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Abstract: In this paper, we consider and extend some fixed point results in F-complete F-metric spaces
by relaxing the symmetry of complete metric spaces. We generalize (α, β)-admissible mappings in
the setting of F-metric spaces. The derived results are supplemented with suitable examples, and
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1. Introduction and Preliminaries

In functional and nonlinear analysis, the standard metric space is an extremely useful
tool. Several generalizations of conventional metric spaces have surfaced in recent years.
The famous Banach contraction principle [1] of 1922 laid the foundation of modern metric
fixed point theory. Many mathematicians generalized the contraction mapping theorem
(CMT) in various types of metric spaces using different contractive conditions. In the
sequel, in 1989, Bakhtin [2] developed the notion of b-metric spaces and proposed the
contraction mapping in b-metric spaces as an extension of the CMT. Matthews [3] proposed
the concept of a partial metric space, which is a generalization of the standard metric space.
Subsequently, in 2007, Huang and Zhang [4] defined the cone metric space and substituted
real numbers by the ordered Banach space. Many fixed point theorems of contractive
mapping on cone metric spaces have been proven in the setting of cone metric spaces. We
recommend readers see [5–9] and several references therein for quantitative information.
Recently, in 2018, Jleli and Samet proposed the notion of the F-metric space in [10]. Since
then, several fixed point results have been established in the setting of the F-metric space.
In 2019, Mitrović et al. [11] established fixed point results of Banach, Jungck, Reich, and
Berinde, on the F-metric space; see also [12–18]. In the sequel, we recall some of the basic
concepts and outcomes that are required in our main results.

Throughout this paper, we indicate [0,+∞) as the set of non-negative real numbers
<+

0 , and (−∞,+∞) indicate the real numbers <, respectively.
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Definition 1. Let F be the set of functions g : <+
0 → < satisfying the following conditions:

(F1) g is non-decreasing,
(F2) For every sequence {pσ} ⊂ <+

0 , we have
limσ→+∞ pσ = 0 if and only if limσ→+∞ g(pσ) = −∞.

Definition 2 ([10]). Let Γ be a non-void set. A function V : Γ× Γ→ <+
0 is said to be an F-metric

(F−M) on Γ if there exists (g, α) ∈ F× <+
0 such that ∀ ϕ, µ ∈ Γ, the following hypotheses are

satisfied:

(V1) V(ϕ, µ) = 0 if and only if ϕ = µ;
(V2) V(ϕ, µ) = V(µ, ϕ);
(V3) For every N ∈ N, N ≥ 2, and for every {ui}N

i=1 ⊂ Γ with (u1, uN) = (ϕ, µ), we have

V(ϕ, µ) > 0 =⇒ g(V(ϕ, µ)) ≤ g

(
N−1

∑
i=1
V(ui, ui+1)

)
+ α.

Then, the pair (Γ,V) is said to be the F-metric space (F−MS).

Example 1 ([10]). Let Γ = <. Define a mapping V : Γ× Γ→ <+
0 by

V(ϕ, µ) =

{
(ϕ− µ)2, (ϕ, µ) ∈ [0, 4)× [0, 4)
|ϕ− µ|, otherwise,

and let f (p) = ln p for all p > 0 and α = ln 3. Then, V is an F−M on Γ. Since 4 = V(1, 3) ≥
V(1, 2) + V(2, 3) = 2, then V is not a metric on Γ.

Example 2 ([10]). Let Γ = < and V : Γ× Γ→ <+
0 be defined as follows:

V(ϕ, µ) =

{
e|ϕ−µ|, ϕ 6= µ,
0, ϕ = µ.

Then, V is an F−M on Γ. Since e2 = V(1, 3) ≥ V(1, 2) + V(2, 3) = 2e, then V is not a metric
on Γ.

Definition 3 ([10]). Let (Γ,V) be an F−MS space and {ϕσ} be a sequence on Γ:

(1) A sequence {ϕσ} is called F-convergent to ϕ ∈ Γ if limσ→+∞ V(ϕσ, ϕ) = 0.
(2) A sequence {ϕσ} is called F-Cauchy if limσ,m→+∞ V(ϕσ, ϕm) = 0.
(3) The F−M space (Γ,V) is said to be F-complete if every F-Cauchy sequence in Γ is F-convergent

to some element in Γ.

Lemma 1 ([11]). Let {ϕσ} be a sequence in the F−MS space (Γ,V) such that

V(ϕσ, ϕσ+1) ≤ λV(ϕσ−1, ϕσ), f or all σ ∈ N,

where 0 ≤ λ < 1. Then, {ϕσ} is an F-Cauchy sequence in (Γ,V).

