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Abstract: The main goal of this research is to present a new approach to double transforms called
the double Laplace–ARA transform (DL-ARAT). This new double transform is a novel combination
of Laplace and ARA transforms. We present the basic properties of the new approach including
existence, linearity and some results related to partial derivatives and the double convolution theorem.
To obtain exact solutions, the new double transform is applied to several partial differential equations
such as the Klein–Gordon equation, heat equation, wave equation and telegraph equation; each of
these equations has great utility in physical applications. In symmetry to other symmetric transforms,
we conclude that our new approach is simpler and needs less calculations.
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equations

1. Introduction

For solving partial differential equations (PDE)s, integral transforms are considered
the most effective technique. Their significance stems from the fact that PDEs can be used
to mathematically explain a variety of occurrences in mathematical physics and some other
scientific fields [1–13]. These equations can also be transformed in order to find the exact
solutions to PDEs using integral transforms. Because of the strength and simplicity of the
transform techniques, scientists and researchers have worked very hard at studying and
improving them.

Many integral transforms have been established and implemented to solve partial
and integral differential equations; these transforms allow us to obtain the exact solu-
tions of the target equations without needing linearization or discretization; they are
applied to transform partial differential equations into ordinary ones, in the case of using
single transformation, or into algebraic ones if we use double integral transformation. As
examples, we mention Laplace transform [14], Fourier transform [15], Novel transform [16],
M-transform [17], Sumudu transform [18], Natural transform [19], Elzaki transform [20],
Kamal transform [21], the Aboodh transform [22], ARA transform [23] and ZZ transform [24].

The double transforms have also been widely applied to solving PDEs with unknown
functions of two variables, and as a result, double transforms are considered very effective
in handling PDEs compared to other numerical approaches [25–28]. In addition, extensions
of the double transform have been developed in the relevant literature, such as the double
Laplace transform, double Shehu transform [29], double Kamal transform [30], double
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Sumudu transform [31–36], double Elzaki transform [37], double Laplace–Sumudu trans-
form [38] and ARA–Sumudu transform [39,40]. All these double transforms cited above
can be considered special cases of the general double transform by Meddahi et al. [41],
but sometimes we need to study special kinds of double transforms and compare them
to consider the properties of each one, and decide on the best ones to use in handling
new applications.

Recently, Saadeh and others introduced a novel integral transform known as the ARA
transform. ARA is a name of the presented transform and it is not an abbreviation, it has
novel properties; that is, it can generate many transforms by changing the value of the
index n, also as introduced in [23], it has a duality to the Laplace transform and has an
advantage that allows it to overcome the singularity at t = 0. For all of these merits, we
decided to construct a new combination between the Laplace and ARA transforms, so that
we could reap the benefits of these two powerful transforms. We called this new approach
the double Laplace–ARA transform.

The main goal of this paper is to introduce a new double transform, namely DL-ARAT.
Fundamental properties and theorems of DL-ARAT are presented and proven, and we
also compute the values of DL-ARAT for some functions. New relations related to partial
derivatives and the double convolution theorem are established and implemented to solve
PDEs. The novelty of this work appears in the new combinations between Laplace and
ARA transforms, in which the new DL-ARATs have the advantages of the two transforms,
the simplicity of Laplace and the applicability of ARA, in handling some singular points
that appeared in the equations.

In this research, we studied the nonhomogeneous linear PDE of the following form

Auxx(x, t) + Buxt(x, t) + Cutt(x, t) + Dux(x, t) + Eut(x, t) + Fu(x, t) = w(x, t),

with the initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x),

and the boundary conditions

u(0, t) = g1(t), ux(0, t) = g2(t)),

and u(0, 0) = ψ, where u(x, t) is an unknown function, w(x, t) is the source term and
A, B, C, D, E, F and ψ are constants.

A simple formula for the solution of the above equation was established and em-
ployed to solve some applications in order to display the efficiency and strength of this
new approach.

This article is organized as follows: In Section 2, fundamental concepts and properties
of Laplace and ARA transformations are introduced. In Section 3, we introduce the new
double transform DL-ARAT, that combines the Laplace and ARA transforms; we also
present some properties of the new transform. In Section 4, we introduce the application
of DL-ARAT to solve some types of PDEs. In Section 5, some examples are presented and
solved using DL-ARAT. Finally, In Section 6, a conclusion is provided.

2. Basic Definitions and Theorems for Laplace and ARA Transforms

In this section, we introduce the basic properties of Laplace and ARA transforms.

2.1. Laplace Transform [14]

Definition 1. Let f (x) be a function of x specified for x > 0. Then, Laplace transform of
f (x), denoted by L[ f (x)], is defined by

L[ f (x)] = F(v) =
∫ ∞

0
e−vx f (x)dx, v > 0. (1)
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The inverse Laplace transform is provided by

L−1[F(v)] =
1

2πi

∫ c+i∞

c−i∞
evxF(v)dv = f (x) , x > 0 . (2)

Theorem 1. (Existence conditions). If f (x) is a piecewise continuous function on the
interval [0, ∞) and of exponential order α, then L[ f (x)] exists for Re(v) > α and satisfies

| f (x)| ≤ Meαx,

where Re(v) > α. is positive constant. Then, Laplace transform integral converges abso-
lutely for Re(v) > α.

Proof of Theorem 1. Using the definition of Laplace transform, we find

|F(v)| =
∣∣∫ ∞

0 e−vx[ f (x)]dx
∣∣ ≤ ∫ ∞

0 e−vx| f (x)|dx ≤ M
∫ ∞

0 e−(v−α)xdx

= M
v−α , Re(v) > α.

Thus, Laplace transform integral converges absolutely for Re(v) > α.
In the following arguments, we present some properties of the Laplace transform.
Assume that G(v) = L[g(x)], G(v) = L[g(x)] and a, b ∈ R. Then

L[a f (x) + b g(x)] = a L[ f (x)] + b L[g(x)]. (3)

L−1[a F(v) + b G(v)] = a L−1[F(v)] + b L−1[G(v)]. (4)

L[xα] =
Γ(α+ 1)

vn+1 , α ≥ 0. (5)

L[eax] =
1

v− a
, a ∈ R (6)

L
[

f ′(x)
]
= vF(v)− f (0). (7)

L
[

f (n)(x)
]
= vnF(v)−

n

∑
k=1

vn−k f (k−1)(0). (8)

�

2.2. ARA Transform [23]

Definition 2. The ARA integral transform of order n of a continuous function f (t) on the
interval (0, ∞) is defined as

Gn[ f (t)](s) = Q(n, s) = s
∫ ∞

0
tn−1e−st f (t)dt, s > 0. (9)

