
Citation: Wang, D.; Wei, H.; Xue, J.;

Wu, F.; Lopes, A.M. Variable

Fractional-Order Equivalent Circuit

Model for Lithium-Ion Battery via

Chaotic Adaptive Fractional Particle

Swarm Optimization Method.

Symmetry 2022, 14, 2407. https://

doi.org/10.3390/sym14112407

Academic Editors: Sergio Adriani

David and Liping Chen

Received: 26 September 2022

Accepted: 8 November 2022

Published: 14 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Variable Fractional-Order Equivalent Circuit Model for
Lithium-Ion Battery via Chaotic Adaptive Fractional Particle
Swarm Optimization Method
Deshun Wang 1,2,*, Haikun Wei 1 , Jinhua Xue 2, Fubao Wu 3 and António M. Lopes 4

1 School of Automation, Southeast University, Nanjing 210096, China
2 State Grid Shanghai Energy Interconnection Research Institute Co., Ltd., Shanghai 201203, China
3 Jiangsu Engineering Technology Research Center for Energy Storage Conversion and Application,

China Electric Power Research Institute, Nanjing 210003, China
4 LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
* Correspondence: wangdeshun@epri.sgcc.com.cn

Abstract: A variable fractional-order equivalent circuit model is proposed to accurately describe the
dynamic characteristics of lithium-ion batteries (LIBs). Firstly, a fractional impedance model (FIM) is
established, such that the fractional-order (FO) is a polynomial function of the LIB state of charge
(SOC). Then, a chaotic adaptive fractional particle swarm optimization (CAFPSO) method is derived
to identify the parameters of the FIM. Experiments reveal the reliability of the novel approach through
the root-mean-squared error (RMSE) and the mean absolute error (MAE) of the LIB terminals voltage,
yielding the values 8.99 mV and 4.56 mV, respectively. This translates into accuracy improvements of
22.5% and 34.4% for the particle swarm optimization (PSO) algorithm and 57.9% and 72.8% for the
adaptive fractional particle swarm optimization (AFPSO) algorithm, respectively.

Keywords: FO equivalent circuit; parameters’ identification; particle swarm optimization

1. Introduction

Under the background of more and more serious environmental problems and people’s
increasing concerns about environmental protection, developing and efficiently using
renewable energy has become a key topic of research [1]. Wind and solar power generation
are quite affected by natural environment conditions, such as weather and light changes,
thus revealing volatility, intermittence and randomness. In order to mitigate these issues
and to ensure stable and safe operation of the power grid, the development of effective
energy storage systems is crucial [2].

Energy storage technologies can be grouped into electrochemical, physical and thermal
categories. The electrochemical storage technology is the most widely adopted, and it
relies on LIBs as one of the most mature storage media [3]. Indeed, LIBs are used in
many equipments due to their characteristics, namely long service life, high energy density,
low self-discharge rate, and small size. However, to ensure efficient, safe and stable
operation, accurate state estimation is a crucial part of the LIBs management system. The
premise to develop accurate state estimation methods is the availability of high-precision
battery models [4].

For an efficient battery management system, a high-precision model that fits the
dynamic characteristics of the LIB is very important. The so-called equivalent circuit model
approach has been widely used, since it yields good precision, has simple structure and
allows easy implementation [5]. The standard equivalent circuit model is made of a series
of resistors, capacitors and inductors. However, the electrochemical impedance spectrum
of a pure capacitor is inconsistent with the actual LIB dynamics. As such, equivalent
circuit models were proposed that include FO components, denoted as constant phase
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elements (CPE) [6], which have great influence on the model accuracy, and reveal a certain
correlation with the SOC [7–11].

In addition to the model, the accuracy of the model parameters is critical [7,12,13].
Parameters’ identification methods for LIBs have been widely addressed in the litera-
ture [14–16]. For instance, schemes based on PSO algorithms were discussed in refer-
ences [9,17,18], while methods based on the recursive least squares technique were inves-
tigated in other works [19–21]. The parameters’ identification method based on PSO has
some limitations, such as population clustering caused by random initialization, lack of
diversity, easy to fall in local optima, and slow convergence speed.