Theorem 1 ([10]). Let (Γ,V) be an F-complete F−MS, and let Υ : Γ → Γ be a self-mapping
satisfying

V(Υϕ, Υµ) ≤ αV(ϕ, µ), f or all ϕ, µ ∈ Γ, (1)

where 0 ≤ α < 1. Then, Υ has a unique fixed point.

We denote by Ψ the set of all non-decreasing functions ψ : <+
0 → [0,+∞) such that,

for all p > 0, we have
+∞
∑

σ=1
ψσ(p) < +∞, where ψσ is the σth iterate of ψ. These functions are
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known as comparison functions. Furthermore, ψ(p) < p for all p > 0.

Samet et al. [19] first proposed the concept of an α-ψ-contraction map. They estab-
lished the existence and uniqueness of fixed points in the metric space for such mappings.
Alizadeh et al. [20] proposed the idea of (α, β)- (ψ, ϕ)-contraction and weak α- β-ψ-rational
contractive maps through cyclic the (α, β)-admissible map and established fixed point
theorems for this class of maps in the setting of the metric space.

Definition 4 ([20]). Let Υ be a self-mapping on Γ and α, β : Γ→ <+
0 . We say that the mapping Υ

is a cyclic (α, β)-admissible mapping if:

(i) α(ϕ) ≥ 1 for some ϕ ∈ Γ implies β(Υϕ) ≥ 1;
(ii) β(ϕ) ≥ 1 for some ϕ ∈ Γ implies α(Υϕ) ≥ 1.

For a deep insight into the fixed point results on various generalized metric spaces,
the reader can see, for example, [3–9,11,19–23], while more new results on F−MS can be
found in [24–29].

More recently, Hussain and Kanwal [30] introduced the concept of the α-ψ-contraction
in F-metric spaces and demonstrated fixed point and linked fixed point results. Inspired by
this, in our work, we introduce a new type of contraction map and establish a fixed point
result in the setting of F−MS generalizing some proven results of the past. The rest of the
paper is organized as follows: In Section 2, we present our main results by introducing
the (α, β)-admissible map in the setting of F−MS and prove the fixed point results. Our
results generalize and corollorizesome proven results in the past. In Section 3, the derived
results are applied to find the analytical solution to the integral equation. We validate the
analytical solution through numerical simulation. Finally, in Section 4, we propose some
open problems for future research in this arena.

2. Main Results

We begin the section by giving the following definition.

Definition 5. Let (Γ,V) be an F−MS, Υ : Γ → Γ be a cyclic (α, β)-admissible map, and ψ ∈ Ψ.
We call Υ an (α, β)-ψM-admissible map if

α(ϕ)β(µ) ≥ 1 implies V(Υϕ, Υµ) ≤ ψ(M(ϕ, µ)), f or all ϕ, µ ∈ Γ, (2)

where

M(ϕ, µ) = max
{
V(ϕ, µ),

V(ϕ, Υϕ)V(µ, Υµ)

1 + V(ϕ, µ)
,
V(ϕ, Υµ)V(µ, Υϕ)

1 + V(ϕ, µ)

}
.

Theorem 2. Let (Γ,V) be an F-complete F−MS and Υ : Γ→ Γ be an (α, β)-ψM-admissible map.
Assume that the following conditions hold:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
(ii) Υ is continuous or;
(iii) If {ϕσ} is a sequence in Γ such that ϕσ → ϕ and β(ϕσ) ≥ 1 for all σ ∈ N, then β(ϕ) ≥ 1.

Then, Υ has a unique fixed point.

Proof. Let ϕ0 ∈ Γ, and consider the sequence {ϕσ} in which ϕσ = Υϕσ−1 for all σ ∈
N ∪ {0}. Since α(ϕ0) ≥ 1 and Υ : Γ → Γ is a cyclic (α, β)-admissible mapping, then
β(ϕ1) = β(Υϕ0) ≥ 1, which implies α(ϕ2) = α(Υϕ1) ≥ 1. By continuing this process, we
have α(ϕ2σ) ≥ 1 and β(ϕ2σ−1) ≥ 1. Since Υ is a cyclic (α, β)-admissible mapping and
β(ϕ0) ≥ 1, we conclude that β(ϕ2σ) ≥ 1 and α(ϕ2σ−1) ≥ 1 for all σ ∈ N∪ {0}. Hence, we
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obtain α(ϕσ) ≥ 1 and β(ϕσ) ≥ 1 for all σ ∈ N ∪ {0}. Since α(ϕσ−1)β(ϕσ) ≥ 1, from the
inequality (2), we have