Theorem 2. (Existence conditions). If the function f (t) is piecewise continuous in every
finite interval 0 ≤ t ≤ α and satisfies∣∣∣tn−1 f (t)

∣∣∣ ≤ Meαt (10)

where M is positive constant, then the ARA transform exists for all s > α.
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Proof of Theorem 2. Using the definition of ARA transform, we obtain

|Q(n, s)| =
∣∣∣∣s ∫ ∞

0
tn−1e−st f (t)dt

∣∣∣∣.
Using the property of improper integral, we find

|Q(n, s)| =
∣∣∣s ∫ β

0 tn−1e−st f (t)dt + s
∫ ∞
β

tn−1e−st f (t)dt
∣∣∣ ≤ s

∣∣∣∫ ∞
β

tn−1e−st f (t)dt
∣∣∣

≤ s
∫ ∞
β

e−st
∣∣tn−1 f (t)

∣∣dt ≤ s
∫ ∞
β

e−stMeαtdt

= sM
∫ ∞

β e−(s−α)tdt = sM
s−α e−β(s−α).

This improper integral converges for all s > α. Thus, Gn+1[ f (t)] exists.
In the following, we state some basic properties of the ARA transform
Assume that F(n, s) = Gn[ f (t)] and G(n, s) = Gn[g(t)] and a, b ∈ R. Then

Gn[a f (t) + b g(t)] = a Gn[ f (t)] + b Gn[g(t)]. (11)

Gn
−1[a F(n, s) + b G(n, s)] = a Gn

−1[F(n, s)] + b Gn
−1[G(n, s)]. (12)

Gn[tα] =
Γ(α + n)
sα+n−1 , α > 0. (13)

Gn
[
eat] = sΓ(n)

(s− a)n , a ∈ R (14)

Gn

[
f (n)(t)

]
= (−1)n−1s

dn−1

dsn−1

(
sn−1G1[ f (t)]−∑n

k=1 sn−k f (k−1)(0)
)

. (15)

where G1[ f (t)] is the ARA transform of order one of a piecewise continuous function f (t)
on [0, ∞) and it is defined as

G1[ f (t)](s) = F(s) = s
∫ ∞

0
e−st f (t)dt, s > 0. (16)

For simplicity, let us denote G1[ f (t)] using G[ f (t)].
The above results can be obtained from the definition of Laplace and ARA transforms

with simple calculations. �

3. Double Laplace–ARA Transform of Order One (DL-ARAT)

This section introduces a new integral transform, which is a novel combination be-
tween the famous Laplace transform and ARA transform denoted by DL-ARAT. We provide
the fundamental properties and characteristics including the existence conditions, linearity
and the inverse of the proposed new double transform. Moreover, some important prop-
erties and results are provided and used to compute the DL-ARAT for some elementary
functions. The double convolution theorem and the derivatives properties of the new
transform are also presented and illustrated.

Definition 3. Let u(x, t) be continuous function of two positive variables x and t. Then the
DL-ARAT of u(x, t) is defined as

LxGt[u(x, t)] = Q(v, s) = s
∫ ∞

0

∫ ∞

0
e−(vx+st)u(x, t)dxdt, v, s > 0 (17)

provided the integral exists.
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Clearly, the DL-ARAT is a linear integral transformation as shown below,

LxGt[A u(x, t) + B w(x, t)] = s
∫ ∞

0

∫ ∞
0 e−(vx+st)[A u(x, t) + B w(x, t)]dxdt

= sA
∫ ∞

0

∫ ∞
0 e−(vx+st)[u(x, t)]dxdt + sB

∫ ∞
0

∫ ∞
0 e−(vx+st)[w(x, t)]dxdt

= A LxGt[ u(x, t)] + B LxGt[ w(x, t)].

where A and B are constants and LxGt[u(x, t)],LxGt[ w(x, t)] exists.
Additionally, the inverse of the DL-ARAT is found using

L−1
x

[
G−1

t [Q(v, s)]
]
=

(
1

2πi

) ∫ c+i∞

c−i∞
evxdv

(
1

2πi

) ∫ r+i∞

r−i∞

est

s
Q(v, s)ds = u(x, t). (18)

Property 1. Let u(x, t) = f (x)g(t), x > 0, t > 0. Then

LxGt[u(x, t)] = Lx[ f (x)]Gt[g(t)].

Proof of Property 1.

LxGt[u(x, t)] = LxGt[ f (x)g(t)] = s
∫ ∞

0

∫ ∞
0 e−(vx+st)[ f (x)g(t)]dxdt

=
∫ ∞

0 f (x)e−vxdx·s
∫ ∞

0 g(t)e−stdt

= Lx[ f (x)]Gt[g(t)].

�

3.1. DL-ARAT of Some Basic Functions

i. Let u(x, t) = 1, x > 0, t > 0. Then,

LxGt[1] = s
∫ ∞

0

∫ ∞

0
e−(vx+st)dxdt =

∫ ∞

0
e−vxdx·s

∫ ∞

0
e−stdt = Lx[1]Gt[1] =

1
v

, Re(s) > 0.

ii. Let u(x, t) = xαtβ, x > 0, t > 0 and α, β are constants. Then,

LxGt

[
xαtβ

]
= s

∫ ∞

0

∫ ∞

0
e−(vx+st)

[
xαtβ

]
dxdt =

∫ ∞

0
e−vx[xα]dx·s

∫ ∞

0
e−st

[
tβ
]
dt = Lx[xα]Gt

[
tβ
]

From Equations (5) and (13), we find

LxGt

[
xαtβ

]
= Lx[xα]Gt

[
tβ
]
=

Γ(α + 1)Γ(β + 1)
vα+1

(
sβ
) , Re(α) > −1, Re(β) > −1

iii. Let u(x, t) = eαx+βt, x > 0, t > 0 and α, β are constants. Then,

LxGt

[
eαx+βt

]
= s

∫ ∞

0

∫ ∞

0
e−(vx+st)

[
eαx+βt

]
dxdt =

∫ ∞

0
e−vx[eαx]dx·s

∫ ∞

0
e−st

[
eβt
]
dt = Lx[eαx]Gt

[
eβt
]
.

From Equations (6) and (14), we find

LxGt

[
eαx+βt

]
=

s
(v− α)(s− β)

.

Similarly,

LxGt

[
ei(αx+βt)

]
=

s
(v− iα)(s− iβ)

.
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Using the property of complex analysis, we have

LxGt

[
ei(αx+βt)

]
=

s(sv− αβ) + is(vβ + sα)

(v2 + α2)(s2 + β2)
.

