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Abstract: We introduce two approaches by modifying split-step exponential schemes to study
stochastic differential equations. Under the Lipschitz condition and linear-growth bounds, it is
shown that our explicit schemes converge to the solution of the corresponding stochastic differential
equations with the order 1.0 in the mean-square sense. The mean-square stability of our methods
is investigated through some linear stochastic test systems. Additionally, asymptotic mean-square
stability is analyzed for the two-dimensional system with symmetric and asymmetric coefficients
and driven by two commutative noise terms. In particular, we prove that our methods are mean-
square stable for any step-size. Finally, some numerical experiments are carried out to confirm the
theoretical results.

Keywords: mean-square stability; stochastic differential equations; strong convergence; ODE solver;
Milstein method; split-step schemes

1. Introduction

Due to the significant role played by stochastic differential equations (SDEs) in de-
scribing different phenomena, studying their solutions’ behavior is an important topic
for researchers [1–5]. Since there is no analytical form solution for most SDEs, a critical
issue in their study is the design of efficient schemes for numerical solutions. Thus, many
numerical schemes are used to approximate their solution, for example, see [4,6–13].

In recent years, split-step techniques have been widely used to solve various SDEs.
For example, Haghighi and Hosseini [7] analyzed the mean-square (MS) convergence of
Rosenbrock stochastic balanced methods, which are a combination of Milstein methods [12]
and Rosenbrock ordinary differential equation (ODE) solvers [14]. Additionally, using
the Rosenbrock ODE solver, the split-step double-balanced scheme was constructed for
solving SDEs [15]. In [16], Nouri et al. gave the split-step Rosenbrock scheme for SDEs. By
the split Adams–Moulton ODE solver [17], new stochastic schemes are proposed to solve
SDEs [18,19]. Recently, an attempt has been made to provide new explicit schemes with a
wide stability region using ODE solvers [20]. In [21–23], the authors established new types
of Euler–Maruyama and Milstein schemes by the exponential function for the solution of
stiff SDEs arising in physical and chemical models.

In the last decades, using stability properties has led to the creation of better numerical
algorithms. Saito and Mitsui [24] investigate the MS stability behavior of several numerical
schemes for linear scalar SDE. Additionally, in [25], the MS stability condition of the Euler–
Maruyama approach for a two-dimensional SDE with symmetric coefficients driven by one
noise term is investigated. Buckwar and Sickenberger [26] studied the MS stability of the
θ-Euler–Maruyama and θ-Milstein schemes for scalar SDEs driven by an s-dimensional
Wiener process. Additionally, the same authors analyzed, in [27], the MS stability properties
of the θ-Euler–Maruyama and θ-Milstein schemes for two-dimensional SDEs driven by
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commutative and non-commutative noise terms with symmetric and asymmetric coeffi-
cients. Following this line, the MS stability of many numerical schemes was studied, for
example, see [11,12,16,18,19,26,28,29].

We modify the split-step forward methods based on the exponential Milstein scheme
for solving stiff SDEs. In the following section, we make some necessary notations and
assumptions of SDE (1). We also construct our schemes in this section. In Section 3, we
study the convergence theorem and show that the proposed schemes converge to accurate
solutions under the Lipschitz condition and linear-growth bounds of order 1.0 in the MS
sense. Furthermore, the stability behavior of our schemes on some test systems of SDEs is
considered in Section 4. Next, several numerical experiments are presented in Section 5.
Some concluding remarks are given in the final section.

