that 〈πE〉 is a line L and
set H1 := π−1

1 (L). Write S = {a, b, c, d} with E = {a, b, c}. Take a general
H2 ∈ |Id(ε2)|. By step (b1), Z ⊂ H1 ∪ H2. Since H2 is general and each connected
component of Z has degree ≤ 2, H2 ∩ Z = π−1

2 (π2(a)) ∩ Z. Since z1 = 4
and z = 8, deg(H1 ∩ Z) = 4, deg(H2 ∩ Z) = 4 and deg(ResHi (Z) = 4. Since
#((π−1

2 π2(d) ∩ S)) ≤ 2, we get #((π−1
2 π2(d) ∩ S)) = 2, say (π−1

2 π2(d)) ∩ S =
{c, d}. Thus, Z ∩ H2 = Z(c) ∪ Z(d). Take M ∈ |OY(ε2) containing d and b. We
get Z ∩M ⊇ Z(c) ∪ Z(d) ∪ {b}, and hence, z1 > 4, a contradiction.
Claim 2. Assume z = 8 and z1 = 4. Then, deg(πi(Z(o))) = 1 for all i = 1, 2,
and all o ∈ S, and for each Ui ∈ |OY(εi)|, i = 1, 2, such that S ⊂ U1 ∪U2, we
have #(S ∩ H1) = #(S ∩U2) = 2, S ∩U1 ∩U2 = ∅, and Z ∩Ui = ∪o∈S∩Ui Z(o),
i = 1, 2.
Proof of Claim 2. Claim 1 gives #πi(S) = 4, and that πi(S) is linearly indepen-
dent. Thus, #(S∩H1) = #(S∩H2) = 2 and S∩H1 ∩H2 = ∅. Since Z ⊂ H1 ∪H2,
we get Z ∩ H1 = Z(a) ∪ Z(b) and G = Z(c) ∪ Z(d) with S = {a, b, c, d}. Set
{M2} := |Ic,b(ε2)| and {M1} := |Ia,d(ε1)|. Step (b1) and Claim 1 give M1 ∩ Z =

Z(a) ∪ Z(d) and M2 ∩ Z = Z(c) ∪ Z(b). Hence Z(a) ⊂ π−1
1 (π1(a)). Taking dif-

ferent partitions of S into two subsets of cardinality 2 we get deg(πi(Z(o))) = 1
for all i = 0, 1 and all o ∈ S.
With no loss of generality, we may assume z1 := deg(Z ∩ H1) ≥ deg(Z ∩ H2).
Set G := ResH1(Z) and g := deg(G). Fix i ∈ {3, 4, 5} such that there is N3 ∈
|OY(εi)| with e1 := deg(G ∩ N3) maximal. Permuting the last three factors of
Y, we may assume i = 3. Take i ∈ {4, 5} such that there is N4 ∈ |OY(εi)| with
22 := deg(ResN3(G) ∩ N4) maximal. Permuting the last two factors of Y, we may
assume i = 4. Take N5 ∈ |OY(ε5)| such that e3 := deg(ResN3∪N4(W) ∩ N5) is
maximal. Since g ≤ 4, g− e1 − e2 − e3 ≤ 1. As in step (b1), we get that either
g = 4, e1 = e2 = 2 and e3 = 0 or e1 = g ∈ {2, 3, 4}, and e2 = e3 = 0. The main
difference with respect to step (b1) is that G is not a finite set, in general.

(b2.1) Assume g = 4, e1 = e2 = 2 and e3 = 0. Thus, z = 8 and deg(Z ∩ H1) = 4. Taking
H1 ∪ N3, we get h1(IResN3 (G)(0, 1, 0, 1, 1)) > 0. Since deg(ResN3(G)) = 2, Lemma
2 implies that ResN3(G) is connected, say ResN3(G) = Z(a) for some a ∈ S. Since
ResN4(G) ⊆ G ∩ N3, we get ResN4(G) = G ∩ N3 and that G ∩ N4 = Z(b) for
some b ∈ S \ {a}. Since G = Z(a) ∪ Z(b), we obtain Z ∩ H1 = Z(c) ∪ Z(d) with
S = {a, b, c, d}, deg(πi(Z(a))) = 1 for i = 2, 4, 5, and deg(πi(Z(b))) = 1 for
i = 2, 3, 5. Taking N5 ∈ |IZ(a)(ε5)| instead of N3, we get deg(π3(Z(a))) = 1.
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Using N′5 ∈ |IZ(b)(ε5)| instead of N4, we get deg(π4(Z(b))) = 1. Recall that
ResH2(Z)) = Z(c) ∪ Z(d). Using ResH2(Z) instead G, we get deg(πi(Z(c))) =
deg(πi(Z(d)) = 1 for i = 1, 3, 4, 5. By Lemma 2 there is i ∈ {3, 4, 5} such
that πi(a) 6= πi(b). Permuting the last three factors (we are allowed to do
this at this point, since we run in a situation symmetric with respect to the
last three factors), we may assume i = 3. Fix M ∈ |OY(ε5)| containing Z(c),
D ∈ |OY(ε4)| containing Z(d), and T ∈ |OY(ε3)| such that T ∩ {a, b} = {b}.
We have ResT∪N4∪D∪M(Z) = {b}. Since h1(Ib) = 0, [5] (Lemma 5.1) gives
a contradiction.

(b2.2) Assume e1 = g ∈ {2, 3, 4} and e2 = e3 = 0. We often use the inequality
h1(IG(0, 1, 1, 1, 1)) > 0.

(b2.2.1) Assume the non-existence of A ⊆ G such that A is connected, deg(A) = 2
and deg(πi(A)) = 1 for i = 2, 3, 4, 5. Thus, #Gred > 1. By Lemma 2, η1|G
is an embedding and hence h1(Y1, Iη1(G)(1, 1, 1, 1)) = h1(IG(0, 1, 1, 1, 1)) > 0.
Since deg(G) ≤ 4, there are j, h ∈ {2, 3, 4, 5} such that j 6= h and deg(πj(G)) =

deg(πh(G)) = 1. Since 〈π2(S)〉 = P2, j 6= 2 and h 6= 2. If g ≤ 3 there is a
third index with the same property, contradicting Lemma 2. Now assume g = 4,
and hence, z = 8 and z1 = 4. Write Z ∩ H1 = Z(a) ∪ Z(b) and G = Z(c) ∪ Z(d)
with S = {a, b, c, d} and deg(πi(Z(o))) = 1 for all i = 1, 2 and all o ∈ S (Claims
1 and 2). Take a general M2 ∈ |Ic(ε2)|. Since ResH1∪M2(Z) = Z(d), we have
h1(IZ(c)(0, 0, 1, 1, 1)) > 0, and hence, deg(πi(Z(d))) = 1 for all i > 2. Thus,
deg(πi(Z(d))) = 1 for all 1 ≤ i ≤ 5, a contradiction.

