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Abstract: Very recently, functions that map the open unit disc U onto a limaçon domain, which
is symmetric with respect to the real axis in the right-half plane, were initiated in the literature.
The analytic characterization, geometric properties, and Hankel determinants of these families of
functions were also demonstrated. In this article, we present a q-analogue of these functions and use
it to establish the classes of starlike and convex limaçon functions that are correlated with q-calculus.
Furthermore, the coefficient bounds, as well as the third Hankel determinants, for these novel classes
are established. Moreover, at some stages, the radius of the inclusion relationship for a particular
case of these subclasses with the Janowski families of functions are obtained. It is worth noting that
many of our results are sharp.

Keywords: univalent functions; Schwarz functions; limaçon domain; subordination; Hankel determinant

1. Introduction and Preliminaries

The notion of q-calculus (known as Quantum calculus) is a part of mathematics
that deals with calculus without the concept of limits. This field of study has motivated
researchers in recent times because of its numerous applications and importance in many
areas of science, such as Geometry Function Theory (GFT), Quantum mechanics, cosmology,
particle physics, and statistics. The development of this area began from the work of
Jackson [1,2]. The idea was first used in GFT by Ismail et al. [3], where the concept of
a q-extension of the class S∗ of starlike functions was presented. As a result, various
q-subclasses of univalent functions have been receiving attention in this area (see [4–15]).

The study of univalent functions that map the open unit disc onto a domain symmetric
with respect to the real axis in the right-half plane is one of the fundamental aspects of GFT.
On this note, examinations of its subclasses have gained momentum in recent times. To
this end, Ma and Minda [16] provided a generalized classification of these subclasses; for
more details, see [17–26].

Recently, Kanas and Masih [22] initiated a subfamily of univalent functions that were
characterized by limaçon domains. The geometric properties of this class of functions were
examined and used to present convex and starlike limaçon classes denoted by CVL(s) and
STL(s), respectively. Furthermore, Saliu et al. [26] continued with the investigation of these
classes and proved many interesting results associated with them.

Motivated by these new works, our interest in this paper is to present a q-analogue
of the analytic classification of the limaçon functions and use it to introduce the classes
q-starlike limaçon (denoted by STLq(s)) and q-convex limaçon (depicted by CVLq(s)). Fur-
thermore, the coefficient bounds, third Hankel determinant, coefficient estimate, and radius
results (of a particular case) for these novel classes are investigated.
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To put our findings into a clear perspective, we present the following preliminaries
and definitions:

Let U = {ξ ∈ C : |ξ| < 1} and An denote the class of normalized analytic functions
f (ξ) of the form

f (ξ) = ξ +
∞∑

k=1+n

akξk, ξ ∈ U (1)

and A1 = A. Then, the subclass of A, which is univalent in U, is depicted by S. LetW be
the class of analytic functions

w(ξ) =
∞∑

n=1

wnξn, ξ ∈ U (2)

such that w(0) = 0 and |w(ξ)| < 1. These functions are known as Schwarz functions.
If f (ξ) and g(ξ) are analytic functions in U, then f (ξ) is subordinate to g(ξ) (written as
f (ξ) ≺ g(ξ)) if there exists w ∈ W such that f (ξ) = g(w(ξ)), ξ ∈ U.

Recall that f ∈ A is starlike if f (U) is starlike with respect to origin. In addition,
f ∈ A is convex if f (U) is a convex domain. Analytically, f ∈ A is starlike or convex if and
only if

Re
ξ f ′(ξ)

f (ξ)
> 0 or Re

(ξ f ′(ξ))′

f ′(ξ)
> 0 , ξ ∈ U.

An analytic function

p(ξ) = 1 +
∞∑

k=n

ckξk , (3)

is a function with positive real part if Re (p(ξ)) > 0, ξ ∈ U. The class of all such functions
is denoted by Pn with P1 = P. We also symbolized the subclass of Pn satisfying Re
(p(ξ)) > α, 0 ≤ α < 1, by Pn(α). In particular, P1(α) = P(α) [27]. More generally, for
−1 ≤ B < A ≤ 1, the class Pn(A, B) consists of function p(ξ) of the form (3) satisfying the
subordination condition

p(ξ) ≺ 1 + Aξ

1 + Bξ
, ξ ∈ U.

We note that P1(A, B) = P(A, B) [28]. If we choose p(ξ) = ξ f ′(ξ)
f (ξ) or p(ξ) = (ξ f ′(ξ))′

f ′(ξ) ,
then Pn(A, B) becomes S∗n(A, B) or Cn(A, B).

Definition 1 ([29]). Let q ∈ (0, 1). Then, the q-number [n]q is given as

[n]q =



1−qn

1−q , n ∈ C,

n−1∑
ι=0

qι = 1 + q + q2 + . . . qn−1, n ∈ N,

n, as q→ 1−.

(4)

and the q-derivative of a complex valued function f (ξ) in U is given by

Dq f (ξ) =



f (qξ)− f (ξ)
(q−1)ξ , ξ 6= 0

f ′(0), ξ = 0,

f ′(ξ), as q→ 1−.

(5)
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From the above explanation, it is easy to see that for f (ξ) given by (1),

Dq f (ξ) = 1 +
∞∑

n=2

[n]qanξn. (6)

Let f , g ∈ A, we have the following rules for q-difference operator Dq.

(i) Dq( f (ξ)g(ξ)) = f (qz)Dqg(ξ) + g(ξ)Dq f (ξ);
(ii) Dq(σ f (ξ)± δg(ξ)) = σDq f (ξ)± δDqg(ξ), for σ, δ ∈ C \ {0};
(iii)

Dq

(
f (ξ)
g(ξ)

)
=

g(ξ)Dq f (ξ)− f (ξ)Dqg(ξ)
g(ξ)g(qξ)

, g(ξ)g(qξ) 6= 0;

(iv) Dq(log f (ξ)) = log q
1

q−1 Dq f (ξ)
f (ξ) , where the principal branch of the logarithm is chosen.