2. Hybrid Approach of Split-Step and Milstein Schemes

We consider d-dimensional Itô SDEs [11,16],

dP(t) = f (P(t))dt +
s

∑
r=1

gj(P(t))dZj(t), P(t0) = P0 ∈ Rd, t ∈ [t0, T]. (1)

For solving (1), many authors have suggested the split-step approach [8,28,30], in the
following general form: 

Ql = Ql + ∆Υ(Ql , Ql)

Ql+1 = Ql +
s

∑
r=1

gj(Ql)∆Zj
l ,

where Υ(Ql , Ql) is the increment function of an appropriate ODE solver. To establish our
schemes, we consider

Υ(Ql , Ql) = f (Ql) +
∆
2

J f (Ql) f (Ql) +O(∆2)

= f (Ql)
exp(∆J f (Ql))− I

∆J f (Ql)
+O(∆2),

(2)

where J f denotes a Jacobian Matrix. Now, we derive the following explicit approaches by the
Milstein method, the first drifting split-step exponential modified Milstein (DRSSEMM) scheme

Ql = Ql + ∆ f (Ql)
exp(∆J f (Ql))−I

∆J f (Ql)

Ql+1 = Ql +
s

∑
r=1

gr(Ql)∆Zr
l +

s

∑
r1,r2=1

Lr1 gr2(Ql)I(r1,r2)
,

(3)

and the second diffused split-step exponential modified Milstein (DISSEMM) scheme
Ql = Ql +

s

∑
r=1

gr(Ql)∆Zr
l +

s

∑
r1,r2=1

Lr1 gr2(Ql)I(r1,r2)

Ql+1 = Ql + ∆ f (Ql)
exp(∆J f (Ql))−I

∆J f (Ql)
,

(4)

where

Lr1 =
d

∑
i=1

gi
r1

∂

∂xi
l
, I(r1,r2)

=

tl+1∫
tl

τ2∫
tl

dZr1(τ1)dZr2(τ2).



Symmetry 2022, 14, 2413 3 of 15

Additionally, Ql is the approximation to P(tl) for tl = l∆, l = 0, 1, . . . , N, N = 1, 2, . . .,
∆ = tl − tl−1, and ∆Zl = Ztl − Ztl−1 is an independent variable with distribution N (0, ∆).

Assumption 1. Functions f , gr, r = 1, . . . , s in SDE (1), J f and f J f satisfy Lipschitz condition
and linear-growth bounds with constants K1 and K2, respectively. Additionally,

s

∑
r1,r2=1

|Lr1 gr2(x)− Lr1 gr2(y)|
2 ≤ K1|x− y|2.

3. Mean-Square Convergence

We derive MS convergence results for the DRSSEMM (3) and DRSSEMM (4) schemes.
Before proving the main theorem, we state the following lemma.

Lemma 1 ([9]). For l = 0, 1, . . . , N − 1 and N = 1, 2, . . . , assume that

|E[(Ql+1 −Q(tl+1))|Ql = P(tl)]| ≤ K(1 + |Ql |2)1/2∆m1 , (local mean error) (5)∣∣∣E[|Ql+1 − P(tl+1)|2|Ql = P(tl)
]∣∣∣1/2

≤ K(1 + |Ql |2)1/2∆m2 , (MS error) (6)

with m2 ≥ 1
2 and m1 ≥ m2 +

1
2 . Then,∣∣∣E[|Qk − P(tk)|2|Q0 = P(t0)

]∣∣∣1/2
≤ K(1 + |Q0|2)1/2∆m2−1/2, k = 0, 1, . . . , N.

Lemma 2. Assume the linear-growth bounds hold. Then,∣∣∣∣∣∣
exp

(
∆J f (Ql)

)
− I

∆J f (Ql)

∣∣∣∣∣∣ ≤ 1 + ∆
√
K2

(
1 + |Ql |2

)1/2
,

∣∣∣∣∣∣
exp

(
∆J f (Ql)

)
− I

∆J f (Ql)

∣∣∣∣∣∣
2

≤ 2 +
1
2

∆2K2

(
1 + |Ql |2

)
,

∣∣∣∣∣∣ f (Ql)

exp
(

∆J f (Ql)
)
− I

∆J f (Ql)
− I

∣∣∣∣∣∣ ≤ ∆
√
K2

(
1 + |Ql |2

)1/2
,

∣∣∣∣∣∣ f (Ql)

exp
(

∆J f (Ql)
)
− I

∆J f (Ql)
− I

∣∣∣∣∣∣
2

≤ 1
2

∆2K2

(
1 + |Ql |2

)
.