V(ϕσ, ϕσ+1) = V(Υϕσ−1, Υϕσ) ≤ ψ(M(ϕσ−1, ϕσ)),

where

M(ϕσ−1, ϕσ) = max
{
V(ϕσ−1, ϕσ),

V(ϕσ−1, Υϕσ−1)V(ϕσ, Υϕσ)

1 + V(ϕσ−1, ϕσ)
,

V(ϕσ−1, Υϕσ)V(ϕσ, Υϕσ−1)

1 + V(ϕσ−1, ϕσ)

}
= max

{
V(ϕσ−1, ϕσ),

V(ϕσ−1, ϕσ)V(ϕσ, ϕσ+1)

1 + V(ϕσ−1, ϕσ)

}
,

for all σ ∈ N∪ {0}. If M(ϕσ−1, ϕn) =
V(ϕσ−1,ϕσ)V(ϕσ ,ϕσ+1)

1+V(ϕσ−1,ϕσ)
, we have

M(ϕσ−1, ϕσ) ≤ ψ

(
V(ϕσ−1, ϕσ)V(ϕσ, ϕσ+1)

1 + V(ϕσ−1, ϕσ)

)
<
V(ϕσ−1, ϕσ)V(ϕσ, ϕσ+1)

1 + V(ϕσ−1, ϕσ)

which is a contradiction. Hence, V(ϕσ, ϕσ+1) ≤ ψ(V(ϕσ−1, ϕσ)) for all σ ∈ N ∪ {0}.
Inductively, we obtain V(ϕσ, ϕσ+1) ≤ ψσ(V(ϕ0, ϕ1)) ∀ σ ∈ N ∪ {0}. Now, let (g, α) ∈
F× [0,+∞) such that (V3) holds, and let ε > 0 be fixed. From (F2), we conclude that there
exists δ > 0 such that

0 < p < δ =⇒ g(p) < g(ε)− α. (3)

Since ψ ∈ Ψ, there exists some N0 ∈ N such that 0 <
+∞
∑

σ=N0

ψσ(V(ϕ0, ϕ1)) < δ. Hence,

from (3) and (F1), we obtain

f

(
m−1

∑
i=σ

ψi(V(ϕ0, ϕ1))

)
≤ f

(
+∞

∑
i=N0

ψσ(V(ϕ0, ϕ1))

)
< f (ε)− α, (4)

where m > σ ≥ N0. From (V3) and (4) for V(ϕm, ϕσ) > 0, m > σ ≥ N0, we obtain

f (V(ϕm, ϕσ)) ≤ f

(
m−1

∑
i=σ

V(ϕi, ϕi+1)

)
+ α

≤ f

(
m−1

∑
i=σ

ψi(V(ϕi, ϕi+1))

)
+ α

< f (ε),

and using (F1), we have V(ϕm, ϕσ) < ε. Hence, {ϕσ} is an F-Cauchy sequence in the
F-complete F−MS Γ, so there exists ϕ∗ ∈ Γ such that limσ→+∞ V(ϕσ, ϕ∗) = 0. Since Υ is
continuous, then we have

Υϕ∗ = Υ
(

lim
σ→+∞

ϕσ

)
= lim

σ→+∞
Υϕσ = lim

σ→+∞
ϕσ+1 = ϕ∗,

that is ϕ∗ is a fixed point of Υ. Next, we suppose that (iii) holds,
that is

α(ϕσ)β(ϕ∗) ≥ 1.

From (2), we have
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g(V(Υϕ∗, ϕ∗))

≤ g(V(Υϕ∗, Υϕσ) + V(Υϕσ, ϕ∗)) + α

≤ f
(

ψ

(
max

{
V(ϕ∗, ϕσ),

V(ϕ∗, Υϕ∗)V(ϕσ, Υϕσ)

1 + V(ϕ∗, ϕσ)
,
V(ϕ∗, Υϕσ)V(ϕσ, Υϕ∗)

1 + V(ϕ∗, ϕσ)

}
+ V(Υϕn, ϕ∗)

))
+ α.