As a right inverse, Jackson [2] presented the q-integral of the analytic function f (ξ) as∫
f (ξ)dqξ = (1− q)ξ

∞∑
n=0

qn f (qnξ).

For example, f (ξ) = ξn has a q-antiderivative as∫
ξndqξ =

ξn+1

[n + 1]q
, n 6= −1.

Definition 2. Noonan and Thomas [30] defined for k ≥ 1, n ≥ 1, the kth Hankel determinant of
f ∈ S of the form (10) as follows:

Hk(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+k−1

an+1 an+2 . . . an+k−2
...

...
...

...
an+k−1 an+k−2 . . . an+2k−2

∣∣∣∣∣∣∣∣∣ . (7)

This determinant has been studied by many researchers. In particular Babalola [31]
obtained the sharp bounds ofH3(1) for the classes SST and CCV . By this definition,H3(1)
is given as

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
= a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2), a1 = 1,

and by triangle inequality,

|H3(1)| ≤ |a3| |a2a4 − a2
3|+ |a4| |a4 − a2a3|+ |a5| |a3 − a2

2|. (8)

Clearly, one can see thatH2(1) = |a3 − a2
2| is a particular instance of the well-known

Fekete Szegö functional |a3 − µa2
2|, where µ is a real number.

Definition 3 ([22]). Let p(ξ) = 1 +
∞∑

n=1
cnξn. Then, p ∈ P(Ls) if and only if

p(ξ) ≺ (1 + sξ)2, 0 < s ≤ 1√
2

, ξ ∈ U,
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or if p satisfies the inequality

|p(ξ)− 1| < 1− (1− s)2 , 0 < s ≤ 1√
2

, ξ ∈ U.

Presented in [22] was the inclusion relation

{w ∈ C : |w− 1| < 1− (1− s)2} ⊂ Ls(U) ⊂ {w ∈ C : |w− 1| < (1 + s)2 − 1}, (9)

where

Ls(U) =

{
u + iv :

[
(u− 1)2 + v2 − s4

]2
<
[
(u− 1 + s2)2 + v2

]}
.

Definition 4 ([22]). Let f ∈ A. Then, f ∈ STL(s) if and only if

ξ f ′(ξ)
f (ξ)

∈ P(Ls), 0 < s ≤ 1√
2

.

In addition, f ∈ CVL(s) if and only if

ξ f ′(ξ) ∈ STL(s), 0 < s ≤ 1√
2

.

Let STLn(s) := An ∩ STL(s) and CVLn(s) := An ∩ CVL(s).
Inspired by these definitions and the notion of q-calculus, we introduce the following

novel classes of functions.

Definition 5. Let p(ξ) = 1 +
∞∑

n=1
cnξn. Then, p ∈ P(Ls(q)) if and only if

p(ξ) ≺
(

2(1 + sξ)

2 + s(1− q)ξ

)2

:= Lq,s(ξ), 0 < q < 1, 0 < s ≤ 1√
2

, ξ ∈ U.

Definition 6. Let f ∈ A. Then, f ∈ STLq(s) if and only if

ξDq f (ξ)
f (ξ)

∈ P(Ls(q)), 0 < q < 1, 0 < s ≤ 1√
2

.

In addition, f ∈ CVLq(s) if and only if

ξDq f ∈ STLq(s), 0 < q < 1, 0 < s ≤ 1√
2

.

In particular, as q→ 1−, we are back to Definitions 3 and 4. The integral representation
of functions f ∈ STLq(s) is given by

f (ξ) = ξ exp
(

1
q

∫ ξ

0

p(t)− 1
t

dqt

)
, p ∈ P(Ls(q)),

and for g ∈ CVLq(s), we have

g(ξ) =
∫ ξ

0

f (t)
t

dqt, f ∈ STLq(s).

More so, for n ∈ N, we have the extremal functions for many problems in STLq(s) as
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Φn(q, s; ξ) =ξ exp
(

1
q

∫ ξ

0

Lq,s(tn)− 1
t

dqt

)

=ξ exp


(

A− B
q

) 2ξn

[n]q
+

(A− 3B)ξ2n

[2n]q
−

∞∑
k=0

(−B)k+1(2B− (k + 2)(A− B))ξ(k+3)n

[(k + 3)n]q


 ,

A = s, B =
s(1− q)

2

=ξ +
s(1 + q)

q[n]q
ξn+1 +

s2(1 + q)
2q

(
3q− 1
2[2n]q

+
1 + q
q[n]2q

)
ξ2n+1

+
s3(1 + q)

q

(
(1 + q)2

3q[n]3q
− q(1− q)

[3n]q
+

(3q− 1)(1 + q)
2q[2n]q[n]q

)
ξ2n+1 + . . . .

Similarly, the extremal function for various problems in CVLq(s) is given as

Ψn(q, s; ξ) =

∫ z

0

Φn(q, s; t)
t

dqt.

We note that as q→ 1−, Φn(q, s; ξ) = Φn(s; ξ) and Ψn(q, s; ξ) = Ψn(s; ξ).

2. Preliminary Lemmas

Lemma 1 ([32]). If w ∈ W is of the form (2), then for a real number σ,

|w2 − σw2
1| ≤


−σ, for σ ≤ −1,

1, for − 1 ≤ σ ≤ 1,

σ for σ ≥ 1.

When σ < −1 or σ > 1, equality holds if and only if w(ξ) = ξ or one of its rotations. If
−1 < σ < 1, then equality holds if and only if w(ξ) = ξ2 or one of its rotations. Equality holds
for σ = −1 if and only if w(ξ) = ξ(x+ξ)

1+xξ (0 ≤ x ≤ 1) or one of its rotations, whereas for σ = 1,

equality holds if and only if w(ξ) = − ξ(x+ξ)
1+xξ (0 ≤ x ≤ 1) or one of its rotations.