(7)

Proof. It is easy to write

exp
(

∆J f (Ql)
)
− I

∆J f (Ql)
= I +

1
2

∆J f (Ql) +O(∆2)

and

f (Ql)

exp
(

∆J f (Ql)
)
− I

∆J f (Ql)
− I

 =
1
2

∆ f (Ql)J f (Ql) +O(∆2).

So, we obtain the desired result by using (a + b)2 ≤ 2
(
a2 + b2) and the linear-growth

bounds.
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In what follows, we will employ Assumption 1 and Lemmas 1 and 2 to show MS
convergence of DRSSEMM (3) and DRSSEMM (4) methods.

Theorem 1. If, under Assumption 1, we apply the DRSSEMM (3) and DISSEMM (4) schemes
with ∆ = (T − t0)/N to SDE (1), then∣∣∣E[∣∣Qk − P(tk)

∣∣2∣∣∣Q0 = P(t0)
]∣∣∣1/2

= O(∆), k = 0, 1, . . . , N.

Proof. We show that the DRSSEMM and DISSEMM methods convergence to SDE (1),
according to Lemma 1, by the local Milstein approximation step

QMil
l+1 = QMil

l + ∆ f (QMil
l ) +

s

∑
r=1

gr(QMil
l )∆Zr

l +
s

∑
r1,r2=1

Lr1 gr2(Q
Mil
l )I(r1,r2)

, (8)

with [9] ∣∣∣E[(QMil
l+1 − P(tl+1)

)∣∣∣QMil
l = P(tl)

]∣∣∣ ≤ ∆2K
(

1 + |Ql |2
)1/2

, (9a)(
E
[∣∣QMil

l+1 − P(tl+1)
∣∣2∣∣∣QMil

l = P(tl)
]) 1

2 ≤ ∆3/2K
(

1 + |Ql |2
)1/2

. (9b)

First, we prove that relation (5) holds for our schemes with m1 = 3
2 . Thus, by (9a) we

can write

E1 =
∣∣∣E[(Ql+1 − P(tl+1))

∣∣∣Ql = P(tl)
]∣∣∣

≤
∣∣∣E[(QMil

l+1 − P(tl+1)
)∣∣∣QMil

l = P(tl)
]∣∣∣+ ∣∣∣E[(Ql+1 −QMil

l+1

)∣∣∣Ql = QMil
l

]∣∣∣
≤∆2K

(
1 + |Ql |2

)1/2
+ E2,

(10)

with

E2 =
∣∣∣E[(Ql+1 −QMil

l+1

)∣∣∣Ql = QMil
l

]∣∣∣

≤



∆
∣∣∣∣ f (Ql)

(
exp(∆J f (Ql))−I

∆J f (Ql)
− I
)∣∣∣∣, (DRSSEMM method),

∆
∣∣∣∣ exp(∆J f (Ql))−I

∆J f (Ql)

∣∣∣∣|E( f (Ql)− f (Ql))|+ ∆
∣∣∣∣ f (Ql)

(
exp(∆J f (Qk))−I

∆J f (Ql)
− I
)∣∣∣∣,

(DISSEMM method).

Assumption 1, Lemmas 2, and mean value Theorem as

f (Ql)− f (Ql) = J f (Q̂l)
(
Ql −Ql

)
, Ql < Q̂l < Ql , (11)

lead to
E2 ≤ ∆2

√
K2

(
1 + |Ql |2

)1/2
. (12)

From (10) and (12), we obtain

E1 ≤ ∆2(K +
√
K2)

(
1 + |Ql |2

)1/2
. (13)
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If we divide (6) into two parts by standard arguments, using (9b) we can obtain local
MS error for DRSSEMM (3) and DISSEMM (4) schemes as

E3 =
∣∣∣E[|Ql+1 − P(tl+1)|2

∣∣∣Ql = P(tl)
]∣∣∣1/2

≤
∣∣∣∣E[∣∣∣QMil

l+1 − P(tl+1)
∣∣∣2∣∣∣QMil

l = P(tl)

]∣∣∣∣1/2
+

∣∣∣∣E[∣∣∣Ql+1 −QMil
l+1

∣∣∣2∣∣∣Ql = QMil
l

]∣∣∣∣1/2

≤∆3/2K
(

1 + |Ql |2
)1/2

+ E4.

