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Abstract: Most of the molecular graphs in the area of mathematical chemistry are irregular. Therefore,
irregularity measure is a crucial parameter in chemical graph theory. One such measure that has
recently been proposed is the ve-degree irregularity index (irrve). Quantitative structure property
relationship (QSPR) analysis explores the capability of an index to model numerous properties of
molecules. We investigate the usefulness of the irrve index in predicting different physico-chemical
properties by carrying out QSPR analysis. It is established that the irrve index is efficient to explain
the acentric factor and boiling point of molecules with powerful accuracy. An upper bound of irrve

for the class of all trees is computed with identifying extremal graphs. We noticed that the result is
not correct. In this report, we provide a counter example to justify our argument and determine the
correct outcome.
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1. Introduction

Mathematical chemistry is an interdisciplinary area of research that explains chemical
phenomena from a mathematical point of view. The topological index is one of the crucial
tools in this field which describes the structural features of molecules. A topological index
can be thought of mathematically as a function from the collection of all molecular graphs
to the set of real numbers such that it remains unchanged under graph isomorphism. By
“molecular graph”, we mean a simple connected graph whose nodes and edges correspond
to atoms and chemical bonds between them, respectively. The journey of the topological
index was started through the Weiner’s work [1] on the boiling point of alkanes in 1947.
Due to their significant applications [2–9], topological indices have attracted considerable
attention of researchers and many indices have been put forward based on different graph
parameters [5,10–22]. Let G = (V, E) be a simple graph having n nodes and m edges. For a
node vi ∈ V(G), the open neighborhood of vi is the set NG(vi) = {vj ∈ V(G) : vivj ∈
E(G)}. The degree of a node vi, denoted by deg(vi), is the cardinality of NG(vi). A graph
is known as regular if deg(vi) = deg(vj), for all vi, vj ∈ V(G). If a graph is not regular,
it is obviously irregular. The substantial proportion of molecular graphs are irregular.
Therefore, the following question naturally arises: how irregular is it? A topological index
T is useful to measure such irregularity if T(G) ≥ 0 with T(G) = 0 iff G is regular [23].
This kind of indices are known as irregularity indices. There are many indices to measure
the irregularity in the literature [23–31]. The Albertson index [32] is one of them defined on
the degree of end nodes of edges as follows:

Alb(G) = ∑
vivj∈E(G)

|deg(vi)− deg(vj)|.
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In 2017, two new graph parameters were put forward parallel in degree: ve-degree and
ev-degree [33]. The present report deals with the ve-degree of vertex (vi ∈ V(G)), which
is a count of different edges that are incident to a vertex from the closed neighborhod of
vi. In [34], Ediz defined different ve-degree-based indices parallel to their corresponding
classical degree versions. The regularity and irregularity concepts in view of ve-degree and
ev-degree are studied by Horoldagva et al. [35]. In [36], Şahin and Şahin introduced the
ve-degree version of the Albertson index as an irregularity measure, which is formulated as

irrve(G) = ∑
vivj∈E(G)

|degve(vi)− degve(vj)|.

They named it as the ve-degree irregularity index of G. Quantitative structure property
relationship (QSPR) analysis [2,37–41] is a promising approach to correlate structural
features with properties of chemicals. It is a remarkable statistical approach for investigating
drug activity or the binding mode for different receptors. The usefulness of topological
indices as efficient molecular descriptors can be determined by QSPR study. Our goal is to
explore the application potential of the ve-degree irregularity index in modelling structural
properties of molecules employing QSPR analysis.

The upper bound of this index for the class of all trees is derived with characterizing
extremal graphs in [36]. But we observe that this finding is not correct. The methodology
used to prove the result is totally incorrect, but fortunately, the upper bound is right.
Moreover, the extremal graphs are not completely determined. We intend to present a
counter example to assure our claim, and then to establish the correct result.