In this paper, an FIM that fits the LIB dynamics is set up based on the electrochemical
impedance spectroscopy (EIS) technique. A new CAFPSO method is then proposed to
accurately identify the FIM parameters. Chaotic initialization is used to improve the
diversity of the initial population, and an adaptive fractional speed update law is adopted
to increase the convergence rate of the algorithm and prevent it to fall into local optimal
solutions [22]. The new CAFPSO significantly improves the accuracy of the FIM parameters’
identification. The accuracy and effectiveness of the approach are assessed by means of the
RMSE and the MAE of the LIB terminals voltage, which are equal to 8.99 mV and 4.56 mV,
thus showing excellent accuracy.

The paper is structured into five sections. Section 2 introduces the basics of FO calculus
and the FO capacitor device. Section 3 addresses the mathematical derivation of the LIBs
FIM. Section 4 presents the CAFPSO and assesses the accuracy of the algorithm. Finally,
Section 5 concludes the paper.

2. Preliminary Concepts
Basic Concepts of FO Calculus

The tools of calculus are commonly used for the mathematical description of dynamical
systems. The FO calculus was put forward by Leibnitz in 1695 as an extension of the integer
calculus to any real or complex orders. In recent decades, it has been realized that real
physical systems, namely those including diffusion phenomena, hysteresis, hydrodynamics,
and other characteristics, are better described by the tools of FO calculus than by standard
integer-order models. For LIBs, the FO calculus is able to accurately describe their internal
electrochemical dynamical characteristics.

Let us denote by Dα
t the derivative (α > 0) or integral (α < 0) operators of order

α ∈ R, with respect to t, where t0 is the initial time instant. Herein, we will consider t0 = 0
and (α > 0) and use the simplified notation Dα. Moreover, the Grünwald–Letnikov (GL)
definition will be adopted. Therefore, given a function x(t), we can write [23]:

Dαx(t) = lim
∆T→0

1
∆Tα

[t/∆T]

∑
j=0

(−1)j
(

α
j

)
x(t− j∆T), (1)

where ∆T represents the sampling period, the operator [·] stands for the integer part of the

argument, and
(

α
j

)
corresponds to the generalization to real numbers of the Newton

binomial, that is, (
α
j

)
=

Γ(α + 1)
Γ(j + 1) · Γ(α− j + 1)

, (2)

with Γ(α) denoting the Gamma function:

Γ(α) =
∫ +∞

0
ξα−1e−ξdξ. (3)
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In the state-space form, for a linear time-invariant FO system, we have:{
Dαx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4)

3. The FO Modeling of LIBs

The EIS technique is often used to measure the AC impedance spectrum that char-
acterizes the LIB dynamic response. Figure 1 (top) illustrates the impedance of a typical
LIB using a Nyquist plot. The spectrum includes three main parts: (1) a low-frequency
band in which the diffusion of solid-phase lithium-ions in the LIB electrodes occurs, (2) a
middle-frequency band due to the charge transfer reaction and electrochemical double layer
effect, and (3) a high-frequency band due to Ohmic resistance of inductive components.
Integer-order equivalent circuit models use RC branches to model the mid-range band and
ignore the characteristics of the low-frequency region. Moreover, as the EIS spectrum of
an ideal capacitor is a semicircle in the Nyquist diagram, it is inconsistent with the ellipse-
like curve actually observed. Thus, integer-order models cannot accurately describe the
dynamic characteristics of LIBs. In this way, several works proposed using CPEs, instead
of ideal capacitors, to establish an FIM that better describes the internal characteristics of
LIBs. The impedance of a CPE is expressed as:

Z(s) =
1

Csα
, (5)

where C is related to the element capacitance.
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Figure 1. The EIS-FIM of a typical LIB.

Figure 1 (bottom) represents the FIM constructed to describe the dynamic charac-
teristics of LIBs, where the circuit elements that model the regions (1)–(3) of the EIS are
shown. In the model, the symbol I is the discharge current, OCV stands for the open circuit
voltage, V0 represents the battery terminals voltage, R0 is the Ohmic internal resistance, C1
and W are the CPEs, R1 is the resistance on the RC parallel, V1 corresponds to the voltage
across the RC branch, and V2 is the Warburg-like element voltage. Correspondingly, we
use the W element to simulate the LIB characteristics in the low-frequency band, the RC
parallel formed by a CPE and R1 to model the characteristics in the medium-frequency
band, and R0 to simulate the high-frequency band.
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As the curve representing the low-frequency band in the Nyquist diagram is always
a 45◦ straight line, the FO of W is set to 0.5. The curve corresponding to the middle-
frequency band changes with the SOC [24], so we express the FO α1 of the CPE in the RC
parallel as a polynomial function of the SOC, yielding:

α1(SOC) =
7

∑
i=0

biSOCi(t). (6)

The OCV-SOC relationship is usually a nonlinear function, which we expressed as:

UOCV =
6

∑
i=0,i 6=1

aiSOCi(t). (7)

The FIM of the LIB can then be established based on the Kirchhoff’s voltage and
current laws, yielding:

Dα1(SOC)x1(t) = −
V1(t)
R1C1

+
1

C1
u(t),

D0.5x2(t) =
1

W
u(t),

D1x3(t) = −
η

Qn
u(t),

y(t) = OCV(x3(t))− x1(t)− x2(t)− R0u(t),

(8)

where the function u(t) stands for the input current, with a negative (positive) signal
for charging (discharging), the vector x(t) = [V1(t), V2(t), SOC(t)]T is the state, and the
function y(t) denotes the output voltage. Moreover, the symbol Qn represents the nominal
capacity of the LIB, which is expressed in Ampere-hour (Ah), and the symbol η corresponds
to the Coulomb efficiency.

Based on expression (4), the FO system given by (8) can be represented in the discrete-
time, k, (k ≥ 1), α = [α1, 0.5, 1] as:

x(k + 1) = [(∆T)α A + diag(α)I]x(k)

−
L+1

∑
j=2

(−1)j
(

α
j

)
x(k + 1− j)

+ (∆T)αBu(k),

y(k) = OCV(x3(k))− x1(k)− x2(k)− R0u(k),

(9)

where

(∆T)α = diag((∆T)α1(SOC), (∆T)0.5, ∆T), (10)

(
α
j

)
= diag

((
α1(SOC)

j

)
,
(

0.5
j

)
,
(

1
j

))
, (11)

A =

 − 1
R1C1

0 0
0 0 0
0 0 0

, B =


1

C1
1

W
− η

Qn

. (12)
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4. Parameters’ Identification and FIM Validation

As seen in Figure 1, the FIM has unknown parameters, and obtaining their values is
demanding. Therefore, it is crucial to accurately identify the LIM parameters by means of
suitable methods. Herein, we propose a new CAFPSO method and assess its effectiveness.

The PSO is a simple and easy to implement algorithm inspired on birds’ predation
behavior. However, the traditional PSO has some drawbacks, such as the slow rate of
convergence and it easy to fall into local optimal solutions, which leads to considerable
errors in the identification process.

The initial position of the population is crucial in the performance of PSO. The logistic
chaotic map can be adopted to generate an evenly distributed population, thus contributing
to improve the performance of the algorithm. The logistic chaotic map is expressed as:

xk+1 = µxk(1− xk), (13)

where k is the iteration number, and µ ∈ (0, 4].
For logistic chaotic mapping, when µ = 4, the system is chaotic, the distribution

uniformity of the mapping reaches its peak, and the number of particle swarm is 300. Here,
we adopt µ = 4 and 300 iterations to generate the logistic chaotic sequence. The values are
mapped to particle individuals to perform the initialization of the population, according to
the formula:

χ = χlb + (χub − χlb)χk+1, (14)

where χlb, χub are the upper and lower limits of each individual in each dimension, and χ
is the mapped individual.

On the other hand, the AFPSO was introduced as a novel technique for controlling the
convergence rate of the PSO algorithm that uses the concepts of FO calculus. It was shown
that the FO directly influences the speed of convergence of the PSO. In order to avoid
the algorithm falling into local optima and to improve search efficiency, an FO velocity
adaptation law is adopted:{

Dq(νk+1
i ) = C1R1(Pk

besti
− χk

i ) + C2R2(Gk
besti
− χk

i ),

χk+1
i = χk

i + νk
i ,

(15)

Then, using the GL derivative (1) and r = 4 terms, one has:

νk+1
i = qνk+1

i +
1
2

q(1− q)νk−1
i

+
1
6

q(1− q)(2− q)νk−2
i

+
1

24
q(1− q)(2− q)νk−3

i

+ C1R1(Pk
besti
− χk

i ) + C2R2(Gk
besti
− χk

i ),

χk+1
i = χk

i + νk
i ,

(16)

where q is adaptively updated by:

q = 0.8− 0.5
k
K

, (17)

with k denoting the current iteration and K denoting the total number of iterations. For
good performance, q ∈ [0.3, 0.8] is chosen.