(14)

To continue, we use Assumption 1, Lemma 2, and (11) for the estimation of E4.

E4 =

∣∣∣∣E[∣∣∣Ql+1 −QMil
l+1

∣∣∣2∣∣∣Ql = QMil
l

]∣∣∣∣1/2

≤



√
1 + 3s

∣∣∣∣∣∆2
∣∣∣∣ f (Ql)

(
exp(hJ f (Ql))−I

∆J f (Ql)
− I
)∣∣∣∣2 +E

∣∣∣∣∣ s

∑
r=1

(
gr(Ql)− gr(Ql)

)
∆Zr

l

∣∣∣∣∣
2

+E

∣∣∣∣∣ s

∑
r1,r2=1

(
Lr1 gr2(Ql)− Lr1 gr2(Ql)

)
I(r1,r2)

∣∣∣∣∣
2∣∣∣∣∣

1/2

,

(DRSSEMM method),∣∣∣∣∣2∆2
∣∣∣∣ exp(hJ f (Ql))−I

∆J f (Ql)

∣∣∣∣2E| f (Ql)− f (Ql)|2

+2∆2
∣∣∣ f (Ql)

( exp(∆J f (Ql))−I
∆J f (Ql)

− I
)∣∣∣2∣∣∣∣1/2

,

(DISSEMM method),

≤∆3/2
√

1 + 3s
√
K2(∆(1 + CK1) +K1)

(
1 + |Ql |2

)1/2
.

(15)

In the above relation, we used the fact that E[(∆Zr
l )

2] = ∆ and E
[

I2
(r1,r2)

]
≤ C∆2,

C > 0, r, r1, r2 = 1, . . . , s. Finally, by substituting (15) in (14) and using (13) in Lemma 1, we
can easily show that the MS convergence orders of the DRSSEMM and DISSEMM schemes
are 1.0.

4. Stability Properties

This section is devoted to the MS stability analysis of the DRSSEMM and DISSEMM
schemes for scalar linear SDEs driven by a one-dimensional Wiener process and multi-
dimensional commutative noise terms. Also, we study the asymptotic MS stability of our
schemes for two-dimensional SDE with two commutative noise terms.

4.1. A Scalar Linear SDE Driven by a One-Dimensional Wiener Process

In this part of the paper, we study the MS stability of the DRSSEMM (3) and DIS-
SEMM (4) schemes by considering the Itô test equation

dP(t) = aP(t)dt + bP(t)dZ(t), t ≥ t0, P(t0) = P0, (16)

where a, b ∈ C. The actual value of (16) is

P(t) = P0 exp
((

a− 1
2

b2
)

t + bZ(t)
)

, (17)

which is MS-stable if and only if [24]
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lim
t→∞

E
[
|P(t)|2

]
= 0⇔ 2<(a) + |b|2 < 0. (18)

By applying the DRSSEMM (3) and DISSEMM (4) methods to (16), we obtain the
following explicit difference equation:

Ql+1 = Υ(a, b, ∆, ξl)Ql ,

with

Υ(a, b, ∆, ξl) = ea∆
(

1 + b
√

∆ξl +
1
2

b2∆(ξ2
k − 1)

)
(19)

where ξl = ∆Zl√
∆
∼ N (0, 1). Now, we compute stability domains of proposed methods

by (19) and the E(|Υ(a, b, ∆, ξl)|2) < 1 condition,

|Υ(a, b, ∆, ξl)|2 = Υ(a, b, ∆, ξl).Υ(a, b, ∆, ξl)

= ea∆
(

1 + b
√

∆ξl +
1
2
|b|2∆(ξ2

l − 1)
)

× ea∆
(

1 + b
√

∆ξl +
1
2
|b|2∆(ξ2

l − 1)
)

= e2<(a)∆
(

1 + 2<(b)
√

∆ξl + ∆|∆|2(2ξ2
l − 1)

+<(b)∆3/2|b|2ξl(ξ
2
l − 1) +

1
4

∆2|b|4(ξ2
l − 1)2

)
.