In addition, the sharp upper bound above can be improved as follows when −1 ≤ σ ≤ 1:

|w2 − σw2
1|+ (1 + σ)|w1|2 ≤ 1 (−1 < σ ≤ 0)

and
|w2 − σw2

1|+ (1− σ)|w1|2 ≤ 1 (0 < σ < 1).

Lemma 2 ([20]). If w ∈ W is of the form in (2), then for some complex numbers ς and η such that
|ς| ≤ 1 and |η| ≤ 1,

w2 = ς(1− w2
1)

and
w3 = (1− w2

1)(1− |ς|2)η − w1(1− w2
1)ς

2.

Lemma 3 ([33]). If p ∈ Pn(A, B), then for |ξ| = r,∣∣∣∣p(ξ)− 1− ABr2n

1− B2r2n

∣∣∣∣ ≤ (A− B)rn

1− B2r2n .
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In particular, if p ∈ Pn(α), then for |ξ| = r,∣∣∣∣p(ξ)− 1 + (1− 2α)r2n

1− r2n

∣∣∣∣ ≤ 2(1− α)rn

1− r2n . (10)

Lemma 4 ([34]). If p ∈ Pn(α), then for |ξ| = r,∣∣∣∣ξ p′(ξ)
p(ξ)

∣∣∣∣ ≤ 2(1− α)nrn

(1− rn)(1 + (1− 2α)rn)
.

Lemma 5 ([35]). Let h(ξ) = 1 +
∞∑

n=1
cnξn, G(ξ) = 1 +

∞∑
n=1

dnξn and h(ξ) ≺ G(ξ). If G(ξ) is

univalent in U and G(U) is convex, then |cn| ≤ |d1| for all n ≥ 1.

The main results of this manuscript are presented in the subsequent sections with the
assumption that the analytic function f ∈ A is of the form in (1) unless otherwise stated
and w ∈ W has the series representation from (2) throughout.

3. Coefficient Bounds

Theorem 1. Let f ∈ STLq(s). Then,

|an| ≤
n−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

, [0]q = 0. (11)

Proof. For f ∈ STLq(s), we have

ξDq f (ξ)
f (ξ)

= p(ξ), p ∈ P(Ls(q)),

where p(ξ) is of the form in (3). Upon comparing the coefficients of ξn, we arrive at

q[n− 1]q|an| ≤ |cn−1|+ |a2cn−2|+ |a3cn−3|+ · · ·+ |an−1c1|. (12)

Since p(ξ) ≺ Lq,s(ξ), then it is easy to see that Lq,s(ξ) is a convex of order β, where

β =
(1− q)s2 + 4s + 2

(2− s(1− q))(1 + s)
.

Thus, Lq,s(ξ) is convex univalent in U. By Lemma 5, we have

|cn| ≤ s(1 + q).

Therefore, (12) becomes

q[n− 1]q|an| ≤ s(1 + q)
n−1∑
k=1

|ak|, (13)
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and from which, we have

|a2| ≤
s(1 + q)

q[1]q
=

2−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

;

|a3| ≤
s(1 + q)

q[2]q
(|a1|+ |a2|) ≤

s(1 + q)
q[2]q

(
1 +

s(1 + q)
q[1]q

)

=
3−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

.

Suppose (11) holds for n = m, we find that

|am| ≤
m−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

.

On the other hand, from (13), we obtain

|am| ≤
s(1 + q)

q[m− 1]q

m−1∑
k=1

|ak| . (14)

By the induction hypothesis of (14), we have

m−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

≥ s(1 + q)
q[m− 1]q

m−1∑
k=1

|ak|. (15)

Multiplying both sides of (15) by

(
[m−1]q+

s(1+q)
q

)
[m]q

, we obtain

(
[m− 1]q +

s(1+q)
q

)
[m]q

m−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

≥ s(1 + q)
q[m− 1]q

(
[m− 1]q +

s(1+q)
q

)
[m]q

m−1∑
k=1

|ak|,

which implies that

m−1∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 1]q

≥ s(1 + q)
q[m]q

(m−1∑
k=1

|ak|+
s(1 + q)

q[m− 1]q

m−1∑
k=1

|ak|
)

=
s(1 + q)

q[m]q

m∑
k=1

|ak|, a1 = 1.

This shows that the inequality of (15) is true for n = m + 1. Hence, by the principle of
mathematical induction on n, we complete the proof.

Corollary 1. Let f ∈ A be of the form in (1) and f ∈ CVLq(s). Then,

|an| ≤
n−2∏
k=0

(
[k]q +

s(1+q)
q

)
[k + 2]q

. (16)

Upon letting q→ 1− in Theorem 1 and Corollary 1, our assertions scale down to those
obtained by Saliu et al. in [26].
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Theorem 2. Let f ∈ STLq(s). Then,

∣∣∣a2a4 − a2
3

∣∣∣ ≤ ( s
q

)2
.

The bound is sharp for the function

Φ2(q, s; ξ) = ξ +
s
q

ξ3 +
s2(5q2 − q + 2)

4q2(1 + q2)
ξ5 + . . . .

Proof. Since f ∈ STLq(s), then by the subordination property, we have

ξDq f (ξ)
f (ξ)

=

(
2(1 + sw(ξ))

2 + s(1− q)w(ξ)

)
,

where w ∈ W . Then,

1 + qa2ξ + q
(
[2]qa3 − a2

2

)
ξ2 + q

(
[3]qa4 − (2 + q)a2a3 + a3

2

)
ξ3 + · · · = 1 + sw1(1 + q)ξ

+

(
(3q− 1)

2
w2

1s + w2

)
s(1 + q)ξ2 +

(
q(q− 1)s2w3

1
2

+
(3q− 1)

2
w1w2s + w3

)
s(1 + q)ξ3 + . . . .

