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Fixed Point Theorems on Orthogonal

Branciari Metric Spaces with an

Application. Symmetry 2022, 14, 2420.

https://doi.org/10.3390/sym14112420

Academic Editor: Hüseyin Budak

Received: 26 October 2022

Accepted: 9 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Common Fixed Point Theorems on Orthogonal Branciari Metric
Spaces with an Application
Gunaseelan Mani 1, Senthil Kumar Prakasam 2, Arul Joseph Gnanaprakasam 2, Rajagopalan Ramaswamy 3,* ,
Ola A. Ashour Abdelnaby 3,4, Khizar Hyatt Khan 3 and Stojan Radenović 5
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solutions to integral equations. The analytical solutions are verified with a numerical simulation.
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1. Introduction

The French mathematician M. Frechet [1] introduced the notion of metric space.
The contraction mapping theorem (CMT) of Banach [2], establishing the existence of unique
fixed points via auxiliary functions in complete metric spaces, laid the foundation stone for
the metric fixed point theory. Many generalizations of the CMT were reported by math-
ematicians under different contractive conditions in the setting of metric and metric-like
spaces. In the sequel, in 2000, Branciari [3] introduced the notion of Rectangular metric
spaces, by replacing the right-hand side of the triangular inequality with a three-term
expression and proving an analog of CMT. Many researchers extended the fixed point
results in Rectangular metric spaces (see [4–22]). In 2017, Aydi et al. [23] introduced the
notion of (α, ψ)—Meir–Keeler contractions in Rectangular metric spaces and obtained some
common fixed point theorems involving these contractions. In 2019, Abodayeh et al. [24]
initiated hybrid contractions and proved the fixed point theorem in Branciari-type distance spaces.

The concept of the simulation function was introduced by Khojasteh et al. [25].
Many authors developed the fixed point theorems via simulation function in Rectan-
gular metric spaces, (see [26–32]). Shatanawi and Postolache [33] proved common fixed
point results via nonlinear contractions of cyclic form in ordered metric spaces, and applied
the result to find unique common fixed point to integral type contractions.

Gordji et al. [34] initiated the notion of orthogonality in metric spaces. The fixed point
results in generalized orthogonal metric space and various metric spaces were proven
by many researchers, see [35–41]. More recently, in 2022, Aiman et al. [42] initiated an
orthogonal Branciari metric space and proved the fixed point results thereon.
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Inspired, we introduce the new notion of an orthogonal generalized Λ-contraction
pair of maps with respect to a simulation function, and establish fixed point results in the
setting of complete orthogonal Rectangular metric spaces using these contractions. Suitable
numerical examples and an application to find the analytical solution of integral equations
are provided to supplement the derived results. The analytical solutions are compared
with numerical solutions. The rest of the paper is organized as follows:

In Section 2, we review and present some preliminaries and monographs required in
the sequel. In Section 3, we establish fixed point results in the setting of Orthogonal Bran-
ciari Metric Spaces using the orthogonal generalized Λ-contractions, and supplement the
derived results with nontrivial numerical examples. In Section 4, we present an application
to find the analytical solution to integral equations. The analytical solutions are compared
with numerical solutions.

2. Preliminaries

The following are required in the sequel.
In 2000, Branciari introduced the concept of generalized metric space (or Rectangular

metric space), defined as follows:

Definition 1 ([3]). Let z be a set and δ : z×z→ [0, ∞) a mapping, such that for all β, γ ∈ z
and for all distinct point a, b ∈ z, each distinct β and γ:

1. δ(β, γ) = 0 ⇐⇒ β = γ;
2. δ(β, γ) = δ(γ, β);
3. δ(β, γ) ≤ δ(β, a) + δ(a, b) + δ(b, γ) (rectangular inequality).

Then, we will say that (z, δ) is a Branciari (or Rectangular) metric space.

The following proposition proved by Kirk and Shahzad [43] will be required in the sequel.

Proposition 1 ([43]). Suppose that {βϑ} is a Cauchy sequence in a Rectangular metric space, such that

lim
ϑ→∞

δ(βϑ, u) = lim
ϑ→∞

δ(βϑ, z) = 0, where u, z ∈ z.

Then, u = z.

The concept of a simulation function was introduced by Khojasteh et al. [25] in 2015, as follows;

Definition 2 ([25]). A map η : [0, ∞)× [0, ∞) → R is said to be a simulation function if the
following conditions are satisfied;

(η1) η(0, 0) = 0;
(η2) η(t, s) < t− s for each s, t ∈ [0, ∞);
(η3) for any two sequences (sϑ) and (tϑ) in [0, ∞), such that

lim
ϑ→∞

sϑ = lim
ϑ→∞

tϑ > 0, we have lim supϑ→∞ η(tϑ, sϑ) < 0.

Now, we recall the idea of (c)-comparison functions. Let us consider the set of functions
ψ : [0, ∞)→ [0, ∞), such that

(Ψ1) ψ is non-decreasing;
(Ψ2) ∑+∞

ϑ=1 ψϑ(t) <∈ for all t > 0, where ψϑ is the ϑth-iterate of ψ.

These functions are known in the literature as (c)-comparison functions. The family of
such functions are denoted by Ψ. Also, it can be easily proven that if ψ is a (c)-comparison
function, then ψ(t) < t for any t > 0.