Since ϕσ → ϕ∗ as σ→ +∞, from F2, we have

lim
σ→+∞

f
(

ψ

(
max

{
V(ϕ∗, ϕσ),

V(ϕ∗, Υϕ∗)V(ϕσ, Υϕσ)

1 + V(ϕ∗, ϕσ)
,
V(ϕ∗, Υϕσ)V(ϕσ, Υϕ∗)

1 + V(ϕ∗, ϕσ)

}))
+ α = −∞,

which is a contradiction. Hence, V(Υϕ∗, ϕ∗) = 0, that is Υϕ∗ = ϕ∗. To prove the unique
fixed point, suppose that ϕ and µ are two fixed points of Υ. Since α(ϕ)β(µ) ≥ 1, it follows
from (2) that

V(ϕ, µ) = V(Υϕ, Υµ)

≤ ψ(M(ϕ, µ))

= ψ

(
max

{
V(ϕ, µ),

V(ϕ, Υϕ)V(µ, Υµ)

1 + V(ϕ, µ)
,
V(ϕ, Υµ)V(µ, Υϕ)

1 + V(ϕ, µ)

})
= ψ(V(ϕ, µ))

< V(ϕ, µ),

which is a contradiction, that is V(ϕ, µ) = 0 and ϕ = µ.

The following are the consequences of Theorem 2.

Corollary 1. Let (Γ,V) be an F-complete F−MS, and let Υ : Γ→ Γ be a cyclic (α; β)-admissible
mapping be such that

(V(Υϕ, Υµ) + l)α(ϕ)β(µ) ≤ ψ(M(ϕ, µ)) + l, for all ϕ, µ ∈ Γ, (5)

where

M(ϕ, µ) = max
{
V(ϕ, µ),

V(ϕ, Υϕ)V(µ, Υµ)

1 + V(ϕ, µ)
,
V(ϕ, Υµ)V(µ, Υϕ)

1 + V(ϕ, µ)

}
,

and ψ ∈ Ψ and l > 1. Suppose that the following conditions are satisfied:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
(ii) Υ is continuous or;
(iii) If {ϕσ} is a sequence in Γ such that ϕn → ϕ and β(ϕσ) ≥ 1 for all σ ∈ N, then

β(ϕ) ≥ 1.

Then, Υ has a fixed point. Moreover, if α(ϕ) ≥ 1 and β(µ) ≥ 1, for all ϕ, µ ∈ Fix(T),
then Υ has a unique fixed point.

Proof. Let α(ϕ)β(µ) ≥ 1 for ϕ, µ ∈ Γ. Then, from (5), we have

V(Υϕ, Υµ) + l ≤ (V(Υϕ, Υµ) + l)α(ϕ)β(µ)

≤ ψ(M(ϕ, µ)) + l.

Then, we obtain

V(Υϕ, Υµ) ≤ ψ(M(ϕ, µ)).

This implies that Equation (2) is satisfied. Therefore, the proof follows from Theorem 2.
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Corollary 2. Let (Γ;V) be an F-complete F−MS, and let Υ : Γ→ Γ be a cyclic (α; β)-admissible
map be such that

(α(ϕ)β(µ) + l)V(Υ(ϕ),Υ(µ)) ≤ 2ψ(M(ϕ,µ)), ϕ, µ ∈ Γ, (6)

where

M(ϕ, µ) = max
{
V(ϕ, µ),

V(ϕ, Υϕ)V(µ, Υµ)

1 + V(ϕ, µ)
,
V(ϕ, Υµ)V(µ, Υϕ)

1 + V(ϕ, µ)

}
,

and ψ ∈ Ψ. Suppose that the following conditions are satisfied:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
(ii) Υ is continuous or;
(iii) If ϕσ is a sequence in Γ such that ϕσ → ϕ and β(ϕσ) ≥ 1 for all σ ∈ N, then β(ϕ) ≥ 1.

Then, Υ has a fixed point. Moreover, if α(ϕ) ≥ 1 and β(µ) ≥ 1 for all ϕ, µ ∈ Fix(T),
then Υ has a unique fixed point.

Proof. Let α(ϕ)β(µ) ≥ 1 for ϕ, µ ∈ Γ. Then, from (6), we have

2V(Υϕ,Υµ) ≤ (α(ϕ)β(µ) + l)V(Υϕ,Υµ)

≤ 2ψ(M(ϕ,µ)).

Then, we obtain
V(Υϕ, Υµ) ≤ ψ(M(ϕ, µ)).

This implies that Equation (2) is satisfied, and so, the proof follows from Theorem 2.