Now we explain some notations that will be used throughout the article. The star of
order n is denoted by K1,n−1. A tree S∗k [42] of order n (= 2k + 1) is obtained from a star
K1,k by adding a pendant edge to every pendant vertex of the star. A tree Tn,k of order
n (= 2k + 2) is obtained from S∗k such that a vertex of degree one has to be attached to the
center of S∗k . If Kn represents the complete graph of order n, then the graph generated from
K2 by joining p and q pendent edges to two ends of K2 is termed as a double star DSp,q.

Let Tn,4 be a tree of order n with diameter 4 (see, [43,44]). We now define tree Tn,4 as
follows: Consider a node v of degree k (≥ 2) in Tn,4 such that Tn,4\{v} = K1,a1 ∪ K1,a2 ∪
. . .∪ K1,aq ∪ p K1, where ai ≥ 1 for 1 ≤ i ≤ q and k = p + q (p ≥ 0, q > 1). Let vi ∈ NTn,4(v)
(1 ≤ i ≤ q) with deg(vi) = ai + 1 ≥ 2, and vi ∈ NTn,4(v) (q + 1 ≤ i ≤ q + p) with
deg(vi) = 1 in Tn,4. Therefore vertex vi (1 ≤ i ≤ q) is adjacent to vertex v & ai pendant
vertices, and vi (q+ 1 ≤ i ≤ q+ p) is adjacent to vertex v only. From Figure 1, one can easily

see that n =
q
∑

i=1
ai + q + p + 1, that is,

q
∑

i=1
ai = n− k− 1 as k = p + q. When p + q =

⌈ n
2
⌉

or
⌊ n

2
⌋
, we assume that Tn,4

∼= T′n,p,q. In particular, for T′n,2,r−1 with ai = 1 (1 ≤ i ≤ r− 1),
we have n = 2r + 1, p = 2, q = r− 1, and p + q =

⌈ n
2
⌉
. The structure of Tn,4 is shown in

Figure 1.
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2. Usefulness as Molecular Descriptor

The evaluation of possible implementations of topological indices is the foundation of
chemical graph theory research, which is a motivating factor underneath the mathematical
study of indices. The present section demonstrates the applicability of ve-degree irregularity
index irrve in explaining structural features of molecules by employing the QSPR approach.
To examine the chemical significance of a graph invariant, Randić and Trinajstić [45], pillars
of mathematical chemistry, suggested to correlate theoretical indices with experimental
properties of a benchmark dataset. In this report, we consider the octane isomers and
benzenoid hydrocarbons as benchmark datasets. The hydrogen-deleted molecular graphs
of octanes are created by the ChemDraw software (see Figure 2).

Figure 2. Hydrogen-deleted molecular graph of octane isomers.

The theoretical indices, computed by in-house Matlab script, are reported in Table 1.
When we correlate irrve with experimental properties of octanes [46–48], no significant
outcome is observed. In the case of the boiling point (BP), entropy (S), enthalpy of vapor-
ization (HVAP) and the acentric factor (AF), the linear relations are depicted in Figure 3.
The coefficient of determination (r2) for each case is considerably low.

Figure 3. Linear relation of irrve with different properties of octanes.
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Table 1. Experimental physico-chemical properties and theoretical indices for octane isomers. M:
methyl, E: ethyl, Hept: Heptane, Hex: Hexane, Pent: Pentane, But: Butane.