Now, we recollect the notion of α-admissible mappings defined by Aydi et al. [23] as follows:
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Definition 3 ([23]). Given that f, g : z → z are two self-maps and α : z × z → [0, ∞).
Then, the pair (f, g) is said to be α-admissible if

β, γ ∈ z, α(β, γ) ≥ 1 =⇒ min{α(fβ, fγ), α(gβ, fγ), α(fβ, gγ), α(gβ, gγ)} ≥ 1.

If f = g, then f is called α-admissible.

Further, Aydi et al. [23] also introduced the concept of a generalized (α, ψ)-contractive
pair of mappings as follows:

Definition 4 ([23]). Let (z, δ) be a Rectangular metric space and f, g : z → z be two given
mappings. We say that (f, g) is a generalized (α, ψ)-contractive pair of mappings if there are two
functions α : z×z→ [0, ∞) and ψ ∈ Ψ, such that

α(β, γ)δ(fβ, gγ) ≤ ψ(Mf,g(β, γ)) and

α(β, γ)δ(gβ, fγ) ≤ ψ(Mg,f(β, γ)), ∀ β, γ ∈ z,

where

(Mh,k(β, γ)) = max{δ(β, γ), δ(β, hβ), δ(γ, kγ)},

for h, k : z→ z.

Gordji et al. [34] proposed orthogonal sets and generalized Banach fixed point theo-
rems in 2017. He describes the following definitions as follows:

Definition 5 ([34]). Let z be a non-void set, and let ⊥ be a binary relation defined on z×z. If
(z,⊥) is called an orthogonal set, then

∃ β0 ∈ z : (∀ β ∈ z, β ⊥ β0) or (∀ β ∈ z, β0 ⊥ β).

Definition 6 ([34]). Let (z,⊥) be an orthogonal set. A sequence {βϑ}ϑ∈N is called an orthogonal
sequence if

(∀ ϑ, βϑ ⊥ βϑ+1) or (∀ ϑ, βϑ+1 ⊥ βϑ).

Definition 7 ([34]). Let (z, δ) be an orthogonal metric space. Then, f : z → z is called
orthogonal-continuous at β ∈ z if for each orthogonal sequence, {βϑ} ∈ z with δ(βϑ, β)→ 0, we
obtain δ(fβϑ, fβ)→ 0.

Definition 8 ([34]). Let (z,⊥) be an orthogonal set with the metric δ. Then (z,⊥, δ) is said to
be an orthogonal-complete if each orthogonal Cauchy sequence is convergent.

Definition 9 ([34]). Let (z,⊥ δ) be an orthogonal metric space and 0 < λ < 1. A map f : z→ z
is said to be an orthogonal contraction with Lipschitz constant λ if ∀ β, γ ∈ z with β ⊥ γ,

δ(fβ, fγ) ≤ λδ(β, γ).

Definition 10 ([34]). Let (z,⊥) be an orthogonal set. A mapping f : z → z is said to be
orthogonal-preserving if β ⊥ γ implies fβ ⊥ fγ.

Ramezani [36] introduced the concept of α-admissible in the following way:
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Definition 11 ([36]). Let (z,⊥) be an orthogonal set and δ be a metric on z, f : z → z be a
map, and let α : z×z → R+ be a function. Then, map f, say that orthogonal-α-admissible, if
∀ β, γ ∈ z with β ⊥ γ

α(β, γ) ≥ 1 =⇒ α(fβ, fγ) ≥ 1.

In 2022, Aiman et al. [42] defined the orthogonal Branciari (Rectangular) metric spaces
as follows:

Definition 12 ([42]). The triplet (z,⊥, δ) is said to be an orthogonal Rectangular metric space if
(z,⊥) is an orthogonal set and (z, δ) is a Rectangular metric space.

In the next section, we present our main results.

3. Main Results

We commence this section by introducing the concept of an orthogonal generalized
Λ-contraction mapping. Then, we prove a couple of common fixed point results in an
orthogonal complete orthogonal Rectangular metric space.

Definition 13. Let (z,⊥, δ) be an orthogonal complete orthogonal Rectangular metric space, and
f, g : z→ z be a two maps. We say that (f, g) is an orthogonal generalized Λ-contraction pair of
maps with respect to a simulation function η, if there are two functions α : z×z→ [0, ∞) and
ψ ∈ Ψ, such that for all β, γ ∈ z with β ⊥ γ or γ ⊥ β,

(a) η
(

α(β, γ)δ(fβ, gγ), Mf,g(β, γ)
)
≥ 0 and

(b) η
(

α(β, γ)δ(gβ, fγ), Mg,f(β, γ)
)
≥ 0.

(1)

Whenever f = g, the mapping f is said to be an orthogonal generalized Λ-contraction with
respect to η.

In case when either (a) or (b) holds, (f, g) is called an orthogonal semi-generalized Λ-contraction
pair of maps with respect to η.

Now, we prove the common fixed point via orthogonal generalized Λ-contraction.