Using Euler’s formulas sin x = eix−e−ix

2i , cos x = eix+e−ix

2 . And the formulas
sinhx = ex−e−x

2 , cosh x = ex+e−x

2 . Now, we find the DL-ARAT of the following
functions

LxGt[sin(αx + βt)] =
s(vβ + sα)

(v2 + α2)(s2 + β2)
,

LxGt[cos(αx + βt)] =
s(sv− αβ)

(v2 + α2)(s2 + β2)
,

LxGt[sinh(αx + βt)] =
s(vβ + sα)

(v2 − α2)(s2 − β2)
,

LxGt[cosh(αx + βt)] =
s(sv + αβ)

(v2 − α2)(s2 − β2)
,

iv. Let u(x, t) = J0

(
ג
√

xt
)

, then LxGt

[
J0

(
ג
√

xt
)]

= s
∫ ∞

0

∫ ∞
0 e−(vx+st)

[
J0

(
ג
√

xt
)]

dxdt

=
∫ ∞

0 e−vx
[

J0

(
ג
√

xt
)]

dx·s
∫ ∞

0 e−stdt = s
∫ ∞

0 e−
2ג
4s te−stdt. From Equation (14), we get

LxGt

[
J0

(
ג
√

xt
)]

= 4s
4vs+2ג .

3.2. Existence Conditions for DL-ARAT

Let u(x, t) be function of exponential order α and β as x → ∞ and t→ ∞ . If there
exists a positive N such that ∀x > X and t > T, we have

|u(x, t)| ≤ Neαx+βt.

We can write u(x, t) = O
(
eαx+βt) as x → ∞ and t→ ∞ , v > α and s > β.

Theorem 3. Let u(x, t) be a continuous function on the region [0, X)× [0, T) of exponential
orders α and β.Then LxGt[u(x, t)] exists for v and s provided Re(v) > α and Re(s) > β.

Proof of Theorem 3. Using the definition of DL-ARAT, we get

|Q(v, s)| =
∣∣∣s ∫ ∞

0

∫ ∞
0 e−(vx+st)[u(x, t)]dxdt

∣∣∣ ≤ s
∫ ∞

0

∫ ∞
0 e−(vx+st)|u(x, t)|dxdt

≤ N
∫ ∞

0 e−(v−α)xdx·s
∫ ∞

0 e−(s−β)tdt

= Ns
(v−α)(s−β)

, Re(v) > α and Re(s) > β.

Thus, LxGt[u(x, t)] exists for v and s provided Re(v) > α and Re(s) > β. �

3.3. Some Theorems of DL-ARAT

Theorem 4. (Shifting Property). Let u(x, t) be a continuous function and LxGt[u(x, t)] =
Q(v, s). Then

LxGt

[
eαx+βtu(x, t)

]
=

s
(s− β)

Q(v− α, s− β). (19)
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Proof of Theorem 4.

LxGt
[
eαx+βtu(x, t)

]
= s

∫ ∞
0

∫ ∞
0 e−(v−α)x−(s−β)t[u(x, t)]dxdt

= s
(s−β) (s− β)

∫ ∞
0

∫ ∞
0 e−(v−α)xe−(s−β)t[u(x, t)]dxdt

= s
(s−β)

Q(v− α, s− β).

�

Theorem 5. (Periodic Function). Let LxGt[u(x, t)] exists, where u(x, t) periodic function of
periods α and β such that

u(x + α, t + β) = u(x, t), ∀x, y.

Then

LxGt[u(x, t)] =
1(

1− e−(vα+sβ)
)(s

∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt

)
(20)

Proof of Theorem 5. Using the definition of DL-ARAT, we find

LxGt[u(x, t)] = s
∫ ∞

0

∫ ∞

0
e−(vx+st)[u(x, t)]dxdt. (21)

Using the property of improper integral, Equation (21) can be written as

LxGt[u(x, t)] = s
∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt + s

∫ ∞

α

∫ ∞

β
e−(vx+st)(u(x, t))dxdt (22)

Putting x = α + ρ and t = β + τ on second integral in Equation (22), we obtain

Q(v, s) = s
∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt + s

∫ ∞

0

∫ ∞

0
e−(v(α+ρ)+s(β+τ))(u(α + ρ, β + τ))dρdτ. (23)

Using the periodicity of the function u(x, t), Equation (23) can be written as

Q(v, s) = s
∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt + e−(vα+sβ)s

∫ ∞

0

∫ ∞

0
e−(vρ+sτ)(u(ρ, τ))dρdτ. (24)

Using the definition of DL-ARAT, we obtain

Q(v, s) = s
∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt + e−(vα+sβ)Q(v, s). (25)

Thus, Equation (25) can be simplified into

Q(v, s) =
1(

1− e−(vα+sβ)
)(s

∫ α

0

∫ β

0
e−(vx+st)(u(x, t))dxdt

)
.

�

Theorem 6. (Heaviside Function). Let LxGt[u(x, t)] exists and LxGt[u(x, t)] = Q(v, s), then

LxGt[u(x− δ, t− ε)H(x− δ, t− ε)] = e−vδ−sεQ(v, s). (26)
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where H(x− δ, t− ε) is the Heaviside unit step function defined as

H(x− δ, t− ε) =

{
1, x > δ, t > ε
0, Ohtherwise

Proof of Theorem 6. Using the definition of DL-ARAT, we find

LxGt[u(x− δ, t− ε)H(x− δ, t− ε)] = s
∫ ∞

0

∫ ∞
0 e−(vx+st)(u(x− δ, t− ε)H(x− δ, t− ε))dxdt

= s
∫ ∞

0

∫ ∞
0 e−(vx+st)(u(x− δ, t− ε))dxdt.

(27)

Putting x− δ = ρ and t− ε = τ in Equation (27). We obtain

LxGt[u(x− δ, t− ε)H(x− δ, t− ε)] = s
∫ ∞

0

∫ ∞

0
e−v(δ+ρ)−s(ε+τ)(u(ρ, τ))dρdτ. (28)

Thus, Equation (28) can be simplified into

LxGt[u(x− δ, t− ε)H(x− δ, t− ε)] = e−vδ−sε

(
s
∫ ∞

0

∫ ∞

0
e−vρ−sτ(u(ρ, τ))dρdτ

)
= e−vδ−sεQ(v, s). (29)

�

Theorem 7. (Convolution Theorem). Let LxGt[u(x, t)] and LxGt[w(x, t)] exists and
LxGt[u(x, t)] = Q(v, s), LxGt[w(x, t)] = W(v, s), then

LxGt[u(x, t) ∗ ∗w(x, t)] =
1
s

Q(v, s)W(v, s). (30)

where u(x, t) ∗ ∗w(x, t) =
∫ x

0

∫ t
0 u(x− ρ, t− τ)w(ρ, τ)dρdτ and the symbol ∗∗ is denotes

the double convolution with respect to x and t.