Using E(ξl) = 0, E[ξ2
l ] = 1 and E[ξ4

l ] = 3, we can compute the MS stability function of the
DRSSEMM (3) and DISSEMM (4) schemes, as

Υ(a, b, ∆) = E(|Υ(a, b, ∆, ξl)|2)

= e2<(a)∆
(

1 + ∆|b|2 + 1
2

∆2|b|4
)

< 1.

(20)

Theorem 2. For any values a, b satisfying relation (18) and any step-size ∆ > 0, the DRSSEMM (3)
and DISSEMM (4) methods give numerical MS-stable solutions.

Proof. It is easy to see that (20) is equivalent to

Ψ(a, b, ∆) = −
∞

∑
n=3

(−2<(a)∆)n

n!
+ ∆

(
2<(a) + |b|2

)
+

1
2

∆2
(
|b|2 + 2<(a)

)(
|b|2 − 2<(a)

)
.

From <(a) < 0, 2|b|2 − 2<(a) > 0 and (18), we conclude that Ψ(a, b, ∆) < 0.

In Figure 1, the region of MS stability is presented for the DRSSEMM (3) and DIS-
SEMM (4) schemes (shaded) when a, b ∈ R. The MS stability areas belonging to the
proposed schemes cover the area of scalar test Equation (16) (gridded). As a result, the
DRSSEMM (3) and DISSEMM (4) approaches are appropriate in this respect.
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Figure 1. MS stability areas of (16) (gridded), DRSSEMM (3), and DISSEMM (4) schemes (shaded).

4.2. A Scalar Linear SDE with Multi-Dimensional Commutative Noise Terms

For the analysis of the MS stability of our scheme, we consider the following one-
dimensional linear SDE driven by multi-dimensional commutative noise terms:

dP(t) = aP(t)dt +
s

∑
r=1

brP(t)dZr(t), t ≥ t0, P(t0) = P0, (21)

with theoretical solution

P(t) = P0 exp

((
a− 1

2

s

∑
r=1

b2
r

)
t +

s

∑
r=1

brZr(t)

)
, (22)

where a, br ∈ C, r = 1, . . . , s.
The SDE (21) is MS-stable if and only if [31–33]

2<(a) +
s

∑
r=1
|br|2 < 0. (23)

Applying DRSSEMM (3) and DISSEMM (4) approaches to the (21) yields

Ql+1 = Ξ(a, {br}s
r=1, ∆, {ξr

l }
s
r=1)Ql , (24)

with

Ξ(a, {br}s
r=1, ∆, {ξr

l }
s
r=1) =e2a∆

(
1 +
√

∆
s

∑
r=1

brξr
l +

1
2

∆
s

∑
r=1

b2
r

(
(ξr

l )
2 − 1

)
+

1
2

∆
s

∑
r1,r2=1
r1 6=r2

br1 br2 ξr1
l ξr2

l

)
.

We note that the above explicit difference equation is the result of using the commuta-
tive property of noise terms, i.e., I(r1,r2)

+ I(r2,r1)
= ∆ξr1

l ξr2
l . Therefore, the stability domain

of schemes is obtained as follows:
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Ξ(a, {br}s
r=1, ∆) = E

[
Ξ(a, {br}s

r=1, ∆, {ξr
l }

s
r=1).Ξ

(
a, {br}s

r=1, ∆, {ξr
l }

s
r=1
)]

= E
[

ea∆

(
1 +
√

∆
s

∑
r=1

brξr
l +

1
2

∆
s

∑
r=1
|br|2

(
(ξr

l )
2 − 1

)
+

1
2

∆
s

∑
r1,r2=1
r1 6=r2

br1 br2 ξr1
l ξr2

l

)