Theorem 1. Let (z,⊥, δ) be an orthogonal complete orthogonal Rectangular metric space, f, g : z→ z
be a two maps and η ∈ F. Suppose that

(i) (f, g) is an orthogonal preserving;
(ii) (f, g) is an orthogonal generalized Λ-contraction pair of mappings with respect to η;
(iii) There exists β0 ∈ z, such that α(β0, fβ0) ≥ 1, α(β0, gβ0) ≥ 1 and

α(β0, fgβ0) ≥ 1;
(iv) Both f and g are orthogonal continuous, and for any sufficiently large

ϑ ∈ Z+, (fg)ϑβ0 = (gf)ϑβ0.

Then, there exists a unique common fixed point u ∈ z of f and g.

Proof. Since (z,⊥) is an orthogonal set,

∃ β ∈ z : ∀ β0 ∈ z, β ⊥ β0 or ∀ β0 ∈ z, β0 ⊥ β.

It follows that β0 ⊥ fβ0 or fβ0 ⊥ β0, and β0 ⊥ gβ0 or gβ0 ⊥ β0.
Let

β1 = f(β0) = gβ0; β2 = fβ1 = gβ1 = f2β0 = g2β0; . . .

βϑ = fβϑ−1 = gβϑ−1 = fϑβ0 = gϑβ0, ∀ ϑ ∈ N.



Symmetry 2022, 14, 2420 5 of 19

Firstly, we prove the common fixed points of f and g. If βϑ = fβϑ−1 = gβϑ−1, ∀ ϑ ∈ N.
Now, we assume the below cases:

(i) If there exists β0 ∈ N∪ {0} such that βn0 = βn0+1, then we have fβn0 = gβn0 = βn0 .
It is clear that βn0 is a common fixed point of f and g. Therefore, the proof is completed.

(ii) If βϑ 6= βϑ+1 for any ϑ ∈ N∪ {0}, then we have ϑ > 0 for each ϑ ∈ N.

Since (f, g) is an orthogonal preserving such that δ(βϑ, βϑ+1) > 0, we have

βϑ ⊥ βϑ+1 or βϑ+1 ⊥ βϑ.

From assumption (iii), ∃ β0 ∈ z, such that

α(β0, fβ0) ≥ 1, α(β0, gβ0) ≥ 1 and α(β0, fgβ0) ≥ 1.

We construct an orthogonal sequence {βϑ} ∈ z as follows:

βϑ =

{
gβϑ−1, if ϑ is even,
fβϑ−1, if ϑ is odd,

for all ϑ ∈ N. So β1 = fβ0 and β2 = gβ1, ∀ ϑ ∈ N0. Since the pair (f, g) is an orthogonal
α-admissible, we have

α(β0, β1) = α(β0, fβ0) ≥ 1 =⇒ α(β1, β2) = α(fβ0, gβ1) = α(fβ0, gfβ0) ≥ 1.

By induction, we obtain

α(βϑ, βϑ+1) ≥ 1, ∀ ϑ ∈ N0. (2)

Starting with

α(β0, β2) = α(β0, gfβ0) ≥ 1 =⇒ α(β1, β3) = α(fβ0, fβ2) = α(fβ0, f(gfβ0)) ≥ 1,

and so,

α(βϑ, βϑ+2) ≥ 1, ∀ ϑ ∈ No.

Suppose that there exists ϑ0 such that β2n0 = β2n0+1 for some ϑ0 ∈ N.
Then, u = β2n0 is a common fixed point of f and g. Indeed,

u = β2n0 = β2n0+1 = fβ2n0 = fu.

Now, we show that δ(β2n0+1, β2n0+2) = 0. Since

0 ≤ η(α(β2n0 , β2n0+1)δ(β2n0+1, β2n0+2), Mf,g(β2n0 , β2n0+1))

= η(α(β2n0 , β2n0+1)δ(β2n0+1, β2n0+2), max{δ(β2n0 , β2n0+1), δ(β2n0+1, β2n0+2)})
= η(α(β2n0 , β2n0+1)δ(β2n0+1, β2n0+2), δ(β2n0+1, β2n0+2))

< δ(β2n0+1, β2n0+2)− α(β2n0 , β2n0+1)δ(β2n0+1, β2n0+2).

Therefore,

α(β2n0 , β2n0+1)δ(β2n0+1, β2n0+2) < δ(β2n0+1, β2n0+2)

=⇒ α(β2n0 , β2n0+1) < 1,

which is a contradiction. Hence,

u = β2n0+1 = β2n0+2 = gβ2n0+1 = gu.
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Therefore, u is a common fixed point of f and g. Similarly, when β2n0−1 = β2n0 for
some ϑ0 ∈ N, then also we can deduce that u is a common fixed point of f and g. For the
rest of the proof, we can assume that

βϑ 6= βϑ+1, ∀ ϑ ∈ N.

Set

M(βϑ, βm) =

{
Mg,f(βϑ, βm), if ϑ is odd and if m is even,
Mf,g(βϑ, βm), if ϑ is even and if m is odd,

for all m, ϑ ∈ N.

Step A:
We prove that

lim
ϑ→∞

δ(βϑ, βϑ+1) = 0.

First, we claim that

max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ+1, β2ϑ+2)} = δ(β2ϑ, β2ϑ+1), ∀ ϑ ∈ N0.

We argue by a contradiction. Suppose that for some ϑ ∈ N0,

max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ+1, β2ϑ+2)} = δ(β2ϑ+1, β2ϑ+2).