Proof of Theorem 7. Using the definition of DL-ARAT, we obtain

LxGt[u(x, t) ∗ ∗w(x, t)] = s
∫ ∞

0

∫ ∞
0 e−(vx+st)[u(x, t) ∗ ∗w(x, t)]dxdt

= s
∫ ∞

0

∫ ∞
0 e−(vx+st)

(∫ x
0

∫ t
0 u(x− ρ, t− τ)w(ρ, τ)dρdτ

)
dxdt.

(31)

Using the Heaviside unit step function, Equation (31) can be written as

LxGt[u ∗ ∗w(x, t)] = s
∫ ∞

0

∫ ∞

0
e−(vx+st)

(∫ ∞

0

∫ ∞

0
u(x− ρ, t− τ)H(x− ρ, t− τ)w(ρ, τ)dρdτ

)
dxdt. (32)

Thus, Equation (32) can be written as

LxGt[u ∗ ∗w(x, t)] =
∫ ∞

0

∫ ∞
0 w(ρ, τ)dρdτ

(
s
∫ ∞

0

∫ ∞
0 e−v(x+ρ)−s(t+τ)u(x− ρ, t− τ)H(x− ρ, t− τ)

)
dxdt

=
∫ ∞

0

∫ ∞
0 w(ρ, τ)dρdτ(e−vρ−sτQ(v, s))

= Q(v, s)
∫ ∞

0

∫ ∞
0 e−vρ−sτw(ρ, τ)dρdτ = 1

s Q(v, s)W(v, s)

�

Theorem 8. (Derivatives’ Properties). Let u(x, t) be a continuous function and LxGt[u(x, t)]
= Q(v, s). Then, we get the following derivatives properties

(a)

LxGt

[
∂u(x, t)

∂t

]
= sQ(v, s)− sL[u(x, 0)]
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(b)

L xGt

[
∂u(x, t)

∂x

]
= vQ(v, s)− G[u(0, t)]

(c)

LxGt

[
∂2u(x, t)

∂t2

]
= s2Q(v, s)− s2L[u(x, 0)]− sL

[
∂u(x, 0)

∂t

]
(d)

LxGt

[
∂2u(x, t)

∂x2

]
= v2Q(v, s)− vG[u(0, t)]− G

[
∂u(0, t)

∂x

]
(e)

LxGt

[
∂2u(x, t)

∂x∂t

]
= vsQ(v, s)− vsL[u(x, 0)]− sG[u(0, t)] + su(0, 0)

Proof of Theorem 8.
(a)

LxGt

[
∂u(x, t)

∂t

]
= s

∫ ∞

0

∫ ∞

0
e−(st+vx)

[
∂u(x, t)

∂t

]
dxdt =

∫ ∞

0
e−vxdx·s

∫ ∞

0
e−st

(
∂u(x, t)

∂t

)
dt.

Using the integration by part, we obtain
Let u = e−st ⇒ du = −se−stdt ,

dv =
∂u(x, t)

∂t
dt ⇒ v = u(x, t).

Thus,

s
∫ ∞

0
e−st

(
∂u(x, t)

∂t

)
dt = s

(
−u(x, 0) + s

∫ ∞

0
e−stu(x, t)dt

)
.

∴ LxGt

[
∂u(x, t)

∂t

]
= sQ(v, s)− sL[u(x, 0)] (33)

(b)

LxGt

[
∂u(x, t)

∂x

]
= s

∫ ∞

0

∫ ∞

0
e−(st+vx)

[
∂u(x, t)

∂x

]
dxdt = s

∫ ∞

0
e−stdt·

∫ ∞

0
e−vx

(
∂u(x, t)

∂x

)
dx.

Using the integration by part, we obtain
Let u = e−vx ⇒ du = −ve−vxdx ,

dv =
∂u(x, t)

∂x
dx ⇒ v = u(x, t).

Thus, ∫ ∞

0
e−vx

(
∂u(x, t)

∂x

)
dx =

(
−u(0, t) + v

∫ ∞

0
e−vxu(x, t)dx

)
.

∴ LxGt

[
∂u(x, t)

∂x

]
= vQ(v, s)− G[u(0, t)]. (34)

(c)

LxGt

[
∂2u(x, t)

∂t2

]
= s

∫ ∞

0

∫ ∞

0
e−(st+vx)

[
∂2u(x, t)

∂t2

]
dxdt =

∫ ∞

0
e−vxdx·s

∫ ∞

0
e−st

(
∂2u(x, t)

∂t2

)
dt.

Using the integration by part, we obtain
Let u = e−st ⇒ du = −se−stdt ,

dv =
∂2u(x, t)

∂t2 dt ⇒ v =
∂u(x, t).

∂t
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Thus,

s
∫ ∞

0
e−st

(
∂2u(x, t)

∂t2

)
dt = s

(
−∂u(x, 0)

∂t
+ s

∫ ∞

0
e−st

(
∂u(x, t)

∂t

)
dt
)

.

Using Equation (33), we have

LxGt

[
∂2u(x, t)

∂t2

]
= s2Q(v, s)− s2L[u(x, 0)]− sL

[
∂u(x, 0)

∂x

]
. (35)

(d)

LxGt

[
∂2u(x, t)

∂x2

]
= s

∫ ∞

0

∫ ∞

0
e−(st+vx)

[
∂2u(x, t)

∂x2

]
dxdt = s

∫ ∞

0
e−stdt·

∫ ∞

0
e−vx

(
∂2u(x, t)

∂x2

)
dx.

Using the integration by part, we obtain
Let u = e−vx ⇒ du = −ve−vxdx ,

dv =
∂2u(x, t)

∂x2 dx ⇒ v =
∂u(x, t)

∂x
.

Thus, ∫ ∞

0
e−vx

(
∂2u(x, t)

∂x2

)
dx =

(
−∂u(0, t)

∂x
+ v

∫ ∞

0
e−vx

(
∂u(x, t)

∂x

)
dx
)

.

Using Equation (34), we have

LxGt

[
∂2u(x, t)

∂x2

]
= v2Q(v, s)− vG[u(0, t)]− G

[
∂u(0, t)

∂x

]
. (36)

(e)

LxGt

[
∂2u(x, t)

∂x∂t

]
= s

∫ ∞

0

∫ ∞

0
e−(st+vx)

[
∂2u(x, t)

∂x∂t

]
dxdt = s

∫ ∞

0
e−st

(
∂2u(x, t)

∂x∂t

)
dt·
∫ ∞

0
e−vxdx.