Comparing the coefficients of ξ, ξ2, and ξ3, we obtain

a2 = (1+q)
q w1s

a3 = s
q

(
(3q2+3q+4)

4q sw2
1 + w2

)
a4 = s(1+q)

2q3(q2+q+1)

[
q4s2w3

1 +
q3sw1(sw2

1+6w2)
2 + q2

(
5s2w3

1
2 + 2w3 + sw1w2

)
+ qsw1(sw2

1 + 4w2)

+2s2w3
1

]
.

(17)

Then, by Lemma 2, we obtain

a2a4 − a2
3 =

s2

q2(q2 + q + 1)

[
(1 + q)2w1(1− w2

1)(1− |ς|2)η − (1− w2
1)(q

2 + (1 + w2
1)q + 1)ς2

+
sw2

1(1− w2
1)(q

2 − q + 2)ς
2

−
s2w4

1(q
4 + 7q3 + 24q2 + 23q + 21)

16

]
.

Let x = w1 with 0 ≤ x ≤ 1 and ς = y with |y| ≤ 1. Then,

∣∣∣a2a4 − a2
3

∣∣∣ ≤ s2

q2(q2 + q + 1)

[
(1 + q)2x(1− x2)(1− |y|2) + (1− x2)(q2 + (1 + x2)q + 1)|y|2

+
sx2(1− x2)(q2 − q + 2)|y|

2
+

s2x4(q4 + 7q3 + 24q2 + 23q + 21)
16

]

:=
s2

q2(q2 + q + 1)
fq,s(x, |y|),

where

∂ fq,s(x, |y|)
∂|y| = 2(1− x2)

[
(1 + x2)q + (1− x)(1 + q2)

]
|y|+ sx2(q2 − q + 2)

4
> 0.
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This means that fq,s(x, |y|) is an increasing function of |y| on [0, 1]. Thus,

fq,s(x, |y|) ≤ fq,s(x, 1)

=(1− x2)(q2 + (1 + x2)q + 1) +
s(1− x2)(q2 − q + 2)x2

2

+
s2(q4 + 7q3 + 24q2 + 23q + 21)x4

16
:= fq,s(x),

where

d fq,s(x)
dx

=

[
(q4 + 7q3 + 24q2 + 23q + 21)s2

4
− 2(q2 − q + 2)s− 4q

]
x3

+ [s(q2 − q + 2)− 2(1 + q2)]x

and
d2 fq,s(x)

dx2 = 3
[
(q4 + 7q3 + 24q2 + 23q + 21)s2

4
− 2(q2 − q + 2)s− 4q

]
x2 + s(q2 − q + 2)− 2(1 + q2).

For x = 0,
d2 fq,s (x)

dx2 < 0. Therefore, fq,s(x) has a maximum value at x = 0. Thus,

fq,s(x) ≤ fq,s(0) = q2 + q + 1.

Hence, we have the thesis.

As q→ 1− in Theorem 2, we have the following corollary:

Corollary 2. Let STL(s). Then, ∣∣∣a2a4 − a2
3

∣∣∣ ≤ s2.

The bound is sharp for the function

Φ2(s; ξ) = ξ + s2ξ3 +
3s3

4
ξ5 + . . . .

Remark 1. It is worth noting that this bound is different from the one obtained in Lemma 4.3
of [26]. This variation is due to the computational error therein.

Theorem 3. Let f ∈ CVLq(s). Then, for s < min
{√

2
2 , 2(q2−q+1)

q2+q+2

}
∣∣∣a2a4 − a2

3

∣∣∣ ≤ ( s
q(q2 + q + 1)

)2
.

The inequality cannot be improved due to the function

Ψ2(q, s; ξ) = ξ +
s

q(q2 + q + 1)
ξ3 + . . . .

Proof. From the definition of the class CVLq(s) and (17), we easily have
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a2 = w1s
q

a3 = s
q(q2+q+1)

(
(3q2+3q+4)

4q sw2
1 + w2

)
a4 = s

2q3(q2+q+1)(1+q2)

[
q4s2w3

1 +
q3sw1(sw2

1+6w2)
2 + q2

(
5s2w3

1
2 + 2w3 + sw1w2

)
+ qsw1(sw2

1 + 4w2)

+2s2w3
1

]
.

(18)

Then, by Lemma 2, we obtain

a2a4 − a2
3 =

s2

q2(q2 + q + 1)(q2 + 1)

[
w1(1− w2

1)(1− |ς|2)η +
(1− w2

1)(q
2 + q− 2)sw2

1ς

2(q2 + q + 1)

−
(1− w2

1)(q
2 + w2

1q + 1)ς2

(q2 + q + 1)
−

s2w4
1(1 + q)(q3 + 5q2 + 5q2 + 5)

16(q2 + q + 1)

]
.

Therefore, reasoning along the same line as in the proof of Theorem 2, we arrive at the
desired result.

As q→ 1− in Theorem 3, we have the following corollary:

Corollary 3 ([26]). Let CVL(s). Then, for s < 1
2 ,

∣∣∣a2a4 − a2
3

∣∣∣ ≤ s2

9
.

The bound is sharp for the function

Ψ2(s; ξ) = ξ +
s
3

ξ3 + . . . .

Theorem 4. Let f ∈ STLq(s). Then,

|a2a3 − a4| ≤
s(1 + q)

q(q2 + q + 1)
.

The bound is sharp for the function

Φ3(q, s; ξ) = ξ +
s(1 + q)

q(q2 + q + 1)
ξ4 + . . . .