× ea∆

(
1 +
√

∆
s

∑
r=1

brξr
l +

1
2

∆
s

∑
r=1
|br|2

(
(ξr

l )
2 − 1

)
+

1
2

∆
s

∑
r1,r2=1
r1 6=r2

br1 br2 ξr1
l ξr2

l

)]

= e2<(a)∆

1 + ∆
s

∑
r=1
|br|2 +

1
2

∆2
s

∑
r=1
|br|4 +

1
4

∆2

∣∣∣∣∣∣∣∣
s

∑
r1,r2=1
r1 6=r2

br1 br2

∣∣∣∣∣∣∣∣
2.

(25)

Theorem 3. For any values a, {br1}s
r=1 satisfying condition (23) and any step size ∆ > 0, the

DRSSEMM (3) and DISSEMM (4) methods, give numerical MS-stable solutions.

Proof. The schemes are MS-stable if and only if Ξ
(
a, {br}s

r=1, ∆
)
< 1, which is equivalent

to Γ
(
a, {br}s

r=1, ∆
)
< 0, where

Γ(a, {br}s
r=1, ∆) = −

∞

∑
n=3

(−2<(a)∆)n

n!
+ ∆

(
2<(a) +

s

∑
r=1
|br|2

)

+
1
2

∆2

(
s

∑
r=1
|br|2 + 2<(a)

)(
s

∑
r=1
|br|2 − 2<(a)

)
.

By using <(a) < 0, ∑s
r=1 |br|2 − 2<(a) > 0 and (23), the desired result is easily

obtained.

In Figure 2, we show the real MS stability regions, i.e., a, b1, b2 ∈ R, of our schemes (25)
(shaded) and SDE test Equation (23) (gridded) for two commutative noise terms. It is
obvious that the MS stability areas belonging to the proposed schemes cover the area of
SDE Equation (21). Therefore, once again the results of Theorem 3 are confirmed.
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b1 D
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0
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b2 D

Figure 2. MS stability areas of (21) (gridded), DRSSEMM (3), and DISSEMM (4) schemes (shaded).
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4.3. A Two-Dimensional System with Two Commutative Noise Terms

Let us consider

dP(t) =
(

a 0
0 a

)
P(t)dt +

(
b1 0
0 b1

)
P(t)dZ1(t) +

(
0 −b2
b2 0

)
P(t)dZ2(t), (26)

where a, b1, b2 ∈ R and Z1(t), Z2(t) are two commutative noise terms. If we apply our
schemes to system (26), we have

Ql+1 = Θ
(

a, b1, b2, ∆, ξ1
l , ξ2

l

)
Ql , (27)

where

Θ
(

a, b1, b2, ∆, ξ1
l , ξ2

l

)
= ea∆ I2×2 +

√
∆ea∆b1 I2×2ξ1

l +
√

∆ea∆
(

0 −b2
b2 0

)
ξ2

l

+
1
2

∆ea∆
(
(ξ1

l )
2 − 1

)
b2

1 I2×2 −
1
2

∆ea∆
(
(ξ2

l )
2 − 1

)
b2

2 I2×2

+ ∆ea∆
(

0 −b1b2
b1b2 0

)
.

In order to investigate the asymptotic MS stability of the equilibrium position for
proposed schemes, we use the findings of Buckwar and Sickenberger [27]. Therefore,
from (27), we obtain

Θ(a, b1, b2, ∆) = E
[
Θ
(

a, b1, b2, ∆, ξ1
l , ξ2

l

)
⊗Θ

(
a, b1, b2, ∆, ξ1

l , ξ2
l

)]
= e2a∆ I4×4 + ∆e2a∆b2

1 I4×4 + ∆e2a∆
(

0 −b2
b2 0

)
⊗
(

0 −b2
b2 0

)
+

1
2

∆2e2a∆b4
1 I4×4 +

1
2

∆2e2a∆b4
2 I4×4

+ ∆2e2a∆
(

0 −b1b2
b1b2 0

)
⊗
(

0 −b1b2
b1b2 0

)