For such ϑ ∈ N0, we have

0 ≤ η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), M(β2ϑ, β2ϑ+1))

= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), δ(β2ϑ+1, β2ϑ+2))

< δ(β2ϑ+1, β2ϑ+2)− α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2).

Hence,

δ(β2ϑ+1, β2ϑ+2) > α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2)

and so α(β2ϑ, β2ϑ+1) < 1, which is a contradiction with respect to (2). Thus,

max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ+1, β2ϑ+2)} = δ(β2ϑ, β2ϑ+1), ∀ ϑ ∈ N0.

Using (2) and Definition 13, it follows that

0 ≤ η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), M(β2ϑ, β2ϑ+1))

= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), Mf,g(β2ϑ, β2ϑ+1))

= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ, fβ2ϑ), δ(β2ϑ+1, gβ2ϑ+1)})
= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ, β2ϑ+1), δ(β2ϑ+1, β2ϑ+2)})
= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), max{δ(β2ϑ, β2ϑ+1), δ(β2ϑ+1, β2ϑ+2)})
= η(α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), δ(β2ϑ, β2ϑ+1))

< δ(β2ϑ, β2ϑ+1)− α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2), ∀ ϑ ∈ N0.

Thus, we have

δ(β2ϑ+1, β2ϑ+2) ≤ α(β2ϑ, β2ϑ+1)δ(β2ϑ+1, β2ϑ+2) < δ(β2ϑ, β2ϑ+1), ∀ ϑ ∈ N0. (3)
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Similarly, we can obtain that

max{δ(β2ϑ−1, β2ϑ), δ(β2ϑ, β2ϑ+1)} = δ(β2ϑ−1, β2ϑ), ∀ ϑ ∈ N.

Therefore,

0 ≤ η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), M(β2ϑ−1, β2ϑ))

= η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), Mf,g(β2ϑ−1, β2ϑ))

= η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), max{δ(β2ϑ−1, β2ϑ), δ(β2ϑ−1, gβ2ϑ−1), δ(β2ϑ, fβ2ϑ)})
= η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), max{δ(β2ϑ−1, β2ϑ), δ(β2ϑ−1, β2ϑ), δ(β2ϑ, β2ϑ+1)})
= η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), max{δ(β2ϑ−1, β2ϑ), δ(β2ϑ, β2ϑ+1)})
= η(α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), δ(β2ϑ−1, β2ϑ))

< δ(β2ϑ−1, β2ϑ)− α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1), ∀ ϑ ∈ N0.

Thus, we have

δ(β2ϑ, β2ϑ+1) ≤ α(β2ϑ−1, β2ϑ)δ(β2ϑ, β2ϑ+1) < δ(β2ϑ−1, β2ϑ), ∀ ϑ ≥ 1. (4)

From (3) and (4), we have

δ(βϑ, βϑ+1) < δ(βϑ−1, βϑ), ∀ ϑ ≥ 1.

So, there exists some ε ≥ 0, such that lim
ϑ→∞

δ(βϑ, βϑ+1) = ε. We shall prove that ε = 0.

Suppose ε > 0. From (3) and (4), we have

lim
ϑ→∞

α(βϑ−1, βϑ+)δ(βϑ, βϑ+1) = ε.

Set

sϑ = α(βϑ−1, βϑ+)δ(βϑ, βϑ+1)

and

tϑ = δ(βϑ, βϑ+1).

By the Definition 2-(η3), we have

0 ≤ lim sup
ϑ→∞

η(δ(βϑ, βϑ+1), α(βϑ−1, βϑ+)δ(βϑ, βϑ+1)) = lim sup
ϑ→∞

η(sϑ, tϑ) < 0,

which is a contradiction. Therefore, ε = 0.
Step B:
We prove

lim
ϑ→∞

δ(βϑ, βϑ+2) = 0.

We consider that

lim
ϑ→∞

δ(βϑ, βϑ+2) = a > 0.

Also, we construct another sequence {γϑ} defined as

γ0 = β0, γ1 = gγ0, γ2 = fγ1, . . . , γ2ϑ = fβ2ϑ−1 and γ2ϑ+1 = gγ2ϑ . . . , ∀ ϑ ∈ N.
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Now by (iii), we can derive that

β2ϑ = (gf)ϑβ0 = (fg)ϑβ0 = (fg)ϑγ0 = γ2ϑ,

for a sufficiently large positive integer ϑ. Also, using similar calculations as in the proof of

lim
ϑ→∞

δ(βϑ, βϑ+1) = 0,

we can obtain

lim
ϑ→∞

δ(βϑ, βϑ+1) = 0.

Further, from (2) we have, α(β2ϑ−1, β2ϑ+1) ≥ 1, and hence,

α(β2ϑ−1, β2ϑ+1) = α(β2ϑ−1, γ2ϑ+1) = α(fβ2ϑ−2, gγ2ϑ) = α(fβ2ϑ−2, gβ2ϑ) ≥ 1.

On the other hand, we obtain

0 ≤ η
(
α(β2ϑ−1, β2ϑ+1)δ(gβ2ϑ−1, fβ2ϑ+1), Mg,f(β2ϑ−1, γ2ϑ+1)

)
< Mg,f(β2ϑ−1, γ2ϑ+1)− α(β2ϑ−1, γ2ϑ+1)δ(gβ2ϑ−1, fβ2ϑ+1).