Octanes irrve Alb BP S HVAP AF

n-Oct 4 2 125.665 111.67 73.19 0.397898
2-M-Hept 6 6 117.647 109.84 70.3 0.377916
3-M-Hept 8 6 118.925 111.26 71.3 0.371002
4-M-Hept 8 6 117.709 109.32 70.91 0.371504
3-E-Hex 12 6 118.534 109.43 71.7 0.362472
2,2-M-Hex 8 12 106.84 103.42 67.7 0.339426
2,3-M-Hex 12 8 115.607 108.02 70.2 0.348247
2,4-M-Hex 10 10 109.429 106.98 68.5 0.344223
2,5-M-Hex 6 10 109.103 105.72 68.6 0.35683
3,3-M-Hex 12 12 111.969 104.74 68.5 0.322596
3,4-M-Hex 14 8 117.725 106.59 70.2 0.340345
2-M-3-E-Pent 16 8 115.45 106.06 69.7 0.332433
3-M-3-E-Pent 18 12 118.259 101.48 69.3 0.306899
2,2,3-M-Pent 16 14 109.841 101.31 67.3 0.300816
2,2,4-M-Pent 10 16 99.238 104.09 64.87 0.30537
2,3,3-M-Pent 18 14 114.76 102.06 68.1 0.293177
2,3,4-M-Pent 16 10 113.467 102.39 68.37 0.317422
2,2,3,3-M-But 18 18 106.47 93.06 66.2 0.255294

But if we combine the irrve with Alb index, then the scenario alters dramatically and
considerable correlation with the aforesaid properties is noticed. Consequently, our interest
is to investigate the following regression model:

P = C1(±e1)irrve + C2(±e2)Alb + C3(±e3), (1)

where P represents property, C1, C2 and C3 are fitting parameters, and e1, e2 and e3 indicate
standard error of coefficients. Some additional statistical factors like coefficient of deter-
mination (r), standard error of model (SE), the F-test (F) and the significance F (SF) are
also discussed with the model (1). Now in view of relation (1), we obtain the following
regression equations for octane isomers.

BP = 0.68(±0.177)irrve − 1.672(±0.197)Alb + 122.229(±1.925),

r2 = 0.832, SE = 2.666, F = 37.239, SF = 1.52× 10−6.
(2)

S = −0.288(±0.119)irrve − 0.802(±0.133)Alb + 116.73(±1.304),

r2 = 0.859, SE = 1.806, F = 45.69, SF = 4.16× 10−7.
(3)

HVAP = 0.099(±0.039)irrve − 0.534(±0.044)Alb + 73.269(±0.433),

r2 = 0.923, SE = 0.599, F = 89.665, SF = 4.54× 10−9.
(4)

AF = −0.003(±0.0003)− 0.006(±0.0003)Alb + 0.433(±0.003),

r2 = 0.984, SE = 0.005, F = 450.084, SF = 4.07× 10−14.
(5)

From Equations (2)–(5), many interesting remarks can be drawn. The data variances for
BP, S, HVAP, and AF are almost 83%, 86%, 92% and 98%, respectively, which are better
than the irrve and Alb, when they are considered individually. Standard errors are very low,
in fact, for the model (5), since it is significantly small. The consistency of model improves
as well as the F-value increases. It is remarkably large in the case of AF.

The predicted properties by the model (1) are plotted against the experimental proper-
ties in Figure 4. From this figure, one can conclude that experimental and predicted data
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align well with each other. In view of all parameters, we can claim that irrve and Alb exert
superior ability to predict AF compared to other properties.

Figure 4. Relation between experimental and predicted properties for octane isomers.

Now we correlate the experimental boiling points [49] with theoretical values of
irrve and Alb for benzenoid hydrocarbons (see Table 2). Chemical graphs of benzenoid
hydrocarbons under consideration are shown in Figure 5.

Table 2. Experimental boiling points and theoretical indices for benzenoid hydrocarbons.

Compounds irrve Alb BP Compounds irrve Alb BP

BHC1 12 4 218 BHC12 36 10 542
BHC2 20 6 338 BHC13 28 10 535
BHC3 16 8 340 BHC14 32 12 536
BHC4 26 8 431 BHC15 32 12 531
BHC5 24 10 425 BHC16 32 10 519
BHC6 24 6 429 BHC17 36 12 590
BHC7 20 12 440 BHC18 36 10 592
BHC8 32 10 496 BHC19 28 16 596
BHC9 32 8 493 BHC20 36 12 594
BHC10 36 8 497 BHC21 36 10 595
BHC11 36 12 547
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Figure 5. Chemical graphs of 21 benzenoid hydrocarbons.