Corollary 3. Let (Γ,V) be an F-complete F−MS, and let Υ : Γ→ Γ be a cyclic (α; β)-admissible
map be such that

α(ϕ)β(µ)V(Υϕ, Υµ) ≤ ψ(M(ϕ, µ)), for all ϕ, µ ∈ Γ, (7)

where

M(ϕ, µ) = max
{
V(ϕ, µ),

V(ϕ, Υϕ)V(µ, Υµ)

1 + V(ϕ, µ)
,
V(ϕ, Υµ)V(µ, Υϕ)

1 + V(ϕ, µ)

}
,

and ψ ∈ Ψ. Suppose that the following conditions are satisfied:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
(ii) Υ is continuous or;
(iii) If ϕσ is a sequence in Γ such that ϕσ → ϕ and β(ϕσ) ≥ 1 for all σ ∈ N, then β(ϕ) ≥ 1.

Then, Υ has a unique fixed point.

Proof. Let α(ϕ)β(µ) ≥ 1 for ϕ, µ ∈ Γ. Then, from (7), we have

V(Υϕ, Υµ) ≤ α(ϕ)β(µ)V(Υϕ, Υµ)

≤ ψ(M(ϕ, µ)).

Then, we obtain
V(Υϕ, Υµ) ≤ ψ(M(ϕ, µ)).

This implies that Equation (2) is satisfied, and the proof follows Theorem 2.

We present two examples that support the derived results.
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Example 3. Consider the F−MS given in Example 1. Let

Υϕ =

{
− ϕ

3 , ϕ ∈ [−3, 3]
ϕ2, otherwise,

and α, β : Γ→ <+
0 be given by

α(ϕ) =

{
1, ϕ ∈ [−3, 0]
0, otherwise,

, β(ϕ) =

{
1, ϕ ∈ [0, 3]
0, otherwise.

Furthermore, define the function ψ : <+
0 → <

+
0 by ψ(t) = t

3 .

First, we show that Υ is an (α,β)-admissible map. Let ϕ ∈ Γ; if α(ϕ) ≥ 1, then
ϕ ∈ [−3, 0], and so ,Υϕ ∈ [0, 3], that is β(Υϕ) ≥ 1. Furthermore, if β(ϕ) ≥ 1, then
α(Υϕ) ≥ 1. Thus, Υ is a cyclic (α, β)- admissible map. Let {ϕσ} ∈ Γ such that β(ϕσ) ≥ 1
for all σ ∈ N ∪ {0} and ϕσ → ϕ as α → +∞. Then, {ϕσ} ⊂ [0, 3], and hence, ϕ ∈ [0, 3],
that is β(ϕ) ≥ 1. Let ϕ, µ ∈ Γ and α(ϕ)β(µ) ≥ 1. Then, ϕ ∈ [−3, 0] and µ ∈ [0, 3]. Then,
we obtain

V(Υϕ, Υµ) = V
(
− ϕ

3
,−µ

3

)
=
∣∣∣ ϕ

3
− µ

3

∣∣∣
=

1
3
V(ϕ, µ)

≤ ψ(M(ϕ, µ)).

Thus, all assumptions of Theorem 2 are satisfied. Hence, Υ has a unique fixed point 0.

Example 4. Consider the F−MS given in Example 2, and let α, β : Γ→ <+
0 be given by

α(ϕ) =

{
1, ϕ ∈ [−1, 0]
0, otherwise,

, β(ϕ) =

{
1, ϕ ∈ [0, 1]
0, otherwise.

Put ψ : <+
0 → <

+
0 by ψ(t) =

√
t and Υϕ = − ϕ

2 .

We first show that Υ is an (α, β)-admissible map. Let ϕ ∈ Γ; if α(ϕ) ≥ 1, then
ϕ ∈ [−1, 0] and Υϕ = − ϕ

2 ∈ [0, 1], so β(Υϕ) ≥ 1. Furthermore, if β(ϕ) ≥ 1, then α(Υϕ) ≥ 1.
Therefore, Υ is a cyclic (α; β)-admissible map. Let {ϕσ} ∈ Γ such that β(ϕσ) ≥ 1 for all
σ ∈ N ∪ {0} and ϕσ → ϕ as σ → +∞. Then, {ϕn} ⊆ [0, 1], and hence, ϕ ∈ [0, 1], that is
β(ϕ) ≥ 1. Let ϕ, µ ∈ Γ and α(ϕ)β(µ) ≥ 1. Then, ϕ ∈ [−1, 0] and µ ∈ [0, 1]. Then, we have

V(Υϕ, Υµ) = e|
ϕ
2−

µ
2 |

=
√
V(ϕ, µ)

≤
√

M(ϕ, µ)

= ψ(M(ϕ, µ)).