This implies

α(β2ϑ−1, β2ϑ+1)δ(gβ2ϑ−1, fβ2ϑ+1) < Mg,f(β2ϑ−1, γ2ϑ+1). (5)

Now, using (5), we obtain

δ(β2ϑ, β2ϑ+2) = δ(β2ϑ, γ2ϑ+2)

= δ(gβ2ϑ−1, fγ2ϑ+1)

≤ α(β2ϑ−1, γ2ϑ+1)δ(gβ2ϑ−1, fγ2ϑ+1)

≤ Mg,f(β2ϑ−1, γ2ϑ+1)

= max{δ(β2ϑ−1, β2ϑ+1), δ(β2ϑ−1, gβ2ϑ−1), δ(γ2ϑ+1, fγ2ϑ+1)}
= max{δ(β2ϑ−1, β2ϑ+1), δ(β2ϑ−1, β2ϑ), δ(γ2ϑ+1, γ2ϑ+2)}
= δ(β2ϑ−1, β2ϑ+1)

= δ(fβ2ϑ−2, gβ2ϑ)

≤ α(β2ϑ−2, β2ϑ)δ(fβ2ϑ−2, gβ2ϑ)

≤ Mf,g(β2ϑ−2, β2ϑ)

= max{δ(β2ϑ−2, β2ϑ), δ(β2ϑ−2, fβ2ϑ−2), δ(β2ϑ+1, gβ2ϑ)}
= max{δ(β2ϑ−2, β2ϑ), δ(β2ϑ−2, β2ϑ−1), δ(β2ϑ+1, β2ϑ+1)}
= δ(β2ϑ−2, β2ϑ), ∀ ϑ ∈ N0.

Thus, we obtain

δ(β2ϑ, β2ϑ+2) ≤ α(β2ϑ−2, β2ϑ)δ(fβ2ϑ−2, gβ2ϑ)

= α(β2ϑ−2, β2ϑ)δ(β2ϑ−1, β2ϑ+1)

≤ δ(β2ϑ−2, β2ϑ), ∀ ϑ ∈ N0.

(6)

From (6), we obtain

lim
ϑ→∞

α(β2ϑ−2, β2ϑ)δ(β2ϑ−1, β2ϑ+1) = a.
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Set sϑ = α(β2ϑ−2, β2ϑ)δ(β2ϑ−1, β2ϑ+1) and tϑ = δ(β2ϑ, β2ϑ+2). By Definition 2–(η3),
we obtain

0 ≤ lim sup
ϑ→∞

η(δ(β2ϑ, β2ϑ+2), α(β2ϑ−2, β2ϑ)δ(β2ϑ−1, β2ϑ+1)) = lim sup
ϑ→∞

η(sϑ, tϑ) < 0,

which is a contradiction. Therefore, a = 0.
Step C:
Here, we prove that

β2ϑ+1 6= β2m+1 and β2ϑ 6= β2m, ∀ ϑ 6= m.

The discussion naturally splits into the following two cases:
Case 1: If for some m, ϑ ∈ N0, with m > ϑ, β2ϑ = β2m;
Case 2: If for some m, ϑ ∈ N0, with m > ϑ, β2ϑ+1 = β2m+1.
In Case 1, by Step A, an orthogonal sequence (δ(βϑ, βϑ+1)) is decreasing, so we obtain,

δ(β2ϑ, β2ϑ+1) = δ(β2ϑ, fβ2ϑ)

= δ(β2m, fβ2m)

= δ(β2m, β2m+1)

< δ(β2ϑ, β2ϑ+1),

which is a contradiction. In Case 2, via Step A, an orthogonal sequence {δ(βϑ, βϑ+1)} is
decreasing; thus, we have,

δ(β2ϑ+2, β2ϑ+1) = δ(gβ2ϑ+1, β2ϑ+1)

= δ(gβ2m+1, β2m+1)

= δ(β2m+2, β2m+1)

< δ(β2ϑ+2, β2ϑ+1),

which is a contradiction. Thus, we can assume that βϑ 6= βm for all ϑ 6= m.
Step D:
We now prove that {βϑ} is an orthogonal Cauchy sequence.
Assume that {βϑ} is not an orthogonal Cauchy sequence.
Since {βϑ} ∈ z is an orthogonal sequence with distinct elements, and since from

Step A and Step B,

δ(βϑ, βϑ+1)→ 0 and δ(βϑ, βϑ+2)→ 0 as ϑ→ ∞,

using Lemma 3.3 from [15], ∃ ε > 0 and two orthogonal sub-sequences {mk} and {ϑk} of
positive integers such that ϑk > mk > k and the following orthogonal sequences go to ε as
ϑ→ ∞

δ(βmk
, βϑk), δ(βmk

, βϑk+1), δ(βmk−1 , βϑk), δ(βmk−1 , βϑk+1). (7)

Hence, using Step A, Step B, and (7), we have

lim sup
k→∞

M(βmk
, βϑk) = ε. (8)

Since the pair (f, g) is an orthogonal α-admissible, we have α(βmk
, βϑk) ≥ 1. Regarding