Linear fitting of both the invariants with BP for benzenoid hydrocarbons is shown
in Figure 6. Performance of irrve (r2 = 0.805) is better than Alb (r2 = 0.591). However,
the combined effect of the indices is found to be better than the individuals. Equation (1)
generates the follwing model.

BP = 9.332(±0.953)irrve + 15.672(±2.602)Alb + 64.924(±26.995),

r2 = 0.935, SE = 26.762, F = 130.422, SF = 1.95× 10−11.
(6)

In this case, the SE value is little bit high. The rest of the parameters are significant to state
that irrve and Alb can predict the BP of benzenoid hydrocarbons. The relation between the
experimental and predicted BP is depicted in Figure 7.
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Figure 6. Linear fitting of irrve and Alb with BP for benzenoid hydrocarbons.

Figure 7. Relation between experimental and predicted BP for benzenoid hydrocarbons.

To check the independence of the ve-degree irregularity index irrve, it is correlated with
some well known indices including the first Zagreb (M1), second Zagreb (M2), forgotten,
Randić (R), symmetric division deg (SDD), and Albertson (Alb) index, which is reported in
Table 3. From Table 3 it is clear that irrve is not well correlated with existing indices, which
makes its appearing in chemical graph theory purposeful.

Table 3. Correlation coefficient (r) of irrve with some well known indices.

M1 M2 F SCI R SDD Alb

irrve 0.688 0.874 0.667 −0.588 −0.539 0.517 0.594

3. On ve-Degree Irregularity Index of Trees

First, we recall the Theorem of [36] concerning the upper bound of irrve for the class of
all trees and provide two counter examples to it.

Theorem 1 ([36]). Let T be a tree of order n. Then

irrve(T) ≤


n2 − 4n + 3

2
if n is odd,

n2 − 4n + 4
2

if n is even.

Moreover, the equality holds if and only if T ∼= S∗k (n = 2k + 1) and T ∼= Tn,k (n = 2k + 2).

This result is not correct, as is shown in the following two counter examples.

Example 1. Let T ∼= DSd n−2
2 e, b n−2

2 c. Also let v1 and v2 (deg(v1) ≥ deg(v2)) be two non-

pendant vertices in T. We have deg(v1) = d n
2 e, deg(v2) =

⌊ n
2
⌋
, degve(v1) = n− 1, degve(v2) =
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n− 1, degve(vi) =
⌈ n

2
⌉

for vi ∈ NT(v1) with deg(vi) = 1, and degve(vj) = b n
2 c for vj ∈

NT(v2) with deg(vj) = 1. Now,

irrve(T) =

(
n− 1−

⌈
n
2

⌉)⌈
n− 2

2

⌉
+

(
n− 1−

⌊
n
2

⌋)⌊
n− 2

2

⌋

= 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
=


n2 − 4n + 3

2
if n is odd,

n2 − 4n + 4
2

if n is even.

Example 2. Let T ∼= T′n,p,q. Then p+ q =
⌈ n

2
⌉

or
⌊ n

2
⌋
. Moreover, degve(v) = n− 1, degve(vi) =

p + q + ai for vi ∈ NT(v) with deg(vi) > 1, degve(vi) = p + q for vi ∈ NT(v) with
deg(vi) = 1, and degve(vi) = aj + 1 for vi ∈ NT(vj), 1 ≤ j ≤ q with deg(vi) = 1. Since

q
∑

i=1
ai = n− p− q− 1 and p + q =

⌈ n
2
⌉

or
⌊ n

2
⌋
, we obtain

irrve(T) =
q

∑
i=1

(n− 1− p− q− ai) +
p+q

∑
i=q+1

(n− 1− p− q) +
q

∑
i=1

(p + q− 1) ai

=
q

∑
i=1

(
n− 1− p− q + (p + q− 2) ai

)
+ (n− 1− p− q) p

= (n− p− q− 1) (p + q) + (p + q− 2) (n− p− q− 1)

= 2 (n− p− q− 1) (p + q− 1) = 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
.