(b2.2.2) Assume the existence of A ⊆ G such that A is connected, deg(A) = 2 and
deg(πi(A)) = 1 for i = 2, 3, 4, 5. We have A = Z(p) for some p ∈ S′ :=
S \ S ∩ H1.

(b2.2.2.1) Assume g = 3. Thus, G = Z(p) ∪ {a} for some a ∈ S \ {p}. By Lemma
4, there is i ∈ {2, 3, 4, 5} such that πi(a) 6= πi(p). Take M ∈ |Ip(εi)|. Since
ResH1∪M(Z) = {a} and h1(Ia) = 0, we conclude quoting [5] (Lemma 5.1).

(b2.2.2.2) Assume g = 4, and hence, z = 8. Either G = Z(p) ∪ Z(a) or G = Z(p) ∪
{a, b}. First assume G = Z(p) ∪ {a, b}. By Lemma 4 there are i ∈ {3, 4, 5}
such that πi(p) 6= πi(a) and j ∈ {2, 3, 4, 5} \ {i} such that πj(a) 6= πj(b).
Take M ∈ |OY(εi)| containing p and D ∈ |OY(ε j) containing b. Note that
ResH1∪M∪D(Z) = {a}. Since h1(Ia) = 0, we conclude by [5] (Lemma 5.1). Now
assume G = Z(p) ∪ Z(a). Assume for the moment the existence of i ∈ {2, 3, 4, 5}
such that deg(πi(Z(a))) = 2, and take Mi ∈ |OY(εi)| such that a ∈ Mi and
Z(a) * Mi. By Lemma 4 there is j ∈ {2, 3, 4, 5} \ {i} such that πj(p) 6= πj(a).
Take Mj ∈ |OY(ε j)| such that p ∈ Mj and a /∈ Mj. Since ResH1∪Mi∪Mj(Z) = {a},
we conclude as above. Now assume deg(πi(Z(a))) = 1 for all i > 1. Note
that Z ∩ H1 = Z(b) ∪ Z(c) and Z ∩ H1 ∩ H2 = ∅. Using H2 instead of H1,
we get deg(πi(Z(b))) = deg(πi(Z(c))) = 1 for all i = 1, 3, 4, 5. Note the
deg(π1(Z(p))) = deg(π1(Z(a))) = deg(π2(Z(b))) = deg(π2(Z(c))) = 2. Take
U1 ∈ |OY(ε1)| containing {p, b} and U2 ∈ |OY(ε2)| containing {a, c}. Note that
Z ∩ U1 ⊇ Z(b) ∪ {p} and Z ∩ U2 ⊇ Z(a) ∪ {c}. By step (b1), Z ⊂ U1 ∪ U2.
Assume for the moment p /∈ U2 and c /∈ U1. We get Z ∩U1 = Z(p) ∪ Z(a) and
Z∩U2 = Z(b)∪ Z(c). Thus, running the previous proof, we get deg(π1(Z(b)) =
1, contradicting the very ampleness of OY(1, 1, 1, 1, 1). Now assume for instance
p ∈ U2. Therefore, U2 ∩ Z ⊇ Z(a) ∪ {p, c}. The maximality property of H1
gives U2 ∩ Z = Z(a) ∪ {p, c} and ResU2(Z) = Z(b) ∪ {p, c}. We excluded all
such cases.

(b2.2.2.3) Assume g = 2. We get Z ∩ H1 = Z(a) ∪ Z(b) ∪ Z(c) with S = {a, b, c, p}. Since
S * H1, p /∈ H1, and hence, ResH1(Z) = Z(p). Set Z′ := Z(a) ∪ Z(b) ∪ Z(c).
Recall that h1(IZ(p)(ε̂1)) > 0, and hence, deg(πi(Z(p))) = 1 for all i > 1. Thus,
deg(π1(Z(p)) = 2.
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Claim 3. We have 〈π2(S′)〉 = P2, i.e., #π2(S′) = 3, and π2(S′) is linearly inde-
pendent.
Proof of Claim 3. Assume L := 〈π2(S′)〉 contained in a line. Since 〈π2(S)〉 = P2,
L is a line. Set M := π−1

2 (L) ∈ |OY(ε2)|. Since S * M, p /∈ M. Take a general
line R ⊂ P2 containing π1(p). Set D := π−1

1 (R). Since S ⊂ M ∪ D, Z ⊂ M ∪ D
(Claim 1). Since p /∈ M, Z(p) ⊂ D. Since deg(π1(Z(p))) = 2 and R is general,
Z(p) * M, a contradiction.
Claim 4. Set R := 〈π1(Z(p))〉. We have #(R ∩ π1(S′)) = 1.
Proof of Claim 4. Since S * D := π−1

1 (R), #(R ∩ π1(S′)) ≤ 2. Assume #(R ∩
π1(S′)) = 2, say π1(b) ∈ R and π1(c) ∈ R. Since 〈π1(S′)〉 is a line, π1(b) = π1(c),
and hence, 〈π1(S′)〉 = 〈{π1(a), π1(b)}〉. Take a general line L ⊂ P2 containing
π2(a), and set M := π−1