(f, g) is an orthogonal generalized Λ-contraction pair of maps with respect to η, and
considering mk as an odd number and ϑk as an even number, we have
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0 ≤ η
(
α(βmk

, βϑk)δ(βϑk+1 , βmk+1), M(βmk
, βϑk)

)
= η

(
α(βmk

, βϑk)δ(βϑk+1 , βmk+1), Mf,g(βmk
, βϑk)

)
= η

(
α(βmk

, βϑk)δ(βϑk+1 , βmk+1), max{δ(βmk
, βϑk), δ(βmk

, fβmk
), δ(βϑk , gβϑk)}

)
= η

(
α(βmk

, βϑk)δ(βϑk+1 , βmk+1), max{δ(βmk
, βϑk), δ(βmk

, βmk+1), δ(βϑk , βϑk+1)}
)

< max{δ(βmk
, βϑk), δ(βmk

, βmk+1), δ(βϑk , βϑk+1)} − α(βmk
, βϑk)δ(βϑk+1 , βmk+1),

for all k ∈ N. Consequently, we obtain

0 < δ(βmk+1 , βϑk+1) ≤ α(βmk
, βϑk)δ(βmk+1 , βϑk+1)

< max{δ(βmk
, βϑk), δ(βmk

, βmk+1), δ(βϑk , βϑk+1)}, ∀ k ∈ N. (9)

From (9), together with (7) and (8), we have

0 ≤ lim
k→∞

α(βmk
, βϑk)δ(βmk+1 , βϑk+1) = ε.

Set sϑ = M(βmk
, βϑk) and tϑ = α(βmk

, βϑk)δ(βmk+1 , βϑk+1). By the Definition 2 (η3) and
the relation (8), we obtain the result as follows

0 ≤ lim sup
k→∞

η
(
α(βmk

, βϑk)δ(βϑk+1 , βmk+1), M(βmk
, βϑk)

)
< 0,

which is a contradiction. Therefore, {βϑ} is an orthogonal Cauchy sequence. Since (z,⊥, δ)
is an orthogonal complete orthogonal Rectangular metric space, there exists u ∈ z, such
that {βϑ} converges to u.

Hence,

lim
ϑ→∞

δ(βϑ, u) = 0. (10)

Step E:
We claim that u is a common fixed point of f and g. Since f and g are orthogonal

continuous, by (10), we obtain

lim
ϑ→∞

δ(β2ϑ+1, fu) = lim
ϑ→∞

δ(fβ2ϑ, fu) = 0,

and

lim
ϑ→∞

δ(β2ϑ+1, gu) = lim
ϑ→∞

δ(gβ2ϑ−1, gu) = 0.

By Proposition 1, we conclude that fu = u = gu. Hence, u is a common fixed point of f and g.
Now, we prove a unique common fixed point. Consider that fp = p = gp is another

common fixed point for f and g. By the choice of u∗, we have

u∗ ⊥ p (or) p ⊥ u∗.

Since f and g is orthogonal preserving, we obtain

(fu∗ ⊥ fp and gu∗ ⊥ gp) or (fp ⊥ fu∗ and gp ⊥ gu∗).

From Equation (1), we have

η
(

α(u∗, p)δ(fu∗, gp), Mf,g(u∗, p)
)
≥ 0 and η

(
α(u∗, p)δ(gu∗, fp), Mg,f(u

∗, p)
)
≥ 0.
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Whenever f = g, the mapping f is said to be an orthogonal generalized Λ-contraction
with respect to η. Therefore, u∗ = p and the common fixed point of f and g are unique.

Our next result involves an orthogonal semi-generalized Λ-contraction pair of mappings.

Theorem 2. Let (z,⊥, δ) be an orthogonal complete orthogonal Rectangular metric space, f, g : z→ z
be two mappings and η ∈ Λ. Suppose that

(i) (f, g) is an orthogonal semi-generalized Λ-contraction pair of mappings with respect to η;
(ii) There exists β0 ∈ z, such that α(β0, fβ0) ≥ 1, α(β0, gβ0) ≥ 1 and

α(β0, fgβ0) ≥ 1;
(iii) For every β, γ ∈ z, α(β, γ) = α(γ, β);
(iv) Both f and g are orthogonal continuous and for any sufficiently large

ϑ ∈ Z+, (fg)ϑβ0 = (gf)ϑβ0;
(v) (f, g) is orthogonal preserving.

Then, there exists a common fixed point in z of f and g.

Proof. We omit the proof. It is similar to the proof of Theorem 1.

We constructive examples authenticate our obtained Theorem 1 concerning an orthog-
onal generalized Λ-contraction pair of self-maps.

Example 1. We consider an orthogonal complete metric space z = {0, 1
ϑ : ϑ ∈ N, ϑ ≥ 2}

endowed with the orthogonal Rectangular metric,

δ(β, γ) =


0, if β = γ;
2, if β, γ ∈ { 1

ϑ : ϑ ∈ N, ϑ ≥ 2};
1

2ϑ , if β = 1
ϑ , γ = 0, or β = 0, γ = 1

ϑ .

It can be easily verified that z is not a complete metric, but it is an orthogonal Rectangular
metric. Define a relation ⊥ on z by which there exists β ∈ z,

∀ γ ∈ z, β ⊥ γ ⇐⇒ βγ ∈ {β, γ}.