=


d1 0 0 d2
0 d1 −d2 0
0 −d2 d1 0
d2 0 0 d1

,

(28)

where ⊗ is a Kronecker product, d1 = e2a∆
(

1 + ∆b2
1 +

1
2 ∆4(b4

1 + b4
2
))

, and d2 = b2
2e2a∆∆

(1 + ∆b2
1). From [27], we know that the equilibrium position of difference Equation (27) is

asymptotically MS-stable if and only if ρ(Θ(a, b1, b2, ∆)) < 1, where ρ(Θ(a, b1, b2, ∆)) is the
spectral radius of Θ(a, b1, b2, ∆). So, the eigenvalues of the MS stability matrix (28) are

d1 = e2a∆
(

1 + ∆
(

b2
1 + b2

2

)
+

1
2

∆2
(

b2
1 + b2

2

)2
)

,

d2 = e2a∆
(

1 + ∆
(

b2
1 − b2

2

)
+

1
2

∆2
(

b2
1 − b2

2

)2
)

.

Thus, the MS stability domain of our methods is {(a, b1, b2, ∆)|d1 < 1}. In Figure 3, the
stability regions of our schemes (shaded) and SDE system (26) (gridded) are compared. The
MS stability function of SDE test Equation (26) is 2a + b2

1 + b2
2 < 0, obtained by Buckwar

and Sickenberger [27].
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Figure 3. MS stability areas of (26) (gridded), DRSSEMM (3), and DISSEMM (4) schemes (shaded).

Corollary 1. Since the MS stability function of our schemes applied to (21) for s = 2 and (26),
and because the MS stability function of test equations (21) for s = 2 and (26) are equal, it follows
that Theorem 3 is satisfied for the test system (26).

5. Numerical Results

In the following, several examples are used to demonstrate the theoretical outcomes
stated in Sections 3 and 4. The theoretical and numerical solutions are compared by consid-
ering the MS errors (MSEs), which are defined by

MSEs =

(
1

M0

M0

∑
j=1

∣∣Pj,tN −Qj,N
∣∣2)1/2

,

where Pj,tN and Qj,N are the calculated and theoretical values on the jth independent
sample path evaluated at tN = T and the total number of samples M0 = 5000.

5.1. A Scalar Linear SDE

Consider a scalar linear SDE (16) with real parameters a and b on t ∈ [0, 1] with
initial value P0 = 1. To validate the findings of the Theorem 1, we carry out a numerical
experiment with eight different step-sizes ∆ = 2−i, i = 4, . . . , 11 at T = 1.

For a = 3 and b = 1, Figure 4 shows the MSEs and a comparison of the DRSSEMM (3)
and DISSEMM (4) schemes with the Milstein scheme. Additionally, Figure 4 reveals that
the convergence order of our approaches is close to 1.0, and this is a confirmation of the
theoretical conclusion of Theorem 1.

We investigate the numerical MS stability of the Milstein method and of our schemes,
for the linear SDE (16) with coefficients a = −13 and b = 5. The coefficients satisfy the
condition (18). Figure 5 shows that our proposed schemes preserve the MS stability of the
exact solution for various step-sizes ∆ = 2−i, i = 0, . . . , 4, while the numerical solution
from the Milstein method is MS-stable only for step-size ∆ = 2−4. To obtain the graphs of
Figure 5, we simulated 50,000 sample paths of numerical solutions.
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Figure 4. MSEs of the Milstein, DRSSEMM, and DISSEMM schemes applied to SDE (16).
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Figure 5. MS stability of the Milstein, DRSSEMM, and DISSEMM applied to SDE (16).