The FIM parameters to be identified are encapsulated into the vector φ = [bo, b1, b2, b3,
b4, b5, b6, b7, R0, R1, C1, W]. The parameters’ identification objective is to find the parameters
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values that minimize the fitness function, f (·), that represents the error between the
measured and the predicted voltages, V0(k) and V̂0(k), respectively, meaning:

min f (·) = min
M

∑
k=1

[V0(k)− V̂0(k)]2, (18)

where the symbol M denotes the total number of the sampling points. Figure 2 illustrates
schematically the CAFPSO algorithm.

Yes

Population initialization by chaos

Update particle velocity and 

position

Particle fitness calculation

Termination 

condition?

Begin

Terminate

Update the fraction order q

No

Update individual and global

optimal solutions

Figure 2. Schematic representations of the CAFPSO algorithm.

The RMSE and the MAE metrics are adopted to assess the accuracy of the CAFPSO,
which are computed as:

RMSE =

√√√√ 1
M

M

∑
k=1

[V0(k)− V̂0(k)]2, (19)

MAE =
1
M

M

∑
k=1
| V0(k)− V̂0(k) | . (20)

For assessing the effectiveness of the method, we use data of voltage and current under
LIB Dynamic Stress Test (DST) conditions. The nonlinear relationship between OCV and SOC
was fitted by a 6th-order polynomial based on low-current OCV test data. Table 1 summarizes
the identified polynomial coefficients and Table 2 lists the parameters’ values obtained with
the new CAFPSO. In order check the effectiveness of the CAFPSO, we compare the voltages
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estimated when using the parameters identified by the CAFPSO, the PSO and the AFPSO.
Figures 3 and 4 depict the obtained voltage and the voltage absolute error for 25 ◦C. From
Figure 3, we verify that the parameters identified by the CAFPSO yield better results than
the ones identified by both the PSO and AFPSO alternatives. From Figure 4 and Table 3, we
verify that the RMSE by the CAFPSO, PSO and AFPSO are 8.99 mV, 11.6 mV and 21.4 mV,
respectively, while the MAE yields 4.56 mV, 6.95 mV and 16.8 mV. Therefore, the identified
parameters lead to good accuracy, and the proposed FIM and CAFPSO are reliable.

Table 1. The identified coefficients of the OCV-SOC polynomial.

a0 a1 a2 a3 a4 a5 a6

3.159 2.499 −9.197 17.860 −16.717 8.259 −1.816

Table 2. The result of the parameters’ identification with the CAFPSO.

b0 b1 b2 b3 b4 b5

0.9932 −1.7075 1.6735 −0.4257 −1.2296 3.0521

b6 b7 R0 R1 C1 W

−2.2960 0.6695 0.0721 0.3685 1977 976.211

3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000

Time(s)

3.3

3.4

3.5

3.6

3.7

3.8

V
ol

ta
ge

(V
)

Measurement
PSO
AFPSO
CAFPSO

Figure 3. The LIB terminals measured and estimated voltages by the CAFPSO, PSO and AFPSO.

Table 3. The values of the RMSE and MAE metrics of the LIB terminals voltage with the parameters’
identification by the CAFPSO, PSO and AFPSO.

PSO AFPSO CAFPSO

RMSE (mV) 21.4 11.6 8.99
MAE (mV) 16.8 6.95 4.56
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Figure 4. The LIB terminals voltage absolute error by the CAFPSO PSO, AFPSO.

5. Conclusions

A new CAFPSO algorithm was derived to obtain accurate parameters’ identification of
LIBs models. A FIM was set up for modeling the LIB based on the EIS technique. A CAFPSO
was then derived based on the logistic chaotic mapping method and used to initialize the
particles’ population in order to increase diversity. A speed updating law with adaptive
FO was adopted to adjust the particle express delivery and position. The effectiveness
of the CAFPSO was verified by comparing the LIB terminals voltage obtained with the
parameters identified by the CAFPSO, the PSO and the AFPSO. Accuracy improvements
of 22.5% and 34.4%, and 57.9% and 72.8%, in the RMSE and MAE, respectively, were
obtained by the CAFPSO relative to the PSO and AFPSO. Future research will consider
the temperature in the process of parameters’ identification, since it was found that the
accuracy of the FIM depends on this variable.
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