Now, we define the mappings f : z→ z such that

fβ =

{
0, if β = 0;
1
ϑ , if β = 1

ϑ ,

and g : z→ z such that gβ = 0, ∀ β ∈ z. We also consider η(t, s) = λs− t, t, s ∈ [0, ∞) as

α(β, γ) =


1
2 , if β = γ;
0, if β = 1

ϑ , γ = 1
m ,

1
ϑ , if β = 1

ϑ , γ = 0, or β = 0, γ = 1
ϑ .

Therefore, we obtain

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = λMf,g(β, γ)− α(β, γ)δ(fβ, gγ). (11)

Here, we have three cases:
Case 1: When β = γ;

Sub-case 1a: β = 0 = γ;
In this case, we obtain



Symmetry 2022, 14, 2420 12 of 19

Mf,g(β, γ) = max{δ(β, γ), δ(β, fβ), δ(γ, gγ)}
= max{δ(0, 0), δ(0, f0), δ(0, g0)}
= max{δ(0, 0), δ(0, 0), δ(0, 0)}
= 0,

and

δ(f0, g0) = 0.

Putting these values in (11), we have

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = η(0, 0) = 0

≥ 0.

This is the trivial case.
Sub-case 1b: β = 1

ϑ = γ;
clearly β and γ have the same as shown in Figure 1,

Figure 1. Figure shows that β = γ = 1
ϑ with h = 1.

Mf,g(β, γ) = max

{
δ
( 1

ϑ
,

1
ϑ

)
, δ
( 1

ϑ
, f

1
ϑ

)
,
( 1

ϑ
, g

1
ϑ

)}

= max

{
δ
( 1

ϑ
,

1
ϑ

)
, δ
( 1

ϑ
,

1
ϑ

)
,
( 1

ϑ
, 0
)}

= max

{
0,

1
2ϑ

}

=
1

2ϑ
,

and

δ
(
f
1
ϑ

, g
1
ϑ

)
= δ

( 1
ϑ

, 0
)
=

1
2ϑ

.
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Putting these values in (11), we have

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = η
( 1

4ϑ
,

1
2ϑ

)
=

9
10

1
2ϑ
− 1

4ϑ

=
1

4ϑ

(9
5
− 1
)

≥ 0.

Case 2: β = 1
ϑ , γ = 0 or β = 0, γ = 1

ϑ ;
Sub-case 2a: β = 1

ϑ , γ = 0;
For this case, we obtain,

Mf,g(β, γ) =

{
δ
( 1

ϑ
,

1
ϑ

)
, δ
( 1

ϑ
, f

1
ϑ

)
,
( 1

ϑ
, g

1
ϑ

)}

= max

{
δ
( 1

ϑ
, 0
)

, δ
( 1

ϑ
, f

1
ϑ

)
,
(

0, g0
)}

= max

{
1

2ϑ
, δ
( 1

ϑ
,

1
ϑ

)
, δ(0, 0)

}

=
1

2ϑ
,

and

δ
(
f
1
ϑ

, g0
)
= δ

( 1
ϑ

, 0
)
=

1
2ϑ

.

From (11), we have

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = η
( 1

ϑ
,

1
2ϑ

,
1

2ϑ

)
=

9
10

�
1

2ϑ
− 1

2ϑ2

=
1

2ϑ

( 9
10
− 1

ϑ

)
≥ 0, [as ϑ ≥ 2].

Sub-case 2b:
β = 0, γ = 1

ϑ ;
we obtain,

Mf,g(β, γ) = max{δ(β, γ), δ(β, fβ), δ(γ, gγ)}

= max

{
δ
(

0,
1
ϑ

)
, δ
(

0, f0
)

,
( 1

ϑ
, g

1
ϑ

)}

= max

{
δ
( 1

2ϑ
, 0
)

, δ(0, 0),
( 1

ϑ
, 0
)}

= max

{
1

2ϑ
, 0

}

=
1

2ϑ
,



Symmetry 2022, 14, 2420 14 of 19

and

δ
(
f0, g

1
ϑ

)
= δ(0, 0) = 0.

Hence, taking care of (11), we obtain,

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = η
(

0,
1

2ϑ

)
=

9
10

�
1

2ϑ

≥ 0.

Case 3:
β = 1

ϑ , γ = 1
m with ϑ 6= m;

So, we find to differentiate β and γ as following Figure 2,

Figure 2. Comparison of β = 1
ϑ and γ = 1

m with ϑ 6= m.

Mf,g(β, γ) = max

{
δ

(
1
ϑ , 1

m

)
, δ

(
1
ϑ , f 1

ϑ

)
, δ

(
1
m , g 1

m

)

= max

{
2, δ

(
1
ϑ , 1

ϑ

)
, δ

(
1
m , 0

)

= max{2, 0,
1

2m
}

= 2,

and

δ

(
f
1
ϑ

, g
1
m

)
= δ

(
1
ϑ

, 0

)
=

1
2ϑ

.
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Putting the values in (11), we obtain,

η(α(β, γ)δ(fβ, gγ), Mf,g(β, γ)) = η(0, 2)

=
9

10
� 2

≥ 0.

So, the condition of (a) of Definition 13 is satisfied. Similarly, one can check for
condition (b). Therefore, f and g satisfy both the hypotheses of Theorem 1, and using the
theorem, f and g have a common fixed point.