Using the integration by part, we obtain.

s
∫ ∞

0

∫ ∞

0
e−(st+vx)

(
∂2u(x, t)

∂x∂t

)
dxdt =

(
−
∫ ∞

0
e−st

(
∂u(0, t)

∂t

)
dt + vs

∫ ∞

0

∫ ∞

0
e−(st+vx)

(
∂u(x, t)

∂t

)
dxdt

)
And, using Equations (7) and (33), we have

LxGt

[
∂2u(x, t)

∂x∂t

]
= vsQ(v, s)− sG[u(0, t)]− vsL[u(x, 0)] + su(0, 0).

�
The previous results of DL-ARAT to some basic functions, some theorems and basic

derivatives are summed up in the in Table 1 below:

Table 1. DL-ARAT to some basic functions.

u(x,t) LxGt[u(x,t)] = Q(v,s)

1 1
v

xαtβ Γ(α + 1)Γ(β + 1)
vα+1sβ

, α, β > −1

eαx+βt s
(v− α)(s− β)

sin(αx + βt) s(vβ + sα)

(v2 + α2)(s2 + β2)
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Table 1. Cont.

u(x,t) LxGt[u(x,t)] = Q(v,s)

cos(αx + βt) s(sv− αβ)

(v2 + α2)(s2 + β2)

sinh(αx + βt) s(vβ + sα)

(v2 − α2)(s2 − β2)

cosh(αx + βt) s(sv + αβ)

(v2 − α2)(s2 − β2)

eαx+βtu(x, t) s
(s− β)

Q(v− α, s− β)

u(x− δ, t− ε)H(x− δ, t− ε) e−vδ−sεQ(v, s)
u(x, t) ∗ ∗w(x, t) 1

s
Q(v, s)W(v, s)

ut(x, t) sQ(v, s)− sL[u(x, 0)]
ux(x, t) vQ(v, s)− G[u(0, t)]
utt(x, t) s2Q(v, s)− s2L[u(x, 0)]− sL[ut(x, 0)]
uxx(x, t) v2Q(v, s)− vG[u(0, t)]− G[ux(0, t)]
uxt(x, t) vsQ(v, s)− sG[u(0, t)]− vsL[u(x, 0)] + su(0, 0)

4. Basic Idea of Double Laplace-ARA Transform Method

To illustrate the basic idea of this method for solving partial differential equations, we
consider a second order linear partial differential equation in two independent variables x
and t in its general form given by

Auxx(x, t) + Buxt(x, t) + Cutt(x, t) + Dux(x, t) + Eut(x, t) + Fu(x, t) = w(x, t). (37)

with the initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x), (38)

And the boundary conditions

u(0, t) = g1(t), ux(0, t) = g2(t). (39)

And assume that u(0, 0) = ψ, where u(x, t) is unknown function, w(x, t) is the source
term and A, B, C, D, E, F and ψ are constants.

The main idea of this method is to apply the DL-ARAT to Equation (37), Laplace
transform to the initial conditions in Equation (38) and ARA transform to the boundary
conditions in Equation (39) as the following:

Operating Laplace transform to the initial conditions given in Equation (38) yields

L[u(x, 0)] = L[ f1(x)] = F1(v) = F1, L[ut(x, 0)] = L[ f2(x))] = F2(v) = F2

ARA transform of the boundary conditions in Equation (39) is given by

G[u(0, t)] = G[g1(t)] = G1(s) = G1, G[ux(0, t)] = G[g2(t)] = G2(s) = G2

And W(v, s) = W = LxGt[w(x, t)].
Now, applying the DL-ARAT on both sides of Equation (37), we find that

LxGt[Auxx(x, t) + Buxt(x, t) + Cutt(x, t) + Dux(x, t) + Eut(x, t) + Fu(x, t)] = LxGt[w(x, t)].

Using the differentiation property of the DL-ARAT and above conditions, we have

A
[
v2Q(v, s)− vG1 − G2

]
+ B[vsQ(v, s)− svF1 − sG1 + sψ] + C

[
s2Q(v, s)− s2F1 − sF2

]
+

D[vQ(v, s)− G1] + E[sQ(v, s)− sF1] + F[Q(v, s)] = W(v, s)
(40)
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Equation (40) can be simplified as follows-

Q(v, s) =
(Av + Bs + D)G1 + AG2 − Bsψ +

(
Bvs + Cs2 + Es

)
F1 + CsF2 + W

Av2 + Bvs + Cs2 + Dv + Es + F
. (41)

Operating with the inverse DL-ARAT on both sides of Equation (41), we obtain

u(x, t) = L−−1
x G−1

t

[
(Av + Bs + D)G1 + AG2 − Bsψ +

(
Bvs + Cs2 + Es

)
F1 + CsF2 + W

Av2 + Bvs + Cs2 + Dv + Es + F

]
(42)

where u(x, t) represents the term arising from the known function w(x, t) and all conditions.

5. Applications of Double Laplace–ARA Transform in Solving Partial
Differential Equations

Many physical phenomena can be modeled by a set of governing equations, several of
them begin as partial differential equations. One may encounter PDEs in many branches of
sciences such as:

• Quantum mechanics.
• Particle physic.
• Astrophysics.
• Chemistry.
• Biology.
• Environmental science.

The list goes on. Solving these partial differential equations is another challenge.
Current mathematics fail to provide a closed solution and more advances are yet to come.
Meanwhile, many numerical techniques have been developed for solving PDEs. In this
section we introduce the solution of some familiar PDEs such as the wave equation, heat
equation, telegraph equation and others. All the following figures of the selected examples
were obtained using Mathematica software 13.

Example 1. Let us consider the homogeneous wave equation

uxx(x, t)− utt(x, t) = 0, where x and t ≥ 0, (43)

with the initial conditions u(x, 0) = sin x, ut(x, 0) = 2, and the boundary conditions
u(0, t) = 2t, ux(0, t) = cos t.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
1

v2 + 1
, F2 =

2
v

, G1 =
2
s

, G2 =
s2

s2 + 1
.

By substituting the values of the functions F1, F2, G1, G2 and A = 1, C = −1,
B = D = E = F = W = ψ = 0 in the general formula in Equation (41), we obtain

Q(v, s) =
2v
s + s2

s2+1 −
s2

v2+1 −
s
v

v2 − s2 =
2
(

v2−s2

vs

)
+ s2

(
v2−s2

(s2+1)(v2+1)

)
v2 − s2 =

2
vs

+
s2

(s2 + 1)(v2 + 1)
. (44)

Applying the inverse DL-ARAT to Equation (44), then the solution to Equation (43) is

u(x, t) = L−1
x G−1

t

[
2
vs

+
s2

(s2 + 1)(v2 + 1)

]
= 2t + cos t sin x.