2 (L). Since S ⊂ D ∪M, Z ⊂ D ∪M (Claim 1). Since L is
general, Claim 3 gives {b, c} ∩M = ∅. Since a /∈ D, we get Z(c)∪ Z(b)∪ Z(p) =
Z ∩ D. Taking ResD(Z), we get deg(πi(a))) for all i > 1. Since deg(Z(a)) = 2,
we get deg(π1(Z(a))) = 2, and hence, 〈π1(Z(a)〉 = 〈π1(S′)〉. Using D instead of
H1 and M instead of H2 in the proof of Claim 3, we get that 〈π2({b, c, p})〉 = P2.
Let M′ be the only element of |OY(ε2)| containing {b, c}. Take D′ ∈ |OY(ε1)|
containing {a, p}. Claim 1 gives Z ⊂ D′ ∪M′. Since a /∈ M′, Z(a) ⊂ D′. Since
〈π1(Z(a))〉 = 〈π1(S′)〉, p /∈ 〈π1(Z(a))〉. Thus, Z(a) * D′, a contradiction.
Now assume π1(S′) ∩ R = ∅. Since P2 = 〈π2(S′)〉 there are b′, c′ ∈ S′ such that
b′ 6= c′ and π2(p) /∈ 〈{π2(b′), π2(c′)〉. With no loss of generality, we may assume
b′ = b and c′ = c. Take {D′′} := |Ip,a(ε1)| and M′′ := |Ic,b(ε2)| (Claim 3). Claim
1 gives Z ⊂ D′′ ∪M′′. Since p /∈ M′′, Z(p) ⊂ D′′ contradicting the assumption
a /∈ R.
We just proved that #(R ∩ π1(S′)) = 1, say R ∩ π1(S′) = {π1(c)}. Set {M1} :=
|I{b,c}(ε2)| and note that a /∈ M1 (Claim 3). Set {D1} := |I{a,p}(ε1)|. Claim 1
gives Z ⊂ D1 ∪M1. Since π1(a) /∈ R, p ∈ M1, i.e., π2(p) ∈ 〈{π2(b), π2(c)〉. Us-
ing a instead of b, we get π2(p) ∈ 〈{π2(a), π2(c)〉. Claim 3 gives 〈{π2(b), π2(c)〉∩
〈{π2(a), π2(c)〉 = {π2(c)}. Therefore, p2(p) = π2(c). Set {M2} := |Ic,b(ε2)|.
Claim 3 gives a /∈ M2. Take a general D2 ∈ |Ia(ε1)|. Since S ⊂ D2 ∪ M2,
Z ⊂ D2 ∪ M2 and a /∈ M2, Z(a) ⊂ D2 and Z(c) ⊂ M2. Since D2 is general,
deg(π1(Z(a))) = 1. Using M3 := |Ic,a(ε2)| instead of M2, we get deg(π1(Z(b))) =
1 and Z(c) ⊂ M3. Since M2 ∩M3 = π−1

2 (c), we get deg(π2(Z(c))) = 1.
Fix a general D4 ∈ |Ia(ε1)| and a general M4 ∈ |Ic(ε2)|. Since D4 and M4 are
general, we just proved that Z ∩ (D4 ∪ M4) = Z(a) ∪ Z(c) ∪ Z(p), and hence,
deg(πi(Z(b))) = 1 for i = 3, 4, 5. Since deg(π1(Z(b))) = 1, deg(π2(Z(b))) = 2.
Taking a general D5 ∈ |Ib(ε1)| and using D5 ∪M4, we get deg(πi(Z(a))) = 1 for
i = 3, 4, 5. Since deg(π1(Z(a))) = 1, deg(π2(Z(a))) = 2. Thus, we proved that
h1(IZ(o)(1, 1, 0, 0, 0)) = 0 for all o ∈ S. Let e1 be the maximal integer e := #(S∩M)

for some i ∈ {3, 4, 5}. Obviously e ≥ 1. Since S * M, e ≤ 3. First assume e = 3.
Thus, ResM(Z) = Z(o) for some o ∈ Z. We conclude, because (since i > 2)
h1(IZ(o)(εi)) ≤ h1(IZ(o)(1, 1, 0, 0, 0)) = 0. Now assume e = 1. The maximality
of the integer e gives #πi(S) = 4 for all i = 3, 4, 5. Set {U3} := |Ip(ε3)|, {U4} :=
|Ia(ε3)| and {U5} := |Ib(ε5)|. Since ResU3∪U4∪U5(Z) = Z(c), it is sufficient to
use that h1(IZ(o)(1, 1, 0, 0, 0)) = 0. Now assume e = 2. With no loss of generality,
we may assume M ∈ |OY(ε3)|. Set S1 := M ∩ S and S2 := S \ S1. First assume
the existence of i ∈ {4, 5} such that #πi(S2) = 1. Take M′ ∈ |OY(εi)| containing
exactly one point of S2 and use that ResM∪M′(Z) = Z(o) for some o ∈ S. Now
assume #πi(S2) = 1 for i = 4, 5, and set {Ui} := |IS2(εi)|, i = 4, 5. Using U4 (resp.
U5), instead of M, and the maximality of the integer e, we get #(π5(S1)) = 2
and #π3(S2) = 2 (resp. #π4(S1) = 2). Thus, #πi(S) = 2 for all i = 3, 4, 5 and
S1 t S2 is the partition of S obtained as fibers of the maps πi|S, i = 3, 4, 5. Since
π2(c) = π2(p), Lemma 2 gives that p and c are in different sets S1 and S2, say
p ∈ S1 and c ∈ S2, and that π2(p) /∈ {π2(a), π2(b)}. Now the situation is
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symmetric for a and b. Therefore, we may assume S1 = {p, a} and S2 = {c, b}.
Take {Q3} := |Ip(ε3)| and take a general Q2 ∈ |Ib(ε2)|. Since π2(p) 6= π2(b),
deg(π2(Z(b))) = 2 and Q2 is general, ResQ2∪Q3(Z) = Z(a) ∪ {b}. First assume
π1(a) 6= π1(b) and take a general Q1 ∈ |Ia(ε1)|. Since deg(π1(Z(a)) = 1, we
get ResQ1∪Q2∪Q3(Z) = {b}, concluding because h1(Ib(0, 0, 0, 1, 1)) = 0. Now
assume π1(a) = π1(b) and set {U1} := |Ia,p(ε1)|. Since. π1(a) /∈ 〈π1(Z(p))〉,
deg(π1(Z(a))) = deg(π1(Z(b))) = 1 and 〈π1(S′)〉 is a line, ResU1(Z) = Z(c) ∪
{p}. Take {U3} := |Ic(ε3)|, and use that ResU1∪U3(Z) = {p}.