Proof. Using (17) and Lemma 2, it follows that

a2a3 − a4 =
s(1 + q)

q(q2 + q + 1)

[
(1− w2

1)(1− |ς|2)η + w1(1− w2
1)ς

2 −
sw1(1− w2

1)(q
2 + q + 2)ς

2q

+
s2w3

1(q
3 + 5q2 + 5q + 5)

4q

]
.
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Let x = w1 with 0 ≤ x ≤ 1 and ς = y with |y| ≤ 1. Then, by triangle inequality, we
have

|a2a3 − a4| =
s(1 + q)

q(q2 + q + 1)

[
(1− x2)(1− |y|2) + x(1− x2)|y|2 + sx(1− x2)(q2 + q + 2)|y|

2q

+
s2x3(q3 + 5q2 + 5q + 5)

4q

]

:=
s(1 + q)

q(q2 + q + 1)
gq,s(x, |y|),

where
∂gq,s(x, |y|)

∂|y| = −2(x− 1)2(x + 1)− x(1− x2)(q2 − q + 2)
2q

< 0.

This implies that gq,s(x, |y|) is decreasing on [0,1]. Thus,

gq,s(x, |y|) ≤gq,s(x, 0)

=(1− x2) +
s2x3(q3 + 5q2 + 5q + 5)

4q

:=gq,s(x),

where
dgq,s(x)

dx
=

x
4q

[3s2(q3 + 5q2 + 5q + 5)x− 8q]

and
d2gq,s(x)

dx2 = −2 +
3xs2(q3 + 5q2 + 5q + 5)

2q
.

For x = 0, the function gq,s(x) assumes its maximum value. Therefore,

gq,s(x) ≤ gq,s(0) = 1.

Hence, we have the result.

As q→ 1− in Theorem 4, we obtain the following results due to Saliu et al. [26].

Corollary 4. Let f ∈ STL(s). Then,

|a2a3 − a4| ≤
2s
3

.

The bound is sharp for the function

Φ3(s; ξ) = ξ +
2s
3

ξ4 + . . . .

Theorem 5. Let f ∈ CVLq(s). Then, for s < min
{√

2
2 , 4q

q2+q+1

}
,

|a2a3 − a4| ≤
s

q(1 + q2)(q2 + q + 1)
.

The bound is sharp for the function

Ψ3(q, s; ξ) = ξ +
s

q(1 + q2)(q2 + q + 1)
ξ4 + . . . .
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Proof. From (18) and Lemma 2, it follows that

a2a3 − a4 =
w1s(1− w2

1)ς
2

q(1 + q2)(q2 + q + 1)
−

s2w1(1− w2
1)(q

2 + q + 2)ς
2q2(1 + q2)(q2 + q + 1)

−
s(1− w2

1)(1− |ς|2)η
q(1 + q2)(q2 + q + 1)

+

+
s3w3

1(1 + q)
4q2(1 + q2)

.

Let x = w1 with 0 ≤ x ≤ 1 and ς = y with |y| ≤ 1. Then, by triangle inequality, we
have

|a2a3 − a4| =
s

q(q2 + q + 1)(1 + q2)

[
x(1− x2)|y|2 + sx(1− x2)(q2 + q + 2)|y|

2q

+ (1− x2)(1− |y|2) + s2x3(1 + q)
4q

]
.

Continuing in the same fashion as in Theorem 4, we obtain the required results.

We obtain the following corollary as q→ 1−.

Corollary 5 ([26]). Let f ∈ CVL(s). Then, for s <
√

2
2

|a2a3 − a4| ≤
s
6

.

The bound is sharp for the function

Ψ3(s; ξ) = ξ +
s
6

ξ4 + . . . .

4. Fekete Szegö Inequalities

Theorem 6. Let f ∈ STLq(s). Then, for a real number µ,

|a3 − µa2
2| ≤



s2(3q2+3q+4−4µ(1+q)2)
4q2 , for µ ≤ ρ1,

s
q , for ρ1 ≤ µ ≤ ρ2,

s2(4µ(1+q)2−(3q2+3q+4))
4q2 , for µ ≥ ρ2.

It is asserted also that

|a3 − µa2
2|+

[
µ− s(3q2 + 3q + 4)− 4q

4s(1 + q)2

]
|a2|2 ≤

s
q

, ρ1 < µ ≤ 3q2 + 3q + 4
4(1 + q)2

and

|a3 − µa2
2| −

[
µ− s(3q2 + 3q + 4) + 4q

4s(1 + q)2

]
|a2|2 ≤

s
q

,
3q2 + 3q + 4

4(1 + q)2 < µ ≤ ρ2,

where

ρ1 =
(3q2 + 3q + 4)s− 4q

4s(1 + q)2 and ρ2 =
(3q2 + 3q + 4)s + 4q

4s(1 + q)2 . (19)
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These inequalities are sharp for the functions

λΦ1(q, s; λξ), for µ ∈ (−∞, ρ1) ∪ (ρ2, ∞),

λΦ2(q, s; λξ), for ρ1 ≤ µ ≤ ρ2,

λPx(q, s; λξ), for µ = ρ1,

λQx(q, s; λξ), for µ = ρ2,

where |λ| = 1 and

ξDqPx(q, s; ξ)

Px(q, s; ξ)
= Lq,s

(
ξ(x + ξ)

1 + xξ

)
,

ξDqQx(q, s; ξ)

Qx(q, s; ξ)
= Lq,s

(
− ξ(x + ξ)

1 + xξ

)
, 0 ≤ x ≤ 1 .

Proof. The proof is direct from (17) and Lemma 1.

Setting µ = 1 in Theorem 6, we have

Corollary 6. Let f ∈ STLq(s). Then, for a real number µ,

|a3 − a2
2| ≤

s
q

The bound is sharp for the function

Φ2(q, s; ξ) = ξ +
s
q

ξ3 + . . . .