Now we present the corrected statement of Theorem 1 of [36] as follows, along with a
detailed proof.

Theorem 2. Let T be a tree of order n. Then

irrve(T) ≤ 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
(7)

with equality if and only if T ∼= T′n,p,q (p + q =
⌈ n

2
⌉

or
⌊ n

2
⌋
) or T ∼= DSd n−2

2 e, b n−2
2 c.

Proof. Let d be the diameter of tree T. If d = 2, then T ∼= K1, n−1. In this case degve(vi) =
n− 1 for all vi ∈ V(T). Thus, we have

irrve(T) = ∑
vivj∈E(T)

|degve(vi)− degve(vj)| = 0 < 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
.

Otherwise, d ≥ 3. We consider the following cases:

Case 1: d = 3. In this case T ∼= DSp, q (p + q = n− 2, p ≥ q). Let v1 and v2 (deg(v1) ≥
deg(v2)) be two non-pendant vertices in T. We have

deg(vi) =


p + 1 if i = 1,
q + 1 if i = 2,
1 otherwise.
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Moreover, degve(v1) = n− 1, degve(v2) = n− 1, degve(vi) = p + 1 for vi ∈ NT(v1) with
deg(vi) = 1, and degve(vj) = q + 1 for vj ∈ NT(v2) with deg(vj) = 1. Since p + q = n− 2,
using these results, we obtain

irrve(T) = ∑
vivj∈E(T)

|degve(vi)− degve(vj)|

= p (n− p− 2) + q (n− q− 2)

= 2 p q ≤ 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋

with equality if and only if T ∼= DSd n−2
2 e, b n−2

2 c.

Case 2: d = 4. Since T has n vertices with diameter 4, we have T ∼= Tn,4. Then there exists

a vertex v in T such that T − v = pK1 ∪
q
i=1 K1, ai , where n =

q
∑

i=1
ai + q + p + 1. We have

deg(vi) =


p + q vi = v,
ai + 1 1 ≤ i ≤ q,
1 otherwise.

Moreover, degve(v) = n − 1, degve(vi) = p + q + ai for vi ∈ NT(v) with deg(vi) > 1,
degve(vi) = p + q for vi ∈ NT(v) with deg(vi) = 1, and degve(vi) = aj + 1 for vi ∈
NT(vj), 1 ≤ j ≤ q with deg(vi) = 1. We obtain

irrve(T) = ∑
vivj∈E(T)

|degve(vi)− degve(vj)|

=
q

∑
j=1
|degve(v)− degve(vj)|+

p

∑
j=1
|degve(v)− degve(vq+j)|

+
q

∑
j=1

aj

∑
vi∈NT (vj),

deg(vi)=1

|degve(vi)− degve(vj)|

=
q

∑
j=1

[
q

∑
i=1

ai − aj

]
+ p

q

∑
j=1

aj + (p + q− 1)
q

∑
j=1

aj

=
q

∑
j=1

q

∑
i=1

ai + p
q

∑
j=1

aj + (p + q− 2)
q

∑
j=1

aj

= (p + q) (n− p− q− 1) + (p + q− 2) (n− p− q− 1)

= 2 (p + q− 1) (n− p− q− 1). (8)

Let us consider a function
f (x) = (x− 1) (n− x− 1).