(c) Assume Y = P2 × (P1)5. Take H1 ∈ |OY(ε1)| such that z1 := deg(Z ∩ H1) is
maximal. Note that z1 ≥ 2 = dim |OY(ε1)|. Set W := ResH1(Z) and w :=
deg(W) = z− z1. Fix i ∈ {2, 3, 4, 5} such that there is H2 ∈ |OY(εi)| with w1 :=
deg(W ∩ Hi) maximal. Permuting the last five factors of Y we may assume i = 2.
Set W2 := ResH2(W). We continue defining the integers wi and Hi ∈ |OY(εi)|
(up to a permutation of the last 7− i factors of Y) with w1 ≥ · · · ≥ w5. Let
e be the last integer such that we ≥ 1. Since dim Y = 7 ≥ z − 1, e is well-
defined. By [5] (Lemma 5.1), we have we ≥ 2. Thus, either z = 8, e = 3 and
z1 = w1 = w2 = w3 = 2 or 1 ≤ e ≤ 2. We have h1(IW(ε̂1)) > 0 ([5], Lemma 5.1).
For any o ∈ S set ô := {o} if deg(Z(o)) = 2 and ô := ∅ if Z(o) = {o}. For any
A ⊂ S such that #A ∈ {2, 3} call J(A) (resp. I(A)) the set of all i ∈ {3, 4, 5, 6}
(resp. i ∈ {2, 3, 4, 5, 6}) such that #πi(A) ≥ 2. Lemma 2 gives #J(A) ≥ 3,
and #I(A) ≥ 4 for all A such that #A = 2.
Observation 1: Fix A ⊂ S such that #A = 3. By [1] (Th. 4.12), #πi(A) ≥ 2 for at
least 5 integers i ∈ {1, 2, 3, 4, 5, 6}.
Claim 5. There is x ∈ S′ such that 〈π1(Z(d)) ∪ {π1(x)}〉 = P2 and x is unique if
and only if #(π1(S′ \ {x})) = 1.
Proof of Claim 5. We saw that R := 〈π1(Z(d))〉 is a line. A point x ∈ S′ satisfies
Claim 5 if and only if π1(x) /∈ R. Since Y is the minimal multiprojective space
containing S and π1(d) ∈ S′, there is at least one x ∈ S′ satisfying Claim 5.
Since 〈π1(S)〉 = P2, 〈π1(S′)〉 is a line L 6= R. Since #(R ∩ L) = 1, x is unique
if and only if π1(S′ \ {x}) = L ∩ R. Let Σ be the set of all x ∈ S′ such that
〈π1(Z(d)) ∪ {π1(x)}〉 = P2.
Observation 2: z1 = 2 if and only if π1|Z is an embedding and 〈π1(E)〉 = P2 for
every degree 3 subscheme of Z.

(c1) Assume z = 8, e = 3 and z1 = w1 = w2 = w3 = 2. Since w1 = w2 = w3 = 2, we
may permute the divisors H2, H3 and H4, and still obtain residual schemes with
the same degrees. Since h1(IW3(0, 0, 0, 1, 1)) > 0, we get deg(πh(W ∩Hi)) = 1 for
i = 2, 3, 4, and h = 5, 6 and for h = i. Hence there are Mh ∈ |OY(εh)|, h = 4, 5, 6,
such that W ⊂ M4 ∪ M5 ∪ M6. Since z1 = 2 and P2 = 〈π1(A)〉 for all A ⊂ Z
such that deg(A) = 3, we conclude, unless Z ⊂ M4 ∪ M5 ∪ M6. Permuting
the last three factors of Y, we may assume that deg(Z ∩Mi) has the maximum
for i = 4 and that deg(ResM4(Z) ∩ M5) ≥ deg(ResM4(Z) ∩ M6). Since z1 =
w1 = 2, deg(Z ∩M4) ≤ 4. First assume Z ⊂ M4 ∪M5 and hence deg(Z ∩Mi) =
deg(ResMi (Z)) = 4 for i = 4, 5. We have h1(IResMi

(Z)(ε̂i)) > 0, i = 4, 5. Since S *
Mi, we get that either #((Z ∩Mi)) = 2 for i = 4, 5 or #((Z ∩Mi)) = 2 for i = 4, 5.
First assume #((Z ∩Mi)) = 2, say Z ∩M4 = Z(a) ∪ Z(b) and Z ∩M5 = Z(c) ∪
Z(d). Since z1 = w1 = w2 = 2, and deg(π5(Z ∩M5)) = 1, Remark 4 and Lemma
2 give the existence of at least one i ∈ {2, 3, 6} such that deg(πi(Z ∩M5)) > 1.
Take Di ∈ |OY(εi)| such that Z ∩Di 6= ∅. Since Z ∩Di 6= Z ∩ResM4(Z), we have
1 ≤ deg(ResM4∪Di (Z)) ≤ 3 and hence h1(IResM4∪Di

(Z)(ε1)) = 0. Now assume
#((Z ∩Mi)) = 3, say Z ∩M4 = Z(a) ∪ {b, c} and Z ∩M5 = {b, c} ∪ Z(d) with
{b, c} ∈ M4 ∩ M5. There is i ∈ {2, 3, 6} such that deg(πi(Z ∩ M5)) > 1. Take
Ui ∈ |OY(εi)| and use M4 ∪Ui. Now assume Z * M4 ∪M5. Since deg(Z) < 9,
we get ResM4∪M5(Z) ≤ 2, and hence, h1(IResM4∪M5 (Z)(ε1)) = 0, concluding
the proof.
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(c2) Assume e = 2. Hence, Z ⊂ H1 ∪ H2 ∪ H3. Since w2 ≥ 2, either w2 = 2 or z = 8,
z1 = 2 and w1 = w2 = 3. We have ResH2∪H3(Z) ⊆ Z ∩ H1. Now assume z1 = 2
and Z ⊂ H2 ∪ H3. We conclude using H2 ∪ H3 instead of M4 ∪M5 as in step (c1).
Now assume z1 = 2, and ResH2∪H3(Z) 6= ∅ . Since ResH2∪H3(Z) ⊂ H1, we have
deg(ResH2∪H3(Z)) ≤ 2, and hence, we conclude by Observation 2.
Now assume z1 > 2. Since w1 ≥ w2 ≥ 2 and z ≤ 8, we get w2 = 2, w1 + z1 =
z− 2 and (z1, w1) ∈ {(4, 2), (3, 3), (3, 2)}. Lemma 2 gives ResH1∪H2(Z) = Z(d)
for some d ∈ S such that deg(Z(d)) = 2 and deg(πi(Z(d))) = 1 for all i > 2.
Hence, deg(πi(Z(d))) = 2 for at least one i ∈ {1, 2}.