Theorem 7. Let f ∈ CVLq(s). Then, for a real number µ,

|a3 − µa2
2| ≤



s2(3q2+3q+4−4µ(q2+q+1))
4q2(q2+q+1) , for µ ≤ ρ3,

s
q(q2+q+1) , for ρ3 ≤ µ ≤ ρ4,

s2(4µ(q2+q+1)−(3q2+3q+4))
4q2(q2+q+1) , for µ ≥ ρ4.

It is asserted also that

|a3 − µa2
2|+

[
µ− s(3q2 + 3q + 4)− 4q

4s(q2 + q + 1)

]
|a2|2 ≤

s
q(q2 + q + 1)

, ρ3 < µ ≤ 3q2 + 3q + 4
4(q2 + q + 1)

and

|a3 − µa2
2| −

[
µ− s(3q2 + 3q + 4) + 4q

4s(q2 + q + 1)

]
|a2|2 ≤

s
q(q2 + q + 1)

,
3q2 + 3q + 4
4(q2 + q + 1)

< µ ≤ ρ4,

where

ρ3 =
(3q2 + 3q + 4)s− 4q

4s(q2 + q + 1)
and ρ4 =

(3q2 + 3q + 4)s + 4q
4s(q2 + q + 1)

. (20)

These inequalities are sharp for the functions

λΨ1(q, s; λξ), for µ ∈ (−∞, ρ3) ∪ (ρ4, ∞),

λΨ2(q, s; λξ), for ρ3 ≤ µ ≤ ρ4,

λPx(q, s; λξ), for µ = ρ3,

λQx(q, s; λξ), for µ = ρ4,
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where |λ| = 1 and
Dq(ξDqPx(q, s; ξ))

DqPx(q, s; ξ)
= Lq,s

(
ξ(x + ξ)

1 + xξ

)
,

Dq(ξDqQx(q, s; ξ))

DqQx(q, s; ξ)
= Lq,s

(
− ξ(x + ξ)

1 + xξ

)
, 0 ≤ x ≤ 1 .

Proof. The proof is straightforward by using (18) and Lemma 1.

Setting µ = 1 in Theorem 7, we have

Corollary 7. Let f ∈ CVLq(s). Then, for a real number µ,

|a3 − a2
2| ≤

s
q(q2 + q + 1)

.

The bound is sharp for the function

Ψ2(q, s; ξ) = ξ +
s

q(q2 + q + 1)
ξ3 + . . . .

Theorem 8. Let f ∈ STLq(s). Then,

|H3(1)| ≤
s2((1 + s)q + s)

q5(q2 + q + 1)2(q2 + 1)

[
sq8 + 2sq7 + (2 + 4s)q6 + (4 + 6s)q5 + (5 + 9s)q4

+ (s2 + 9s + 4)q3 + (2 + 2s2 + 7s)q2 + (2s2 + 3s)q + s2
]

.

Proof. The proof follows easily from (8), Theorems 1, 2, 4, and Corollary 6.

As q→ 1−, we have

Corollary 8. Let f ∈ STL(s). Then,

|H3(1)| ≤
s2(1 + 2s)(6s2 + 41s + 17)

18
.

Theorem 9. Let f ∈ CVLq(s). Then, for s < min
{√

2
2 , 4q

q2+q+1 , 2(q2−q+1)
q2+q+2

}
,

|H3(1)| ≤
1

q5(q2 + q + 1)3(q2 + 1)2(q4 + q3 + q2 + q + 1)

[
s2(sq9 + (2 + s)q8 + (4 + 5s)q7

+ (7 + 8s)q6 + (13s + 7 + s2)q5 + (13s + 7 + 2s2)q4 + (13s + 3s2 + 4)q3

+ (7s + 2 + 3s2)q2 + (2s2 + 4s)q + s2)((1 + s)q + s)
]

.

Proof. The proof is straightforward from (8), Theorems 1, 3, 5, and Corollary 7.

As q→ 1−, we obtain

Corollary 9 ([26]). Let f ∈ CVL(s). Then, for s < 1
2 ,

|H3(1)| ≤
s2(1 + 2s)(12s2 + 65s + 33)

540
.

5. Coefficient Estimates

Theorem 10. If f ∈ STLq(s), then

∞∑
n=1

[
[n]2q

(
2 + s(1− q)

1 + s

)4

− 16

]
|an|2 ≤ 0, a1 = 1.
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Proof. Let f ∈ STLq(s). Then,
ξDq f (ξ)

f (ξ)
= p(ξ),

where p(ξ) ≺
(

2(1+sξ)
2+s(1−q)ξ

)2
:= Lq,s(ξ). Therefore, from the subordination property, we

have
1
|p(ξ)| ≥

1
4

(
2 + s(1− q)

1 + s

)2

. (21)

Using (21) and Parseval’s identity, we arrive at

2π
∞∑

n=1

|an|2r2n =

∫ 2π

0
| f (ξ)| dθ , ξ = reiθ

=

∫ 2π

0
|ξDq f (ξ)|2 |p(ξ)|2 dθ

≥ 1
16

(
2 + s(1− q)

1 + s

)4 ∫ 2π

0
|ξDq f (ξ)|2 dθ

=
1

16

(
2 + s(1− q)

1 + s

)4

· 2π
∞∑

n=1

[n]2q|an|2r2n.

Therefore,
∞∑

n=1

|an|2r2n ≥ 1
16

(
2 + s(1− q)

1 + s

)4 ∞∑
n=1

[n]2q|an|2r2n,

which implies that

∞∑
n=1

[
[n]2q

(
2 + s(1− q)

1 + s

)4

− 16

]
|an|2r2n ≤ 0, a1 = 1.

Hence, we have the desired result as r → 1−.

Corollary 10. If f ∈ STLq(s), then

∞∑
n=2

[
[n]2q

(
2 + s(1− q)

1 + s

)4

− 16

]
|an|2 ≤ 16−

(
2 + s(1− q)

1 + s

)4

.