The following figure, Figure 1, illustrates the 3D graph of the exact solution of Example 1.
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Example 2. Let us consider the homogeneous Laplace equation

uxx(x, t) + utt(x, t) = 0, x and t > 0, (45)

with the initial conditions u(x, 0) = 0, ut(x, 0) = cos x, and the boundary conditions
u(0, t) = sinht, ux(0, t) = 0.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 = 0, F2 =
v

v2 + 1
, G1 =

s
s2 − 1

, G2 = 0

By substituting the values of the functions F1, F2, G1, G2and A = 1, C = 1, B = D =
E = F = ψ = W = 0 in the general formula in Equation (41), we obtain

Q(v, s) =
vs

s2−1 + sv
v2+1

v2 + s2 =
vs
(

v2+s2

(s2−1)(v2+1)

)
v2 + s2 =

vs
(s2 − 1)(v2 + 1)

. (46)

Now, applying the inverse DL-ARAT to Equation (46), then the solution to Equation (45) is

u(x, t) = L−1
x G−1

t

[
vs

(s2 − 1)(v2 + 1)

]
= cos xsinht.

The following figure, Figure 2, illustrates the 3D graph of the exact solution of Example 2.
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Example 3. Let us consider the homogeneous telegraph equation

uxx(x, t) = utt(x, t) + 4ut(x, t) + 4u(x, t), x, t ≥ 0 (47)

with the initial conditions u(x, 0) = 1 + e2x , ut(x, 0) = −2, and the boundary conditions
u(0, t) = 1 + e−2t , ux(0, t) = 2.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
1
v
+

1
v− 2

, F2 =
−2
v

, G1 = 1 +
s

s + 2
, G2 = 2.

By substituting the values of the functions F1, F2, G1, G2 and A = 1, C = −1, E = F =
−4, B = D = W = ψ = 0, in the general formula in Equation (41), we obtain

Q(v, s) =
v + vs

s+2 + 2− s2

v −
s2

v−2 −
2s
v −

4s
v−2

v2 − s2 − 4s− 4
=

(
v + 2− s2

v−2 −
4s

v−2

)
+
(

vs
s+2 −

s2

v −−
2s
v

)
v2 − s2 − 4s− 4

(48)

Now, applying inverse DL-ARAT to Equation (48), then the solution to Equation (47) is

u(x, t) = L−1
x G−1

t

[
1

v− 2
+

s
v(s + 2)

]
= e2x + e−2t.

The following figure, Figure 3, illustrates the 3D graph of the exact solution of Example 3.
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Example 4. Let us consider the nonhomogeneous heat equation

uxx(x, t)− ut(x, t)− 3u(x, t) = −3, x and t ≥ 0 (49)

with the initial conditions u(x, 0) = 1 + sin x, and the boundary conditions u(0, t) =
1, ux(0, t) = e−4t.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
1
v
+

1
v2 + 1

, G1 = 1, G2 =
s

s + 4
.

By substituting the values of the functions F1, G1, G2 and A = 1, E = −1, F = −3,
B = C = D = ψ = 0, W = 3

v in the general formula in Equation (41), we obtain

Q(v, s) =
v + s

s+4 − s
(

1
v + 1

v2+1

)
− 3

v

v2 − s− 3
=

(
v− s

v −
3
v
)
+
(

s
s+4 −

s
v2+1

)
v2 − s− 3

=
1
v
+

s
(s + 4)(v2 + 1)

(50)

Now, applying the inverse of DL-ARAT to Equation (50), then the solution to
Equation (49) is

u(x, t) = L−1
x G−1

t

[
1
v
+

s
(s + 4)(v2 + 1)

]
= 1 + e−4t sin x.

The following figure, Figure 4, illustrates the 3D graph of the exact solution of Example 4.
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Example 5. Let us consider the Klein–Gordon equation

utt(x, t)− u(x, t) = uxx(x, t)− cos x cos t (51)

with the initial conditions u(x, 0) = cos x, ut(x, 0) = 0, and the boundary conditions
u(0, t) = cos t , ux(0, t) = 0.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
v

v2 + 1
, F2 = 0, G1 =

s2

s2 + 1
, G2 = 0.

By substituting the values of the functions F1, F2 , G1 and G2and A = 1, C = −1,
F = 1, B = D = E = ψ = 0, W = vs2

(s2+1)(v2+1) in the general formula in Equation (41),
we obtain

Q(v, s) =
vs2

s2+1 −
vs2

v2+1 −
vs2

(s2+1)(v2+1)

v2 − s2 + 1
=

vs2

(s2 + 1)(v2 + 1)
. (52)

Now, applying the inverse DL-ARAT to Equation (52), then the solution to
Equation (51) is

u(x, t) = L−1
x G−1

t

[
vs2

(s2 + 1)(v2 + 1)

]
= cos x cos t.

The following figure, Figure 5, illustrates the 3D graph of the exact solution of Example 5.



Symmetry 2022, 14, 2418 17 of 21
Symmetry 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 5. The exact solution of Example 5.5. 

Example 5.6. Let us consider the advection–diffusion equation 

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡), 𝑥 and 𝑡 ≥ 0 (53) 

with the initial conditions 𝑢(𝑥, 0) = 𝑥 + 𝑒𝑥, 

and the boundary conditions 𝑢(0, 𝑡) = 1 − 𝑡  ,  𝑢𝑥(0, 𝑡) = 2. 

Applying Laplace transform to the initial conditions and ARA transform to the 

boundary conditions, we find 

𝐹1 =
1

𝑣 − 1
+

1

𝑣2
, 𝐺1 = 1 −

1

𝑠
, 𝐺2 = 2.  

By substituting the values of functions 𝐹1, 𝐺1 , 𝐺2and 𝐴 = 1, 𝐷 = 𝐸 = −1, 𝑊 = 𝐹 =

𝐵 = 𝐶 = 𝜓 = 0, in the general formula in Equation (41), we obtain 

𝑄(𝑣, 𝑠) =
(𝑣 − 1) (1 −

1
𝑠

) + 2 − 𝑠 (
1

𝑣 − 1
+

1
𝑣2)

𝑣2 − 𝑣 − 𝑠
=

1

𝑣 − 1
+

1

𝑠𝑣
−

1

𝑣2
.   (54) 

Now, applying the inverse DL-ARAT to Equation (54), then the solution to Equa-

tion (53) is 

𝑢(𝑥, 𝑡) = ℒ𝑥
−1𝒢𝑡

−1 [
1

𝑣 − 1
+

1

𝑠𝑣
−

1

𝑣2
] = 𝑒𝑥 + 𝑡 − 𝑥.  