4. Application

Theorem 3. Consider the integral equations:

β(t) = g(t) +
∫ 1

0
K1(t, s, β(s))δs, t ∈ [0, 1], (12)

β(t) = g(t) +
∫ 1

0
K2(t, s, β(s))δs, t ∈ [0, 1]. (13)

Suppose that
(1) K1, K2 : [0, 1]2 ×R→ R and g : [0, 1]→ R are members of L1([0, 1]);
(2) There exists λ ∈ [0, 1), such that for t, s ∈ [0, 1] and u, v ∈ R,

|K1(t, s, u)− K2(t, s, v)| ≤ λ|u− v|.

Then, the integral Equations (12) and (13) have a unique solution in C([0, 1]). Proof. Let
z = C([0, 1]). We define the orthogonal relation ⊥ on z by

β ⊥ γ ⇐⇒ (fβ ⊥ fγ and gβ ⊥ gγ) or (fγ ⊥ fβ and gγ ⊥ gβ).

We define δ : z×z→ [0, ∞) by

δ(f, g) = ||f− g||∞ = max
s∈[0,1]

|f(s)− g(s)|.

Then, (z,⊥, δ) is an orthogonal metric space, and hence, (z,⊥, δ) is an orthogonal Rectan-
gular metric space. We define α : z×z→ [0, ∞) by

α(β, γ) =

{
1, i f β, γ ∈ [0, 1],
0, otherwise.

Let S, T : z→ z with s ⊥ t

T(β(t)) = g(t) +
∫ 1

0
K1(t, s, β(s))δs, s, t ∈ [0, 1],

S(β(t)) = g(t) +
∫ 1

0
K2(t, s, β(s))δs, s, t ∈ [0, 1].
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We mention that the integral Equations (12) and (13) have a unique common solution if and
only if the operators T and S have a common fixed point. Thus, we have,

δ(T, S) = ||Tβ(t)− Sγ(t)|| = |
∫ 1

0
(K1(t, s, β(s))− K2(t, s, γ(s))δs)|

≤
∫ 1

0
|K1(t, s, β(s))− K2(t, s, γ(s))|δs

≤
∫ 1

0
λ|β(s)− γ(s|δs

= λ||β− γ||∞
= λδ(β, γ)

≤ λMT,S(β, γ),

=⇒ λMT, S(β, γ)− δ(T, S) ≥ 0.

(14)

Again,

δ(S, T) = ||Sβ(t)− Tγ(t)|| = |
∫ 1

0
(K2(t, s, β(s))− K1(t, s, γ(s))δs)|

≤
∫ 1

0
|K2(t, s, β(s))− K1(t, s, γ(s))|δs

=
∫ 1

0
|K1(t, s, γ(s))− K2(t, s, β(s))|δs

≤
∫ 1

0
λ|γ(s)− β(s)|δs

≤
∫ 1

0
λ|β(s)− γ(s)|δs

= λ||β− γ||∞
= λδ(β, γ)

≤ λMS,T(β, γ),

=⇒ λMS, T(β, γ)− δ(S, T) ≥ 0.

(15)

We consider the simulation function as η(t, s) = λs− t. Then, from (14) and (15), and
considering α(β, γ) = 1 we have, for all T, S ∈ z

η(α(β, γ)δ(T, S), MT,S(β, γ)) ≥ 0 and η(α(β, γ)δ(S, T), MS,T(β, γ)) ≥ 0.

Then, by Theorem 1, the integral Equations (12) and (13) have a unique solution.

Example 2. Given that the Volterra integral equation is as follows:

β(t) = 1− β− β2

2
+
∫ 1

0
(β− s)β(s)δs,

Proof. Here, 1− β− β2

2
is not an orthogonal continuous function on [0, 1].

Kernel K(β, γ) is an orthogonal continuous on R = {(β, γ), 0 < β, γ < 1}.
Below Figure 3 is the comparison of numerical results with analytic results.
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Figure 3. Figure shows the approximation solution compared to the exact solution with h = 0.1 for
Example 2.

The error calculation of the approximation solution compared to the exact solution for
Example 2 is given in Table 1 below.

Table 1. Comparison of approximation solution and exact solution.

βj Approximation Solution Exact Solution Error

0.000 1.000 1.000 0.000
0.100 0.906 0.900 0.006
0.200 0.792 0.799 −0.007
0.300 0.668 0.695 −0.028
0.400 0.534 0.589 −0.055
0.500 0.390 0.479 −0.089
0.600 0.236 0.363 −0.127
0.700 0.072 0.241 −0.169
0.800 −0.102 0.122 −0.214
0.900 −0.286 −0.027 −0.260
1.000 −0.480 −0.175 −0.305

The table shows that the error of the approximation solution compared to the exact
solution is also relatively small.

5. Conclusions

In this article, we proved the common fixed point theorem for an orthogonal gen-
eralized Λ-contraction in an orthogonal complete orthogonal Rectangular metric space.
The derived results have been supplemented with suitable nontrivial examples. We have
also provided an application to find the solution of the integral equation. The derived
analytical results have been compared with the numerical results. It is an open problem to
extend and to generalize the derived results using other contractive conditions.
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