Corollary 11. If f ∈ CVLq(s), then

(i)
∞∑

n=1

[n]2q

[
[n]2q

(
2 + s(1− q)

1 + s

)4

− 16

]
|an|2 ≤ 0, a1 = 1,

(ii)
∞∑

n=2

[n]2q

[
[n]2q

(
2 + s(1− q)

1 + s

)4

− 16

]
|an|2 ≤ 16−

(
2 + s(1− q)

1 + s

)4

.

As q→ 1− in Theorem 10, we have the following corollary:

Corollary 12. If f ∈ STL(s), then
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(i)
∞∑

n=1

[
n2 − (1 + s)4

]
|an|2 ≤ 0, a1 = 1,

(ii)
∞∑

n=2

[
n2 − (1 + s)4

]
|an|2 ≤ (1 + s)4 − 1 .

As q→ 1− in Corollary 11, we have the following corollary:

Corollary 13. If f ∈ CVL(s), then

(i)
∞∑

n=1

n2
[
n2 − (1 + s)4

]
|an|2 ≤ 0, a1 = 1,

(ii)
∞∑

n=2

n2
[
n2 − (1 + s)4

]
|an|2 ≤ (1 + s)4 − 1 .

6. Radius Results

Theorem 11. Pn(A, B) ⊂ P(Ls) for all ξ in the disc

|ξ| < rs(A, B) =



r1 if B > 0,

r2 if B < 0,

r3 if B = 0, A 6= 0,

r4 if B = −1,

where

r1 =

(
2s− s2

A− B + B(2s− s2)

) 1
n

, r2 =

(
2s− s2

A− B− B(2s− s2)

) 1
n

,

and

r3 =

(
2s− s2

A

) 1
n

, r4 =

(
2s− s2

A + 1 + (2s− s2)

) 1
n

.

All the radii are sharp.

Proof. Let p ∈ Pn(A, B). We need to find the largest radius for which the disc |w− a| < R
is contained in the disc |w− 1| < 1− (1− s)2, where

a =
1− ABr2n

1− B2r2n and R =
(A− B)rn

1− B2r2n .

Now, for B > 0, it is noticed that a < 1. Therefore, by triangle inequality, we have

|p(ξ)− a| < R⇐⇒|p(ξ)− 1|
<R + |1− a|

=
(A− B)rn

1− B2r2n −
1− ABr2n

1− B2r2n + 1

=
B(A− B)r2n + (A− B)rn

1− B2r2n .
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Therefore, p ∈ P(Ls) if

B(A− B)r2n + (A− B)rn

1− B2r2n < 2s− s2.

Hence,

r1 =

(
2s− s2

A− B + B(2s− s2)

) 1
n

.

For the sharpness, consider the function p(ξ) + 1+Aξn

1+Bξn . Then,

|p(ξ)− 1| =
∣∣∣∣ (A− B)ξn

1 + Bξn

∣∣∣∣.
Choosing ξn = −rn

1 , then
|p(ξ)− 1| = 2s− s2. (22)

For B < 0, we have a > 1. So,

|p(ξ)− a| <R + a− 1

=
(A− B)rn − B(A− B)r2n

1− B2r2n .

Continuing in the same fashion as in the case B > 0, we find

r2 =

(
2s− s2

A− B− B(2s− s2)

) 1
n

.

The sharpness is achieved by setting ξn = rn in (22).
For B = 0, we have a = 1. Thus, p ∈ P(Ls) if

Arn < 2s− s2.

That is,

r3 =

(
2s− s2

A

) 1
n

.

In addition, following the same line of arguments as in the case of B < 0 for B = −1,
we have

r3 =

(
2s− s2

A + 1 + 2s− s2

) 1
n

,

which is sharp for the function

p(ξ) =
1 + Aξn

1− ξn .

Corollary 14. The relation S∗n(A, B) ⊂ STLn(s) and Cn(A, B) ⊂ CVLn(s) hold, respectively,
in the disc |ξ| < rs(A, B). This radius is sharp for the function f0(ξ) ∈ S∗n(A, B) and g0(ξ) ∈
Cn(A, B) defined by

f0(ξ) =


ξ(1 + Bξn)

A−B
nB , if B 6= 0,

ξ exp
(

Aξn

n

)
, if B = 0 ,

and

g0(ξ) =

∫ z

0

f0(t)
t

dt.
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7. STLn(s)-Radius for Ratio Functions

In this section, we study STLn(s)-radius for some classes of functions f ∈ An charac-
terized by its ratio with a certain function g(ξ).

Consider the functions

G1 =

{
f ∈ An :

f
ξ
∈ Pn

}
,

G2 =

{
f ∈ An :

f (ξ)
g(ξ)

∈ Pn, g ∈ S∗n(α)
}

,

G3 =

{
f ∈ An :

f (ξ)
g(ξ)

∈ Pn,
g
ξ
∈ Pn

}
,

G4 =

{
f ∈ An :

∣∣∣∣ f (ξ)
g(ξ)

− 1
∣∣∣∣ < 1,

g
ξ
∈ Pn

}
.

Theorem 12. The STLn(s)-radii for the functions in the class Gi, i = 1, 2, 3, 4 are

(i)

RSTLn(s)[G1] =

(
2s− s2

n +
√

n2 + (2s− s2)2

) 1
n

,

(ii)

RSTLn(s)[G2] =

 2s−s2

(n+1−α)+

√
(n+1−α)2+(2s−s2)

(
2(1−α)+(2s−s2)

)


1
n

,

(iii)

RSTLn(s)[G3] =

(
2s− s2

2n +
√

4n2 + (2s− s2)2

) 1
n

,

(iv)

RSTLn(s)[G4] =

(
2(2s− s2)

3n +
√

9n2 + 4(2s− s2)(2s− s2 + n)

) 1
n

.