5.2. A One-Dimensional Linear SDE with Two Commutative Noise Terms

Consider a linear SDE (21) with real parameters a, b1 and b2 on t ∈ [0, 1] with initial
value P0 = 1. We choose a = 1, b1 = b2 = 1 and eight different step-sizes ∆ = 2−i,
i = 4, . . . , 11, for computer simulation, then we compare the MSEs of the DRSSEMM (3)
and DISSEMM (4) schemes with the Milstein scheme in Figure 6.

In Figure 7, we plotted the numerical MS stability of the Milstein method and of our
schemes, for the linear SDE (21) with coefficients a = −10 and b1 = b2 = 3. We note
that these coefficients satisfy condition (18). The numerical solutions are evaluated by
50,000 sample paths. According to Figure 7, our methods are MS-stable for all step-sizes
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∆ = 2−i, i = 0, . . . , 4, while the numerical solution from the Milstein method preserves the
MS stability of the exact solution only for step-size ∆ = 2−4.
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Figure 6. MSEs of the Milstein, DRSSEMM, and DISSEMM schemes applied to SDE (21).
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Figure 7. MS stability of the Milstein, DRSSEMM, and DISSEMM applied to SDE (21).

5.3. A Scalar Nonlinear SDE

Consider the nonlinear SDE of the form

dP(t) = −
(

α + β2P(t)
)(

1− P2(t)
)

dt + β
(

1− P2(t)
)

dZ(t), t ∈ [0, 1], (29)

with the exact solution [4]

P(t) =
(1 + P0) exp(−2αt + 2βZ(t)) + P0 − 1
(1 + P0) exp(−2αt + 2βZ(t))− P0 + 1

.
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Figure 8 depicts the MSEs of methods for two cases, a stiff equation (α = β = 1) and a
non-stiff one (α = 1, β = 1

2 ), with different step-sizes ∆ = 2−i, i = 1, . . . , 10, and P0 = 0.
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(a) Stiff (α = β = 1).
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Figure 8. MSEs of the Milstein, DRSSEMM, and DISSEMM schemes applied to nonlinear SDE (29).

5.4. A Two-Dimensional Linear SDE with Two Commutative Noise Terms

To study the numerical MS stability of the stochastic system (26), we choose a = −10,
b1 = b2 = 3, and P0 = [1, 1]T . Figure 9 indicates the numerical MS stability of the Milstein,
DRSSEMM, and DISSEMM schemes. It is obvious that our methods preserve the MS
stability of the exact solution for all step-sizes ∆ = 2−i, i = 0, . . . , 4, but the Milstein scheme
is MS-stable only for step-size ∆ = 2−4.
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Figure 9. MS stability of the Milstein, DRSSEMM, and DISSEMM schemes applied to SDE (26).
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6. Conclusions

In the last decade, developing explicit numerical methods with a wide stability region
has become one of the topics of interest for researchers. In this paper, we proposed new
numerical schemes, DRSSEMM and DISSEMM, by combining the ODE solver and the
explicit Milstein method and proved that the proposed schemes convergence to the exact
solution with order 1.0 in MS sense. Furthermore, we investigated the MS stability of
the DRSSEMM and DISSEMM methods, for three different SDEs. It was shown that
our approaches applied to the scalar linear SDE (16) are MS-stable for any step-size (see
Theorem 2). Figure 1 confirms this. Additionally, Theorem 3 and Corollary 1 indicated
that our methods are MS-stable for any step-size for scalar one-dimensional and two-
dimensional SDEs driven by two commutative noise terms, respectively. Figures 2 and 3
support this.

In several examples, we tested the theoretical findings of this paper. For scalar linear
and non-linear SDEs, we show that the convergence order of our schemes is 1.0, see
Figures 4, 6 and 8. Additionally, we compare the MSEs of the presented methods and the
Milstein scheme in these figures. The results show that the accuracy of the DRSSEMM and
DISSEMM approaches is comparable to that of the Milstein scheme. Next, the MS stability
theory of the linear scalar Equations (16), (21) and (26) was investigated and compared.
The results show that our methods preserve the MS stability of the exact value, while the
Milstein scheme is MS-stable for small step-sizes, see Figures 5, 7 and 9.
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