The following figure, Figure 6, illustrates the 3D graph of the exact solution of Exam-

ple 5.6. 

Figure 5. The exact solution of Example 5.

Example 6. Let us consider the advection–diffusion equation

ut(x, t) = uxx(x, t)− ux(x, t), x and t ≥ 0 (53)

with the initial conditions u(x, 0) = x + ex, and the boundary conditions u(0, t) = 1−
t , ux(0, t) = 2.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
1

v− 1
+

1
v2 , G1 = 1− 1

s
, G2 = 2.

By substituting the values of functions F1, G1, G2and A = 1, D = E = −1, W = F =
B = C = ψ = 0, in the general formula in Equation (41), we obtain

Q(v, s) =
(v− 1)

(
1− 1

s

)
+ 2− s

(
1

v−1 + 1
v2

)
v2 − v− s

=
1

v− 1
+

1
sv
− 1

v2 . (54)

Now, applying the inverse DL-ARAT to Equation (54), then the solution to
Equation (53) is

u(x, t) = L−1
x G−1

t

[
1

v− 1
+

1
sv
− 1

v2

]
= ex + t− x.

The following figure,Figure 6, illustrates the 3D graph of the exact solution of Example 6.
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Example 7. Let us consider the Goursat equation

uxt(x, t) = 4xt− x2t2 + u(x, t), (55)

with the initial condition> u(x, 0) = ex, boundary the condition u(0, t) = et and u(0, 0) = 1.

Applying Laplace transform to the initial conditions and ARA transform to the bound-
ary conditions, we find

F1 =
1

v− 1
, G1 =

s
s− 1

.

By substituting the values of the functions F1, G1 and B = 1, F = −1, W = 4
v2s −

4
v3s2 , A = C = D = E = 0, ψ = 1, in the general form in Equation (41), we obtain

Q(v, s) =
s
( s

s−1
)
− s− vs

(
1

v−1

)
+ 4

v2s −
4

v3s2

sv− 1
=

(
s2

s−1 − s− vs
v−1

)
+
(

4
v2s −

4
v3s2

)
sv− 1

.

(56)
Now, applying the inverse DL-ARAT to Equation (56), then the solution to

Equation (55) is

u(x, t) = L−1
x G−1

t

[
s

(v− 1)(s− 1)
+

4
v3s2

]
= ex+t + 4x2t2.

The following figure, Figure 7, illustrates the 3D graph of the exact solution of Example 7.
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6. Conclusions

In this paper, a new double transform called the DL-ARAT were presented, several
properties and theorems related to the linearity, existence, partial derivatives and the double
convolution theorem were introduced. The new results were implemented to establish a
new formula for solving PDEs, we discussed some numerical examples and get the exact
solutions using the new double transform. Applications of the DL-ARAT will be developed
in the future and utilized to solve integral equations, PDEs with variable coefficients and
the equations appeared during the fluid flow [1,2]. Moreover, we have mentioned here that
this new double transform can be combined with one of the iteration numerical methods to
solve nonlinear PDEs and equations with variables coefficients, since all integral transforms
cannot solve nonlinear problems directly, unless they are combined with iteration methods.

In a general view of what was discussed in [1,2] we find that this research focuses on
the same direction with the possibility of using partial differential equations in explaining
physical phenomena. Therefore, we recommend that this study be continued using the
applications of this method as a future project for solving equations that appear during
fluid flow.

Author Contributions: Conceptualization, A.K.S., Z.I.M. and R.S.; methodology, A.K.S., Z.I.M.
and R.S.; software, R.S., A.K.S. and Z.I.M.; validation, A.K.S., Z.I.M. and R.S.; formal analysis,
A.K.S., Z.I.M. and R.S.; investigation, A.K.S., Z.I.M. and R.S.; resources, R.S.; data curation, A.K.S.;
writing—original draft preparation, Z.I.M.; writing—review and editing, A.K.S. and Z.I.M..; visual-
ization, A.K.S. and Z.I.M.; supervision, R.S.; project administration, Z.I.M.; funding acquisition, Z.I.M.
and R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2022, 14, 2418 20 of 21

References
1. Ahmad, L.; Khan, M. Importance of activation energy in development of chemical covalent bounding in flow of Sisko magneto-

Nano fluids over porous moving curved surface. Int. J. Hydrogen Energy. 2019, 44, 10197–10206. [CrossRef]
2. Ahmad, L.; Khan, M. Numerical simulation for MHD flow of Sisko nanofluid over a moving curved surface: A revised model.

Microsyst. Technol. 2019, 25, 2411–2428. [CrossRef]
3. Constanda, C. Solution Techniques for Elementary Partial Differential Equations; Chapman and Hall/CRC: New York, NY, USA, 2002.
4. Debnath, L. The double Laplace transforms and their properties with applications to functional, integral and partial differential

equations. Int. J. Appl. Comput. Math. 2016, 2, 223–241. [CrossRef]
5. Muatjetjeja, B. Group classification and conservation laws of the generalized Klein–Gordon–Fock equation. Int. J. Mod. Phys. B

2016, 30, 1640023. [CrossRef]
6. Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer: New York, NY, USA, 2009.
7. Eddine, N.C.; Ragusa, M.A. Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions. Appl.

Anal. 2022, 101, 3958–3988. [CrossRef]
8. Rashid, S.; Ashraf, R.; Bonyah, E. On analytical solution of time-fractional biological population model by means of generalized

integral transform with their uniqueness and convergence analysis. J. Funct. Spaces 2022, 2022, 7021288. [CrossRef]
9. Zid, S.; Menkad, S. The lambda-Aluthge transform and its applications to some classes of operators. Filomat 2022, 36, 289–301.

[CrossRef]
10. Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Birkhäuser: Boston, MA, USA, 1997.
11. Qazza, A.; Hatamleh, R.; Alodat, N. About the solution stability of Volterra integral equation with random kernel. Far East J.