Then, all assumptions of Theorem 2 are satisfied. Hence, Υ has a unique fixed point 0.
Now follows our second new result supplemented with an example.

Theorem 3. Let (Γ;V) be an F-complete F−MS and Υ; S : Γ → Γ be self-mappings on Γ that
satisfy

α(ϕ)β(µ) ≥ 1 or α(µ)β(ϕ) ≥ 1 =⇒ V(Υϕ; Sµ) ≤ kV(ϕ; µ), for all ϕ, µ ∈ Γ, (8)
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where 0 < k < 1. Suppose that the following conditions hold:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
(ii) Υ and S are two (α, β)-admissible mappings;
(iii) If ϕσ is a sequence in Γ such that ϕσ → ϕ as σ→ +∞ and β(ϕσ) ≥ 1, for all σ ∈ N, then

β(ϕ) ≥ 1.

Then, Υ and S have a unique common fixed point.

Proof. Let ϕ0 ∈ Γ, and define the sequence {ϕσ} by ϕ2σ+1 = Υϕ2σ and ϕ2σ+2 = Sϕ2σ+1,
for all σ ∈ N ∪ {0}. Since T and S are cyclic (α, β)-admissible mappings and α(ϕ0) ≥ 1,
then β(ϕ1) = β(Υϕ0) ≥ 1 and α(ϕ2) = α(Sϕ1) ≥ 1. By continuing this process, we have
α(ϕ2σ) ≥ 1 and β(ϕ2σ+1) ≥ 1, ∀ σ ∈ N ∪ {0}. Similarly, since T and S are cyclic (α; β)-
admissible mappings and β(ϕ0) ≥ 1, it can be shown that, β(ϕ2σ) ≥ 1 and α(ϕ2σ+1) ≥ 1,
for all σ ∈ N ∪ {0}. Then, we obtain α(ϕσ) ≥ 1 and β(ϕσ) ≥ 1, for all σ ∈ N ∪ {0}. Since
α(ϕσ)β(ϕm) ≥ 1, for all σ, m ∈ N∪ {0} from (8), we have

V(ϕ1, ϕ2) = V(Υϕ0, Sϕ1) ≤ kV(ϕ0, ϕ1)

and
V(ϕ2, ϕ3) = V(Sϕ1, Υϕ2) ≤ kV(ϕ1, ϕ2) ≤ k2V(ϕ0, ϕ1).

By repeating this procedure, we obtain

V(ϕσ, ϕσ+1) ≤ kV(ϕσ−1, ϕσ)

...

≤ kσV(ϕ0, ϕ1), ∀ σ = 0, 1, 2, . . .

Then, by Lemma 1, {ϕσ} is an F-Cauchy sequence. Since (Γ;V) is F-complete, there exists
ϕ∗ ∈ Γ such that limσ→+∞ V(ϕσ, ϕ∗) = 0. Now, we show that ϕ∗ is the common fixed
point of Υ and S. Suppose that V(ϕ∗; Υϕ∗) > 0. From (iii), we have α(ϕσ)β(ϕ∗) ≥ 1 for all
σ ∈ N. Using V3 and (8), we have

g(V(ϕ∗, Υϕ∗)) ≤ g(V(ϕ∗, ϕ2σ) + V(ϕ2σ, Υϕ∗)) + α

≤ g(V(ϕ∗, ϕ2σ) + V(Sϕ2σ−1, Υϕ∗)) + α

≤ g(V(ϕ∗, ϕ2σ) + kV(ϕ2σ−1, ϕ∗)) + α.

Since ϕσ → ϕ∗ as σ→ +∞ and using F2, we have

lim
σ→+∞

(g(V(ϕ∗, ϕ2σ) + kV(ϕ2σ−1, ϕ∗))) = −∞,

which is a contradiction. This implies that Υϕ∗ = ϕ∗. Similarly, we can show that Sϕ∗ = ϕ∗.
For the uniqueness of the common fixed point Υ and S, assume the contrary, that ϕ,
µ ∈ Fix(T) ∩ Fix(S) and α(ϕ)β(µ) ≥ 1.

From (8), we have

V(ϕ, µ) = V(Υϕ, Sµ) ≤ kV(ϕ, µ) < V(ϕ, µ),

which is a contradiction, that is Υ and S have a unique common fixed point.