(c2.1) Assume w1 = z1 = 3, and hence, z = 8. By Remark 4, neither Z ∩ H1 nor H2 ∩
ResH1(Z) are reduced, and hence, Z ∩ H1 = Z(a) ∪ {b}, Z ∩ H2 = ResH1(Z) ∩
H2 = Z(c) ∪ {b} with S = {a, b, c, d}. Since h1(IResH1∪H3 (Z)(ε̂1 − ε3)) > 0, either
deg(πi(Z(c))) = 1 for i = 2, 4, 5, 6, or there are at least 3 indices i ∈ {2, 4, 5, 6}
such that πi(Z(c)) = π1(b) (Proposition 1). Since h1(IResH2∪H3 (Z)(ε̂2 − ε3)) > 0,
either deg(πi(Z(a))) = 1 for i = 1, 4, 5, 6 or there are at least 3 indices i ∈
{1, 4, 5, 6} such that πi(Z(a)) = π1(b) as schemes (Proposition 1). First assume
the existence of i ∈ {4, 5, 6} such that deg(πi(Z(a))) = 1, and πi(a) 6= πi(b). Set
{Ui} := |Ia(εi)|. Since ResH2∪H3∪Ui (Z) = {b} and h1(Ib(1, 0, . . . )) = 0, we con-
clude. Since h1(Ia(1, 0 . . . , 0)) = 0, we also conclude if there is j ∈ {4, 5, 6} such
that
deg(πj(Z(a))) = 2 and πj(a) = πj(b). Now assume that no such i, j ∈ {4, 5, 6}
exist. It implies deg(πh(Z ∩ H)) = 1 for h = 4, 5, 6. Take h ∈ {4, 5, 6} such that
πh(d) 6= πh(a) (Proposition 1). Set {Uh} := |Ia(εh)|. We have ResH2∪Uh(Z) =
Z(d). Since ResH2∪Uh(Z) = Z(d), we conclude if deg(π1(Z(d))) = 2. Now as-
sume deg(π1(Z(d))) = 1, and hence, deg(π2(Z(d))) = 2. We use H1 and H2 ∩ Z
instead of H2 and H1 ∩ Z.

(c2.2) Assume z1 = 4, and hence, w1 = 2 and z = 8. Using H1 ∪ H3, we get
Z ∩ H2 = Z(c) for some c ∈ S \ {d} such that deg(πi(Z(c))) = 1 for all
i ∈ {2, 4, 5, 6}. Thus, Z ∩ H1 = Z(a) ∪ Z(b) with S = {a, b, c, d}. Using
H2 ∪ H3, we get h1(IZ(a)∪Z(b)(1, 0, 0, 1, 1, 1)) > 0. First assume deg(π1(Z(a))) =
deg(π1(Z(b))) = 1 and hence π1(b) 6= π1(a).
Taking H2 ∪ Mi ∪ Dj for some 3 < i < j we conclude, unless Z(a) ⊂ Mi, i.e.,
deg(πi(Z(a))) = 1, and Z(b) ⊂ Dj, i.e.,deg(πj(Z(b))) = 1. Thus, we may
assume that deg(πi(Z(a))) = deg(πi(Z(b))) = 1 for all i ∈ J({a, b}). First
assume deg(π1(Z(o))) = 2 for at least one o ∈ {c, d}, say for o = c. We take
i, j ∈ J({a, b}) such that i 6= j and set Ui := |Ia(εi)| and {Uj} := |Ib(ε j)|. We
conclude using H3 ∪Ui ∪Uj, unless Z(c) ⊂ H3 ∪Ui ∪Uj. Since w1 = 2, c /∈ H3.
Thus, Z(c) ⊂ H3 ∪ Ui ∪ Uj if and only if either c ∈ Ui ∩ Uj or Z(c) ⊂ Ui or
Z(c) ⊂ Uj. To take i, j such that c /∈ Ui ∩Uj, it is sufficient to use that #J({a, b})) ≥
3 and deg(πi(Z(a))) = deg(πi(Z(b))) = 1 for all i ∈ J({a, b}). Now as-
sume deg(π1(Z(c))) = deg(π1(Z(d))) = 1. We get deg(π3(Z(c))) = 2 and
deg(π2(Z(d))) = 2. Take i ∈ J({c, d}), say i = 4. Set {U4} := |Id(ε4)|. We
conclude using H1 ∪U4, because h1(IZ(c)(0, 0, 0, 0, 1, 1, 1)) = 0.

(c2.3) Assume z1 = 3, and hence, w1 = 2 and z = 7. We get that ResH1(Z) ∩ H2 = Z(c)
and Z ∩ H1 = Z(a) ∪ {b} (up to the names of the elements of S′). Using H1 ∪ H3
we get deg(πi(Z(c))) = 1 for i = 2, 4, 5, 6. Hence deg(πi(Z(c))) = 2 for at
least one i ∈ {1, 3}. Using H2 ∪ H3 we get that either deg(πi(Z(a))) = 1 for
i = 1, 4, 5, 6 or there are at least 3 indices i ∈ {1, 4, 5, 6} such that πi(Z(a)) =
π1(b) (Proposition 1). Since z1 < 4, there is at most one o ∈ S such that
deg(π1(Z(o))) = 1.
Assume for the moment the existence of i ∈ {4, 5, 6} such that πi(a) 6= πi(b),
say i = 4. First assume π1(a) 6= π1(b). Take {T4} := |Ia(ε4)|. We have {b} ⊆
ResT4∪H2∪H3(Z) ⊆ {a, b} and we use that h1(Ia,b(ε1)) = 0 by the assumption
π1(a) 6= π1(b). Now assume π1(a) = π1(b). Since z1 = 3, deg(π1(Z(x))) = 2
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for all x ∈ S. Thus, deg(π1(Z(a))) = 2, and hence h1(IZ(a)(ε1)) = 0. Set {D4} :=
|Ib(ε4)| and use that ResD4∪H2∪H3(Z) = Z(a). Now assume πi(a) = πi(b) for
all i = 4, 5, 6. Lemma 2 gives πi(a) 6= πi(b) for all i = 1, 2, 3. Set M4 := |Ia(ε4)|.
Use the residual exact sequence with respect to M4 ∪ E2 if deg(π1(Z(d))) = 2,
and the residual exact sequence with respect to M4 ∪ H3 if deg(π1(Z(c))) = 2.

(c3) Assume e = 1. We get Z ⊂ H1 ∪ H2, and w1 = z− z1 with w1 ≥ 2 and z1 ≥ 2.
Thus, h1(IResH2 (Z)(ε̂2)) > 0. If z1 = 2 it is sufficient to use Observation 1. Thus,
we only need to test the cases 3 ≤ z1 ≤ 6.