Math. Sci. 2016, 100, 671–680. [CrossRef]
12. Gharib, G.; Saadeh, R. Reduction of the self-dual yang-mills equations to sinh-poisson equation and exact solutions. WSEAS

Trans. Math. 2021, 20, 540–554. [CrossRef]
13. Saadeh, R.; Al-Smadi, M.; Gumah, G.; Khalil, H.; Khan, A. Numerical investigation for solving two-point fuzzy boundary value

problems by reproducing kernel approach. Appl. Math. Inf. Sci. 2016, 10, 2117–2129. [CrossRef]
14. Widder, V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1941.
15. Bochner, S.; Chandrasekharan, K. Fourier Transforms; Princeton University Press: London, UK, 1949.
16. Atangana, A.; Kiliçman, A. A novel integral operator transform and its application to some FODE and FPDE with some kind of

singularities. Math. Probl. Eng. 2013, 2013, 531984. [CrossRef]
17. Srivastava, H.; Luo, M.; Raina, R. A new integral transform and its applications. Acta Math. Sci. 2015, 35, 1386–1400. [CrossRef]
18. Watugula, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems.

Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [CrossRef]
19. Khan, Z.H.; Khan, W.A. Natural-transform-properties and applications. NUST J. Eng. Sci. 2008, 1, 127–133.
20. Elzaki, T.M. The new integral transform “Elzaki transform”. Glob. J. Pure Appl. Math. 2011, 7, 57–64.
21. Sedeeg, A.H. The New Integral Transform “Kamal Transform”. Adv. Theor. Appl. Math. 2016, 11, 451–458.
22. Aboodh, K.; Idris, A.; Nuruddeen, R. On the Aboodh transform connections with some famous integral transforms. Int. J. Eng.

Inform. Syst. 2017, 1, 143–151.
23. Saadeh, R.; Qazza, A.; Burqan, A. A new integral transform: ARA transform and its properties and applications. Symmetry 2020,

12, 925. [CrossRef]
24. Zafar, Z. ZZ transform method. Int. J. Adv. Eng. Glob. Technol. 2016, 4, 1605–1611.
25. Aghili, A.; Moghaddam, B.P. Certain theorems on two dimensional Laplace transform and non-homogeneous parabolic partial

differential equations. Surv. Math. Its Appl. 2011, 6, 165–174.
26. Dhunde, R.R.; Bhondge, N.M.; Dhongle, P.R. Some remarks on the properties of double Laplace transforms. Int. J. Appl. Phys.

Math. 2013, 3, 293–295. [CrossRef]
27. Dhunde, R.R.; Waghmare, G.L. Double Laplace transform method in mathematical physics. Int. J. Theor. Math. Phys. 2017, 7,

14–20.
28. Eltayeb, H.; Kiliçman, A. A note on double Laplace transform and telegraphic equations. Abstr. Appl. Anal. 2013, 2013, 932578.

[CrossRef]
29. Alfaqeih, S.; Misirli, E. On double Shehu transform and its properties with applications. Int. J. Anal. Appl. 2020, 18, 381–395.
30. Sonawane, S.M.; Kiwne, S.B. Double Kamal transforms: Properties and Applications. J. Appl. Sci. Comput. 2019, 4, 1727–1739.
31. Ganie, J.A.; Ahmad, A.; Jain, R. Basic analogue of double Sumudu transform and its applicability in population dynamics. Asian J.

Math. Stat. 2018, 11, 12–17. [CrossRef]
32. Eltayeb, H.; Kiliçman, A. On double Sumudu transform and double Laplace transform. Malays. J. Math. Sci. 2010, 4, 17–30.
33. Tchuenche, J.M.; Mbare, N.S. An application of the double Sumudu transform. Appl. Math. Sci. 2007, 1, 31–39.
34. Al-Omari, S.K.Q. Generalized functions for double Sumudu transformation. Int. J. Algebra 2012, 6, 139–146.
35. Eshag, M.O. On double Laplace transform and double Sumudu transform. Am. J. Eng. Res. 2017, 6, 312–317.
36. Ahmed, Z.; Idrees, M.I.; Belgacemc, F.B.M.; Perveen, Z. On the convergence of double Sumudu transform. J. Nonlinear Sci. Appl.

2020, 13, 154–162. [CrossRef]
37. Idrees, M.I.; Ahmed, Z.; Awais, M.; Perveen, Z. On the convergence of double Elzaki transform. Int. J. Adv. Appl. Sci. 2018, 5,

19–24. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2019.02.162
http://doi.org/10.1007/s00542-018-4128-3
http://doi.org/10.1007/s40819-015-0057-3
http://doi.org/10.1142/S0217979216400233
http://doi.org/10.1080/00036811.2022.2057305
http://doi.org/10.1155/2022/7021288
http://doi.org/10.2298/FIL2201289Z
http://doi.org/10.17654/MS100050671
http://doi.org/10.37394/23206.2021.20.57
http://doi.org/10.18576/amis/100615
http://doi.org/10.1155/2013/531984
http://doi.org/10.1016/S0252-9602(15)30061-8
http://doi.org/10.1080/0020739930240105
http://doi.org/10.3390/sym12060925
http://doi.org/10.7763/IJAPM.2013.V3.224
http://doi.org/10.1155/2013/932578
http://doi.org/10.3923/ajms.2018.12.17
http://doi.org/10.22436/jnsa.013.03.04
http://doi.org/10.21833/ijaas.2018.06.003


Symmetry 2022, 14, 2418 21 of 21

38. Ahmed, S.; Elzaki, T.; Elbadri, M.; Mohamed, M.Z. Solution of partial differential equations by new double integral transform
(Laplace–Sumudu transform). Ain Shams Eng. J. 2021, 12, 4045–4049. [CrossRef]

39. Saadeh, R.; Qazza, A.; Burqan, A. On the Double ARA-Sumudu transform and its applications. Mathematics 2022, 10, 2581.
[CrossRef]

40. Qazza, A.; Burqan, A.; Saadeh, R.; Khalil, R. Applications on Double ARA–Sumudu Transform in Solving Fractional Partial
Differential Equations. Symmetry 2022, 14, 1817. [CrossRef]

41. Meddahi, M.; Jafari, H.; Yang, X.-J. Towards new general double integral transform and its applications to differential equations.
Math. Methods Appl. Sci. 2021, 45, 1916–1933. [CrossRef]

http://doi.org/10.1016/j.asej.2021.02.032
http://doi.org/10.3390/math10152581
http://doi.org/10.3390/sym14091817
http://doi.org/10.1002/mma.7898

	Introduction 
	Basic Definitions and Theorems for Laplace and ARA Transforms 
	Laplace Transform B14-symmetry-1960231 
	ARA Transform B23-symmetry-1960231 

	Double Laplace–ARA Transform of Order One (DL-ARAT) 
	DL-ARAT of Some Basic Functions 
	Existence Conditions for DL-ARAT 
	Some Theorems of DL-ARAT 

	Basic Idea of Double Laplace-ARA Transform Method 
	Applications of Double Laplace–ARA Transform in Solving Partial Differential Equations 
	Conclusions 
	References