Corollary 4. Let (Γ;V) be an F-complete F−MS and Υ : Γ→ Γ be a self-mapping on Γ that satisfy

α(ϕ)β(µ) ≥ 1 implies V(Υϕ, Υµ) ≤ kV(ϕ, µ), for all ϕ, µ ∈ Γ, (9)

where 0 < k < 1. Suppose that the following conditions hold:

(i) There exists ϕ0 ∈ Γ such that α(ϕ0) ≥ 1 and β(ϕ0) ≥ 1;
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(ii) Υ is an (α, β)-admissible mapping;
(iii) If ϕσ is a sequence in Γ such that ϕσ → ϕ as σ → +∞ and β(ϕσ) ≥ 1 for all σ ∈ N, then

β(ϕ) ≥ 1.

Then, Υ has a unique fixed point.

Example 5. Consider the F−MS given in Example 1. Let

Υϕ = − ϕ

3
for all ϕ ∈ Γ, Sϕ =

{
− ϕ

6 , ϕ ∈ [−1, 1],
3ϕ, otherwise,

and α, β : Γ→ <+
0 be given by

α(ϕ) =

{
1, ϕ ∈ [−1, 0]
0, otherwise,

, β(ϕ) =

{
1, ϕ ∈ [0, 1]
0, otherwise.

We first show that Υ and S are (α; β)-admissible mapping. Let ϕ ∈ Γ, if α(ϕ) ≥ 1, then ϕ ∈ [−1, 0],
and so, Υϕ = − ϕ

3 , that is β(Υϕ) ≥ 1. Furthermore, if β(ϕ) ≥ 1, then α(Υϕ) ≥ 1. Thus, Υ is a
cyclic (α; β)-assertion mapping. Furthermore, similarly, S is an (α; β)-admissible mapping. Let
{ϕσ} be a sequence in Γ such that β(ϕn) ≥ 1 for all σ ∈ N∪ {0} and ϕn → ϕ as n→ +∞. Then,
{ϕn} ⊂ [0, 1], and hence, ϕ ∈ [0, 1], that is β(ϕ) ≥ 1. Let ϕ, µ ∈ Γ and α(ϕ)β(µ) ≥ 1. Then,
ϕ ∈ [−1, 0] and µ ∈ [0, 1], we have

V(Υϕ, Sµ) = V
(
− ϕ

3
,−µ

6

)
≤
∣∣∣ ϕ

3
− µ

6

∣∣∣
≤ |ϕ− µ|

3

=
1
3
V(ϕ, µ).

Then, all conditions of Theorem 3 are fulfilled. Hence, Υ and S have a unique common fixed point 0.

3. Application to Integral Equation

Let Γ = C[0, l] be the set of all real continuous functions on [0, l] equipped with the
F−M:

V(r, q) =
{

e‖r−q‖∞ , r 6= q

0, otherwise,

where l > 0. Obviously, (Γ;V) is an F-complete F−MS. First, consider the following integral
equation:

r(p) = h(p) +
l∫

0

G(p, s)k(p, s, r(s))ds, (10)

where

h : [0, l]→ <, G : [0, l]× [0, l]→ <, k : [0, l]× [0, l]×< → < are continuous functions.

Let Υ : Γ→ Γ be a mapping defined by:

Υr(p) = h(p) +
l∫

0

G(p, s)k(p, s, r(s))ds, for all r ∈ Γ, p, s ∈ [0, l].

Theorem 4. Assume that the following conditions are satisfied:
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(1) For all p, s ∈ [0, l], we have
l∫

0
G2(p, s)ds ≤ 1

l ;

(2) There exist ϕ, ν : Γ → < such that if ϕ(r) ≥ 0 and ν(q) ≥ 0 for some ϕ, v ∈ Γ, then for
every s, p ∈ [0, l], we obtain

|k(p, s, r(s))− k(p, s, q(s))| ≤ ln
‖r− q‖∞

2
, for all r 6= q;

(3) There exists r0 ∈ Γ such that ϕ(r0) ≥ 0 and ν(r0) ≥ 0;
(4) ϕ(r) ≥ 0 for some r ∈ Γ implies ν(Υr) ≥ 0, and ν(r) ≥ 0 for some u ∈ Γ implies ϕ(Υr) ≥ 0;
(5) If {rσ} is a sequence in Γ such that rσ → r as σ → +∞ and ϕ(rσ) ≥ 0 for all σ ∈ N, then

ϕ(r) ≥ 0.

Then, Equation (10) has a solution in Γ.