(c3.1) Assume z1 = 3. Thus, (after changing the names of the elements of S) either
Z ∩ H1 = {a, b, c} ,and ResH1(Z) = Z(d) ∪ â ∪ b̂ ∪ ĉ or Z ∩ H1 = Z(a) ∪ {b},
and ResH1(Z) = Z ∩ H2 = b̂ ∪ Z(c) ∪ Z(d) with deg(Z(a)) = 2. First assume
Z ∩ H1 = {a, b, c} with, say, π1(c) /∈ {π1(a), π1(b)}. Since S * H2, {a, b, c} * H2.
Take j ∈ J({a, b}), set {Mj} := |Ia(ε j)| and use H2 ∪Mj. Now assume Z ∩ H1 =
Z(a) ∪ {b}. If π1(a) 6= π1(b), use H2 ∪ Mj with {Mj} := |Ia(ε j)|. If π1(a) =
π1(b), and hence, deg(π1(Z(a))) = 2 use H2 ∪ Dj with {Dj} := |Ib(ε j)|.

(c3.2) Assume z1 = 4. Since S * H1, after changing the names of the elements of S,
either Z ∩ H1 = Z(a) ∪ {b, c}, and ResH1(Z) = b̂ ∪ ĉ ∪ Z(d) with deg(Z(a)) = 2
or Z ∩ H1 = Z(a) ∪ Z(b) with deg(Z(a)) = deg(Z(b)) = 2, and ResH1(Z) =
Z ∩ H2 = Z(c) ∪ Z(d). There are at least 3 indices j > 2 such that πj(a) 6= πj(b),
say j1, j2, j3. Set {Mh} := |Ia(εh)| and {Dh} := |Ib(εh)|. If Z∩H1 = Z(a)∪{b, c},
π1(b) 6= π1(c), b̂ = ĉ = ∅), and {b, c} ⊂ H2, it is sufficient to use H2 ∪Mj1 . Now
assume Z ∩ H1 = Z(a) ∪ {b, c} and π1(b) = π1(c). Thus, π1(a) 6= π1(b). It
is sufficient to use H2 (case b̂ = ĉ = ∅), {b, c} ⊂ H2 and deg(π1(Z(a)) =
2), H2 ∪ Mj1 (case b̂ = ĉ = ∅) and {b, c} ⊂ H2 and deg(π1(Z(a)) = 1) and
H2 ∪Mj1 ∪Mj2 ∪ Dj3 (all other cases with c /∈ H2 ∪Mj1 ∪Mj2 ∪ Dj3). If c ∈ H2
and deg(Z(c)) = 1, we exchange the role of b and c.
Now assume Z∩H1 = Z(a)∪Z(b) and H2 ∩{a, b} = ∅. Assume for the moment
deg(π1(Z(o))) = 2 for at least one o ∈ {a, b}, say for o = a. We use H2 ∪Dj1 ∪Dj2 .
Now assume deg(π1(Z(a))) = deg(π1(Z(b))) = 1, and hence, π1(a) 6= π1(b)
(by the definition of z1). We use H2 ∪Mj1 ∪ Dj2 . If H2 ∩ {a, b} 6= ∅ (and hence,
#(H2 ∩ {a, b}) = 1 because S * H2), then we omit one or two of the divisors Mh,
Dh.

(c3.3) Assume z1 = 5, and hence, w1 = 3. Since S * H1, (after changing the names of
the elements of S) we have Z ∩ H1 = Z(a)∪ Z(b)∪ {c} and ResH1(Z) = ĉ∪ Z(d)
with deg(Z(a)) = deg(Z(b)) = 2. Since w1 = 3, ĉ = {c} anddeg(Z(d)) = 2. Fix
i, j ∈ J({c, d}) such that i 6= j and use H1 ∪Mi ∪Mj with {Mh} := |Ia(εh)|.

(c3.4) Assume z1 = 6, and hence, w1 = 2 and z = 8. By Lemma 2, the scheme
ResH1(Z) is a connected component Z(d) of Z, and hence, Z ∩ H1 = Z(a) ∪
Z(b) ∪ Z(c) with S = {a, b, c, d}. Set S′ := {a, b, c}. Since deg(Z(d)) = 2 and
deg(πi(Z(d))) = 1 for all i > 1, deg(π1(Z(d))) = 2. Note that this case is
symmetric with respect to the permutation of the last five factors of Y.

(c3.4.1) Assume πi(d) /∈ πi(S′) for all i = 2, 3, 4, 5, 6. Fix x ∈ {a, b, c} such that π1(x) /∈
〈π1(Z(d))〉. Since πi(d) /∈ πi(S′) for all i = 2, 3, 4, 5, 6, there are Mi ∈ |OY(εi)|,
2 ≤ i ≤ 6, such that d /∈ D := M2 ∪M3 ∪M4 ∪M5 ∪M6 (and hence, ResD(Z) ⊇
Z(d)) and ResD(Z) ⊆ Z(d) ∪ {x}. Since h1(I{x}∪Z(d)(ε1)) = 0, we conclude.
Claim 6. Let G1 ⊆ G be the minimal subscheme such that h1(IG1(ε̂6)) > 0. There
is o ∈ S′ such that Z(o) ⊆ G1 and deg(η6(Z(o))) = 1.
Proof of Claim 6. Assume the non-existence of any o. By Remark 4, the map
η6|Gred

is injective. Thus, the map η6|G1
is an embedding and we have

h1(Y6, Iη6(G1)
(1, 1, 1, 1, 1)) = h1(IG1(ε̂6))) > 0. Let Y′ be the minimal multiprojec-

tive subspace of Y6 containing η6((G1)red), and Y′′ the minimal multiprojective
space containing G1. By [1] (Th. 4.14) either there are u, v ∈ (G1)red such that
u 6= v and πi(u) = πi(v) for at least 3 integers i ∈ {1, 2, 3, 4, 5} or #(G1)red = 3



Symmetry 2022, 14, 2440 30 of 32

and Y′ ∼= (P1)4. Since deg(G) ≤ 5 and h1(Y6, Iη6(G1)
(1, 1, 1, 1, 1)) > 0, Proposi-

tion 1 and Lemma 7 exclude the latter case. Assume the existence of u and v.
Since h1(Y6, Iη6(G1)