Then f ′(x) = n− 2x. Therefore f (x) is an increasing function on x ≤ n/2 and a decreasing
function on x ≥ n/2. Hence,

f (x) ≤ max

{
f

(⌈
n
2

⌉)
, f

(⌊
n
2

⌋)}
=

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
,

with equality holding if and only if x = b n
2 c or

⌈ n
2
⌉
. Using the above result in (8), we obtain

irrve(T) ≤ 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋
,
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with equality holding if and only if T ∼= Tn,4 with p + q =
⌈ n

2
⌉

or
⌊ n

2
⌋
, that is, if and only if

T ∼= T′n,p,q (p + q =
⌈ n

2
⌉

or
⌊ n

2
⌋
).

Case 3: d ≥ 5. Let Pd+1 : v1v2 . . . vdvd+1 be a diametral path in T. Without loss of generality,
we can assume that deg(v3) ≤ deg(vd−1). Then deg(v3) ≤ n−2

2 . Let T′ = T − v1. Also,
let V(T′) = {v′2, v′3, . . . , v′n} = V(T) − v1, where v′i = vi for i = 2, 3, . . . , n. For any
vivj ∈ E(T′),

|degve(v′i)− degve(v′j)| =


|degve(vi)− degve(vj)| if i = 2,
|degve(vi)− degve(vj)− 1| if i = 3, j 6= 2,
|degve(vi)− degve(vj)| if i, j /∈ {2, 3}.

For any edge v3vj ∈ E(T − v1) (j 6= 2), one can easily check that

|degve(v3)− degve(vj)| ≤ |degve(v3)− degve(vj)− 1|+ 1

and, hence,

∑
vj : v3vj∈E(T−v1)

j 6=2

[
|degve(v3)− degve(vj)| − |degve(v3)− degve(vj)− 1|

]
≤ deg(v3)− 1.

Using the above results, we obtain

irrve(T)− irrve(T − v1)

= ∑
vivj∈E(T)

|degve(vi)− degve(vj)| − ∑
v′iv
′
j∈E(T−v1)

|degve(v′i)− degve(v′j)|

= degve(v2)− degve(v1) + ∑
vivj∈E(T−v1)

[
|degve(vi)− degve(vj)| − |degve(v′i)− degve(v′j)|

]

= deg(v3)− 1 + ∑
vj : v2vj∈E(T−v1)

[
|degve(v2)− degve(vj)| − |degve(v′2)− degve(v′j)|

]

+ ∑
vj : v3vj∈E(T−v1),

j 6=2

[
|degve(v3)− degve(vj)| − |degve(v′3)− degve(v′j)|

]

+ ∑
vivj∈E(T−v1),

i, j/∈{2, 3}

[
|degve(vi)− degve(vj)| − |degve(v′i)− degve(v′j)|

]

= deg(v3)− 1 + ∑
vj : v3vj∈E(T−v1)

j 6=2

[
|degve(v3)− degve(vj)| − |degve(v3)− degve(vj)− 1|

]

≤ 2

(
deg(v3)− 1

)
≤ n− 4.
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Therefore, by the mathematical induction hypothesis with the above result, we obtain

irrve(T) ≤ irrve(T − v1) + n− 4 ≤ 2

⌈
n− 3

2

⌉⌊
n− 3

2

⌋
+ n− 4

< 2

⌈
n− 2

2

⌉⌊
n− 2

2

⌋

and (7) holds strictly by induction. This completes the proof of the theorem.

4. Concluding Remarks

In this report, we have unveiled the application potential of irrve in structure-property
modelling. It has been found that irrve can model the acentric factor of octanes and the
boiling point of benzenoid hydrocarbons in combination with Alb index with powerful
accuracy. We have established that irrve is weakly correlated with existing indices, which
indicates its appearance as a meaningful molecular descriptor. Furthermore, it has been
observed that the upper bound and corresponding extremal graphs of ve-degree irregularity
index for the class of all trees are determined incorrectly in [36]. Later, the updated result
was demonstrated. We have found some extra classes of graphs as extremal structure, when
compared with the previous version. Future research on this index might focus on tight
bounds estimation for the unicyclic, bicyclic, and tricyclic classes of graphs with identifying
extremal structures.
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