Proof.

(i) Let f ∈ G1 and assume p(ξ) = f (ξ)
ξ . Then,

ξ f ′(ξ)
f (ξ)

− 1 =
ξ p′(ξ)
p(ξ)

.

Then, by Lemma 4, ∣∣∣∣ξ f ′(ξ)
f (ξ)

− 1
∣∣∣∣ ≤ 2nrn

1− r2n .

Therefore, f ∈ STLn(s) if
2nrn

1− r2n < 2s− s2,

which holds for r ≤ RSTLn(s)[G1]. To see the sharpness, we consider

f (ξ) =
ξ(1 + ξn)

1− ξn .
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Obviously, f
ξ ∈ Pn. Therefore, at ξ = RSTLn(s)[G1], we have

ξ f ′(ξ)
f (ξ)

− 1 =
2nξn

1− ξ2n = 2s− s2.

This confirms the sharpness.

(ii) Let f ∈ G2 and assume p(ξ) = f (ξ)
g(ξ) . Then by logarithmic differentiation,

ξ f ′(ξ)
f (ξ)

− 1 =
ξg′(ξ)
g(ξ)

− 1 +
ξ p′(ξ)
p(ξ)

.

In view of Lemmas 3 and 4, we have∣∣∣∣ξ f ′(ξ)
f (ξ)

− 1
∣∣∣∣ ≤ 2(1− α)rn

1− r2n +
2(1− α)r2n

1− r2n +
2nrn

1− r2n .

Therefore, f ∈ STLn(s) if

2(1− α)r2n + 2(n + 1− α)rn

1− r2n < 2s− s2,

which holds for r ≤ RSTLn(s)[G2]. To prove the sharpness, we consider

f (ξ) =
ξ(1 + ξn)

(1− ξn)
n+2(1−α)

n
and g(ξ) =

ξ

(1− ξn)
2(1−α)

n
.

Then, f (ξ)
g(ξ) =

1+ξn

1−ξn ∈ Pn and Re ξg′(ξ)
g(ξ) > α. Therefore, f ∈ G2. At ξ = RSTLn(s)[G2], we

have
ξ f ′(ξ)

f (ξ)
− 1 =

2nξn

1− ξ2n = 2s− s2.

(iii) Let f ∈ G3 and assume p(ξ) = f (ξ)
g(ξ) . Then, by logarithmic differentiation,

ξ f ′(ξ)
f (ξ)

− 1 =
ξg′(ξ)
g(ξ)

+
ξ p′(ξ)
p(ξ)

.

Following the technique of the proof of (ii), we obtain the result. To establish the
sharpness, we consider the function

f (ξ) = ξ

(
1 + ξn

1− ξn

)2
and g(ξ) =

ξ(1 + ξn)

1− ξn .

Verily, g
ξ ∈ Pn and f (ξ)

g(ξ) ∈ Pn. Therefore,

ξ f ′(ξ)
f (ξ)

− 1 =
4nξn

1− ξ2n ,

and at ξ = RSTLn(s)[G3], we have

ξ f ′(ξ)
f (ξ)

− 1 = 2s− s2.

This proves the sharpness.
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(iv) Let h(ξ) = g(ξ)
f (ξ) with f ∈ G4, and assume p(ξ) = g(ξ)

ξ . Then,∣∣∣∣ 1
h(ξ)

− 1
∣∣∣∣ < 1 =⇒ h(ξ) =

1
1 + w(ξ)

,

where w ∈ W . Therefore, h(ξ) ≺ 1
1+ξ , ξ ∈ U. This implies that Re h((ξ)) > 1

2 . We
have ξ p(ξ) = h(ξ) f (ξ) and by logarithmic differentiation,

ξ f ′(ξ)
f (ξ)

− 1 =
zh′(ξ)
h(ξ)

+
ξ p′(ξ)
p(ξ)

.

Using Lemmas 3 and 4, we arrive at∣∣∣∣ξ f ′(ξ)
f (ξ)

− 1
∣∣∣∣ ≤ n(3 + rn)rn

1− r2n .

Hence, f ∈ STLn(s) if ∣∣∣∣ξ f ′(ξ)
f (ξ)

− 1
∣∣∣∣ < 2s− s2,

which is valid for r ≤ RSTLn(s)[G4]. To establish the sharpness, we consider the
function

f (ξ) = ξ

(
1 + ξn

1− ξn

)2
and g(ξ) =

ξ(1 + ξn)

1− ξn .

Since
∣∣∣ f (ξ)

g(ξ) − 1
∣∣∣ = |ξn| < 1 and Re g(ξ)

ξ > 0, then at ξ = RSTLn(s)[G4], we have

ξ f ′(ξ)
f (ξ)

− 1 =
3nξn − nξ2n

1− ξ2n = −(2s− s2).

This proves the sharpness.

8. Conclusions

In this work, we introduced a q-limaçon function and used it to present the classes
of q-limaçon starlike and convex functions. The coefficient bounds and third Hankel
determinant for these families were obtained. Furthermore, at a particular instance, we
obtained sharp radii of inclusion between STLn(s) and the classes of the ratio of the analytic
functions. Overall, many consequences of our findings were demonstrated. In addition, to
have more new hypotheses under the present assessments, new extensions and applications
are being investigated with some positive and novel results in different fields of science,
particularly in GFT. These new studies will be introduced in future research work being
prepared by the authors of the current paper.

However, the purported trivial (p, q)-calculus extension was clearly demonstrated to
be a relatively insignificant and inconsequential variation of classical q-calculus, with the
extra parameter p being redundant or superfluous (for details, see [13] (p. 340) and [36]
(pp. 1511–1512)). This observation by Srivastava (see [13,36]) will indeed apply to any
future attempts to produce the rather straightforward (p, q)-variants of the results we have
presented in this paper.
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