Proof. Let r, q ∈ Γ be such that ϕ(r) ≥ 0 and ν(q) ≥ 0. Using Condition (2) and the
Cauchy–Schwarz inequality, we have

|Υr(p)− Υq(p)| =

∣∣∣∣∣∣
l∫

0

G(p, s)(k(p, s, r(s))− k(p, s, q(s)))ds

∣∣∣∣∣∣
≤

l∫
0

|G(p, s)||k(p, s, r(s))− k(p, s, q(s))|ds

≤

 l∫
0

|G(p, s)|2


1
2
 l∫

0

|k(p, s, r(s))− k(p, s, q(s))|2ds


1
2

≤ ln
‖r− q‖∞

2
.

Therefore, we obtain

‖Υr− Υq‖∞ ≤ ln
‖r− q‖∞

2
,

then we have

e‖Υr−Υq‖∞ ≤ eln ‖r−q‖∞2 = eln‖r−q‖∞−ln 2 ≤ e‖r−q‖∞

2
.

Then, we obtain

V(Υr, Υq)leq
V(r, q)

2
≤ M(r, q)

2
.

Define α, β : Γ→ <+
0 by

α(ϕ) =

{
1, ϕ(ϕ) ≥ 0,
0, otherwise,

β(µ) =

{
1, ϕ(µ) ≥ 0,
0, otherwise.

Furthermore, put ψ : <+
0 → <

+
0 by ψ(p) = p

2 . Therefore, ∀ r, q ∈ Γ, we obtain

α(r)β(q)V(Υr, Υq) ≤ ψ(M(r, q)).

Therefore, all the assumptions of Corollary 3 hold, and then, Υ has a fixed point.

Example 6. Consider the following integral equation:

∫ l

0
cos(l − s)x(s)ds = lsinl, (11)

with exact solution x(l) = 2sin(l), for 0 ≤ l < 1.
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The numerical results are shown in Table 1. These results have good accuracy in
comparison with the numerical results obtained.

Table 1. Comparison of exact solution and approximation solutions.

i Exact Solution Approximation Solution Approximation Solution
(m = 64) (m = 128)

0.0 0 0.010417 0.005208
0.1 0.199667 0.197570 0.192399
0.2 0.397339 0.382942 0.398412
0.3 0.591040 0.605205 0.589930
0.4 0.778837 0.781174 0.785758
0.5 0.958851 0.967335 0.963098
0.6 1.129285 1.126666 1.122812
0.7 1.288435 1.276056 1.289847
0.8 1.434712 1.446451 1.433200
0.9 1.566654 1.569934 1.572171

Below is the comparison of the numerical results with the analytic results.
Figures 1 and 2 show that the error of the approximation solution compared to the exact
solution is also relatively very small.

Figure 1. Graph of approximation (m = 64) compared to exact solution with h = 0.1.

Figure 2. Graph of approximation (m = 128) compared to exact solution with h = 0.1.
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4. Conclusions

We established fixed point results generalizing (α, β)-admissible mappings in the
setting of F-metric spaces. Our results extend and generalize some results proven in the
past. The results were supported with non-trivial examples, and the result was applied to
find the solution to the integral equations. There is an open problem of applying the derived
results and their extension to find the solution to the fractional differential equations, circuit
theory, etc. Furthermore, as a future research, the fixed circle problem can be studied using
these new contractions on different generalized metric spaces; see [16–18].
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18. Taş, N.; Özgür, N.Y.; Mlaiki, N. New Types of Fc-Contractions and the Fixed-Circle Problem. Mathematics 2018, 6, 188. [CrossRef]

http://doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1016/j.jmaa.2005.03.087
http://dx.doi.org/10.1007/s11784-015-0276-6
http://dx.doi.org/10.1186/s13663-017-0608-x
http://dx.doi.org/10.24193/fpt-ro.2019.1.10
http://dx.doi.org/10.3390/axioms8010034
http://dx.doi.org/10.1007/s11784-018-0606-6
http://dx.doi.org/10.3390/math7050387
http://dx.doi.org/10.3390/math8060940
http://dx.doi.org/10.3390/math8091629
http://dx.doi.org/10.1186/s13663-015-0407-1
http://dx.doi.org/10.32604/cmes.2022.022878
http://dx.doi.org/10.3390/sym12111825
http://dx.doi.org/10.3390/axioms7040080
http://dx.doi.org/10.3390/math6100188


Symmetry 2022, 14, 2429 13 of 13

19. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165.
[CrossRef]

20. Alizadeh, S.; Moradlou, F.; Salimi, P. Some fixed point results for (α, β)− (ψ, φ)-contractive mappings. Filomat 2014, 28, 3635–3647.
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