(1, 1, 1, 1, 1)) > 0, the minimality of G1 and the injectivity of
η6|Gred

gives that G1 contains Z(u) ∪ Z(v) and that the minimal multiprojective
space containing η6(Z(u) ∪ Z(v)) is isomorphic either to P1 or to P1 × P1. Thus,
we get deg(πi(Z(u) ∪ Z(v))) = 1 for at least 3 integers i ∈ {1, . . . , 5} such that
πi(u) = πi(v). We may assume π2(Z(u)) = π2(Z(v)) = π2(u) and π3(Z(u)) =
π3(Z(v)) = π3(u), but we need to distinguish the case π1(u) = π1(v) and the
case π4(u) = π4(v). Write S′ = {u, v, z} with π6(z) = π6(d). Lemma 2 gives the
existence of at least 3 indices i ∈ {1, 2, 3, 4, 5} such that πi(z) 6= πi(d). Remark 4
gives the existence of at least 2 indices i ∈ {1, 2, 3, 4, 5} such that #(π1(S′)) > 1.
Set M2 := |Iu(ε2)| and W := ResM2(Z). We have W 6= ∅ and W ⊆ Z(z) ∪ Z(d).
Since deg(η1(Z(d))) = 1, either Z(d) ⊆ W or W ⊆ Z(z). If W = Z(d), we use
that h1(IZ(d)(ε1)) = 0. We also conclude if W = {z} or if W = Z(d) ∪ {z} and
z /∈ D1 := |IZ(d)(ε1)). By Lemma 2, there is i > 2 such that πi(z) 6= πi(d).
Set {Di} := |Iz(ε1)|. Using M2 ∪ Di, we conclude if W = Z(d) ∪ {z}. Now
assume W = Z(z) ∪ Z(d). Using M2 ∪ Di, we conclude if either z /∈ D1 or
if deg(πi(Z(z))) = 2. If z ∈ D1 and deg(π1(Z(z))) = 2, we conclude using
M2 ∪ D1. Now assume z ∈ D1 and deg(πj(Z(z))) = 1 for j = 1, i. Since
πi(d) 6= πi(z), ResM2∪Di (Z) = Z(d), and hence, h1(IResM2∪Di

(Z)(ε1)) = 0.

(c3.4.2) Assume πi(d) /∈ πi(S′) for all i = 2, 3, 4, 5. Note that π6(o) 6= π6(d) and
that deg(π6(Z(o)) = 2. Write S′ = {u, v, o}. Set {U6} := |Io(ε6)|. We have
ResU6(Z) = Z(d) ∪ {o} ∪ Z(u)′ ∪ Z(v)′ with deg(Z(u)′) ≤ 2, deg(Z(v)′) ≤ 2,
Z(u)′ (resp. Z(v)′) with u (resp. v) as its reduction, unless it is empty. By Claim
5 there is x ∈ S′ such that h1(IZ(d)∪{x}(ε1)) = 0. Assume for the moment that
we may take x = o. Set {Ui} := |Iu(εi)| for i = 2, 3, and {Ui} := |Iv(εi)| for
i = 4, 5. Since Z(d) ⊆ ResU2∪U3∪U4∪U5∪U6(Z) ⊆ Z(d) ∪ {o}, we conclude in this
case. We may use two different multidegrees among εi, 2 ≤ i ≤ 5, for u and the
remaining ones for v. We also conclude if deg(πi(Z(w))) = 1 for at least one
w ∈ S′ \ {z}, and at least one i ∈ {2, 3, 4, 5} (for instance if deg(π2(Z(u))) = 1
instead of U3 we take the element {U′3} := |Iz(ε3)|). Assume deg(πi(Z(w))) = 1
for all w ∈ {u, v} and all 2 ≤ i ≤ 5. Assume for instance π1(v) /∈ 〈π1(Z(d))〉. Set
{Q4} := |Io(ε2)| and use U2 ∪U3 ∪Q4 ∪U5 ∪U6 to conclude this case.

(c3.4.2.1) By step c3.4.2, we may assume πi(d) ∈ πi(S′) for at least one i ∈ {2, 3, 4, 5},
say for i = 5. Using |Id(ε5)| instead of M6 in Claim 6 we get the existence of
o1 ∈ S′ such deg(η5(Z(o1))) = 1. Since deg(π5(Z(o1))) = 2, o1 6= o. Write
S′ = {o, o1, o2}.

(c3.4.2.2) Assume πi(d) /∈ πi(S′) for i = 2, 3, 4. Set {D2} := |Io(ε2)|, {D3} := |Io1(ε3)| and
{D4} := |Io2(ε4)|. We have Z(d) ⊆ ResD2∪D3∪D4(Z) ⊆ Z(d) ∪ {o2}. It would be
sufficient to prove that h1(IResD2∪D3∪D4 (Z)(1, 0, 0, 0, 1, 1)) = 0. This vanishing is
true if either deg(π4(Z(o2))) = 1 or o2 ∈ Σ or πi(o2) 6= πi(d) for at least one i ∈
{5, 6}. Assume π5(o2) = π5(d), π6(o2) = π6(d), o2 /∈ Σ and deg(π4(Z(o2))) = 2.
Permuting the set {2, 3, 4}, we may assume deg(π2(Z(o2))) = deg(π3(Z(o2))) =
2. By Lemma 2, there is a set J ⊂ {1, 2, 3, 4, 5, 6} such that #J ≥ 3 and πi(o) 6=
πi(o1) for all i ∈ J. Note that {5, 6} ⊂ J. Set H := |IZ(d)(ε1)|. Note that
ResH(Z) ⊆ {o2}∪Z(o)∪Z(o1). First assume {o2} ⊆ ResH(Z). Set Ni := |Io(εi)|
and Qi := |Io1(εi)|. Since πi(o2) = πi(d) /∈ {o, o1} for i = 5, 6, it is sufficient
to use H ∪ N5 ∪ Q6. Now assume ResH(Z) ⊆ Z(o) ∪ Z(o1). Since Σ 6= ∅,
ResJ(Z) contains at least one among Z(o) and Z(o1), say Z(o). If ResH(Z) = Z(o)
we use that deg(π6(Z(o))) = 2 and hence h1(IZ(o)(ε̂1)) = 0. Now assume
ResH(Z) = Z(o) ∪ Z′(o1) with either Z′(o1) = {o1} or Z′(o1) = Z(o1). If J 6=
{1, 5, 6}, i.e., there is i ∈ J with i ∈ {2, 3, 4}, it is sufficient to use H ∪ Ni and
that deg(π5(Z(o1))) = 2. Now assume J = {1, 5, 6} and hence Z′(o1) = Z(o1).
There are pi ∈ P1, i = 2, 3, 4, such that {o, o1} ⊂ ∆ := 〈π1(Z′)〉 × {p2} ×
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{p3} × {p4} × P1 × P1. Since π1(Z(o) ∪ Z(o1) ⊂ 〈π1(Z′)〉 and deg(πi(Z(o))) =
deg(πi(Z(o1))) = 1 for i = 2, 3, 4}, we get Z(o) ∪ Z(o1) ⊂ ∆. Set {T2} :=
|Ip2(ε2)| and {T4} := |Io2(ε4)|. Since ResT2∪T4(Z) = Z(d) (by the assumption
πi(d) /∈ πi(S′) for i = 2, 4) and deg(π1(Z(d))) = 2, we conclude.

(c3.4.2.3) Assume the existence of exactly one i ∈ {2, 3, 4} such that πi(d) ∈ πi(S′). With no
loss of generality we may assume i = 4. As in Claim 6, we get the existence of
u ∈ S′ such that deg(ηi(Z(u))) = 1. Since i /∈ {5, 6}, u = o2. By assumption,
πi(d) /∈ πi(S′) for i = 2, 3. Fix u ∈ Σ. Assume for the moment πi(u) 6= πi(d)
for at least one i ∈ {4, 5, 6}. Write S′ = {u, u1, u2}. We use the divisor D(2) ∪
D(3) ∪ D(i) with {D(i)} := |Iv(εi)|, {D2} := |Iu1(ε2)| and {D3} := |Iu2(ε3)|.
We conclude, because Z(d) ⊆ ResD(2)∪D(3)∪D(i)(Z) ⊆ Z(d) ∪ {u}. Now assume
πi(x) = πi(d) for all i = 4, 5, 6 and all x ∈ Σ. Remark 4 and [1] (Th. 4.12) applied
to Σ ∪ {d} give #Σ = 1. Thus, π1(u1) = π1(u2). Set H := |IZ(d)(ε1)|. In this case,
we have deg(π1(Z(w))) = 1 for all w ∈ S′. Thus, ResH(Z) = Z(u). Since there
is i ∈ {4, 5, 6} with deg(πi(Z(u))) = 2, we conclude.

(c3.4.2.4) Assume the existence of at least 2 indices i ∈ {2, 3, 4} such that πi(d) ∈ πi(S′), say
i = 3 and i = 4. The first part of step c34.2.2 gives the equality deg(η4(Z(o2))) =
1. Using i = 3 instead of i = 4, we get deg(η3(Z(o2))) = 1, and hence,
deg(Z(o2)) = 1, a contradiction.

Proof of Theorem 5. Since we may assume k ≥ 3 (Remark 9 and Theorem 8) and n1 ≤ 3,
all cases are covered by Propositions 9, 11–13.

Proof of Theorem 6. Assume T(Y, 4) 6= ∅. Remark 9 and Theorem 8 give k ≥ 3. Theo-
rem 5 gives dim Y ≤ 6. Theorem 10 excludes the case Y = (P1)3. All cases with dim Y = 6
are allowed by Theorem 3. The case Y = P3 × P1 × P1 and Y = P2 × P1 × P1 are ex-
cluded by Lemma 18. Proposition 9 gives the cases Y ∈ {P2 × P2 × P1, P2 × (P1)3, (P1)5}.
Proposition 2 gives the case Y = (P1)4.

8. Examples

Proposition 15. Fix an integer n > 1 and set Y = Pn × Pn × P1 × P1. Then, a general
S ∈ S(Y, 2n + 1) is an element of T(Y, 2n + 1)′ ∩ S(Y, 2n + 1).

Proof. A general q ∈ σ2n+1(ν(Y)) has rank exactly 2n + 1 and for a general q a general A ∈
S(Y, q) is a general element of S(Y, n + 1). By [3] (Prop. 4.7(i)), we have A ∈ T1(Y, 2n + 1).
Since A ∈ S(Y, q), A ∈ S(Y, 2n + 1). Since #A = 2n + 1 > n and A is general, Y is
the minimal multiprojective space containing A (Remark 14). Thus, A ∈ T(Y, 2n + 1).
Fix E ( A, E 6= ∅ and set e := #E. Since A is general, E is a general element of S(Y, e).
Thus, to prove that δ(2E, Y) = 0 it is sufficient to use that for each e ≤ 2n the e-th secant
variety of Y is not defective ([3], Proposition 4.7(iii)). Thus, A ∈ T(Y, 2n + 1)′.

Proposition 16. Take either Y = P3 × P3 × P2 or Y = P2 × P2 × P1 × P1. Then, a general
S ∈ S(Y, 5) is an element of T(Y, 5)′ ∩ S(Y, 5).

Proof. Take k ≥ 3 an Y := Pn1 × · · · × Pnk with n1 ≥ · · · ≥ nk > 0. The secant variety
σ5(ν(Y)) is defective if and only if either k = 3 and (n1, n2, n3) ∈ {(3, 3, 2), (a, 2, 1), (a, 3, 1)}
for some a ≥ 5 or k = 4 and (n1, n2, n3, n4) = (2, 2, 1, 1) ([3], Th. 4.12). Since we are
looking at elements of S(Y, 5) such that Y is the minimal multiprojective space containing
S, we exclude to cases (a, 3, 1) and (a, 2, 1) with a ≥ 5. If either Y = P3 × P3 × P2 or
Y = P2 × P2 × P1 × P1, a general S ∈ S(Y, 5) is an element of T(Y, 5) ∩ S(Y, 5). The set S
is an element of T(Y, 5)′, because any E ⊂ S may be seen as a general element of S(Y, #E)
and no secant variety of order ≤ 4 of Y is defective (Remark 1).



Symmetry 2022, 14, 2440 32 of 32

9. Conclusions and Further Open Problems

In this paper, we consider four notions of Terracini loci, two of which are introduced
here, and provide several results for them with full proofs. Concerning the most interesting
one, minimally Terracini sets, T(Y, x)′, we raise the following two conjectures and the
following question.

Conjecture 13. Fix an integer x ≥ 5 and set Y := (P1)k. We conjecture that T(Y, x)′ = ∅ if
k ≥ 2x− 1.

Conjecture 14. Fix integers x ≥ 5, m ≥ 2 and set Y := (Pm)k. We conjecture that T(Y, x)′ = ∅
if km ≥ 2x− 1.

Question 15. Fix an integer x ≥ 5. Find a small integer ex ≥ 0 such that T(Y, x)′ = ∅ for all
multiprojective spaces Y = Pn1 × · · · × Pnk such that n1 ≥ · · · ≥ nk > 0 and n1 ≤ nk − ex.

The multiprojective spaces in Conjectures 13 and 14 are balanced and the dimensions of
their secant varieties are known, with one possible exception ([12]).
Question 15 concerns the “almost balanced” ones.
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