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Abstract: Recently, public-key cryptography based on tropical semi-rings have been proposed.
However, the majority of them are damaged. The main reason is that they use a public matrix to
construct commutative matrix semi-rings. New public-key cryptosystems are proposed in this paper.
They are based on tropical congruent transformation of symmetric matrix by circular matrix. The
NP-hard problem of solving a tropical system of nonlinear equations underlies the cryptosystem’s
security. Since a known matrix cannot express the used commutative subsemi-rings of circular
matrices and there is no tropical matrix addition operation and power of matrix, the cryptosystems
can withstand known attacks, including the KU attack, RM attack, and IK attack. The length of the
public key and private key of the new cryptosystems is half that of those described in the literature.

Keywords: public-key cryptography; key exchange protocol; tropical symmetric matrices;
congruent transformation

1. Introduction

The integer factorization problem and the discrete logarithm problem are the two
primary computing problems used in modern public-key encryption. For instance, the
discrete logarithm problem provides the basis for the Diffie–Hellman key exchange protocol
and ElGamal encryption [1,2]. On a quantum computer, Shor devised a quantum algorithm
that can solve the discrete logarithm problem and the integer factorization problem in
polynomial time [3]. Therefore, creating additional novel cryptosystems is a current study
area for cryptography [4]. Traditional cryptosystems rely on a variety of commutative rings,
including integer ring, residue class ring, and finite field. Numerous cryptologists seek out
additional algebraic structures in an effort to create fresh public key cryptosystems [5]. More
specifically, we generally hope to design some cryptosystems based on NP-hard problems
of new algebraic structures (a problem is NP-hard if there exists some NP-complete problem
that reduces to it in polynomial time).

One of the first cryptosystems based on semi-groups and semi-rings was proposed
by Maze, Monico, and Rosenthal [6,7]. However, Steinwandt et al. eventually managed to
crack it [8]. A cryptosystem based on semi-module over factor semi-ring was proposed by
Atani [9]. Durcheva built cryptographic protocols using some idempotent semi-rings [10].
Ahmed et al. [11] cryptanalyzed these schemes in detail. By demonstrating that it is
NP-hard to solve the tropical system of nonlinear equations, Grigoriev and Shpilrain [12]
proposed employing tropical semi-rings to create public-key cryptosystems. Because
tropical schemes do not require any number multiplications because addition is the norm
in tropical multiplication, employing tropical algebras as platforms offers unequalled
efficiency. However, even if an element is a matrix over a tropical algebra, its tropical
powers still show some patterns. Kotov and Ushakov [13] set up a reasonably successful
attack on one of Grigoriev and Shpilrain’s schemes by taking advantage of this weakness.

The initial approach was enhanced by Grigoreiv and Shpilrain, who also suggested
public key cryptosystems using the semi-direct product of tropical semi-rings [14]. How-
ever, Rudy and Monico [15] and Isaac and Kahrobei [16] have recently proposed some
attacks on the upgraded schemes.
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Symmetric matrices and congruent transformations of matrices have many important
conclusions and applications in classical algebra [17–19]. But in tropical algebra, there are
no similar results. For example, a tropical symmetric matrix is generally not congruent with
a diagonal matrix. This paper suggests a public-key encryption and key exchange protocol
based on the congruent transformation of a symmetric tropical matrix by a tropical circular
matrix. These cryptosystems can withstand all known attacks, including the KU attack, RM
attack, and IK attack, because the employed commutative semiring cannot be embodied by
known matrices, and the addition operation of the matrix and the power of the matrix are
not used in our cryptosystems. If the computational congruent transformation problem
and decisional congruent transformation problem are hard, our cryptosystems are secure.
By using symmetric matrices and congruent transformation, the length of the public key
and private key of our cryptosystem is half that reported in [12,14].

The remainder of the paper is structured as follows. In Section 2, we concentrate on a
few definitions that are fundamental concepts in tropical matrix algebra. In Section 3, we
present the new public-key cryptosystems based on congruent transformation of symmetric
tropical matrix by tropical circular matrix. Then, in Section 4, we examine the protocol’s
security and parameter choice. Section 5 provides the conclusion and recommendations for
additional research.

2. Preliminaries

Let S be a non-empty set with operations “+” and “·”. Then S is called a semi-ring if
the following conditions hold:

(1) (S,+) is a commutative semi-group with zero element 0;
(2) (S, ·) is a semi-group with an identity element 1 6= 0 and x · 1 = 1 · x = x for all x ∈ S;
(3) the left and right distribution laws for addition are satisfied by multiplication;
(4) for all x ∈ S, x · 0 = 0 · x = 0.

If the multiplication operation is commutative, then S is called a commutative semi-
ring. Integer tropical commutative semi-ring is the set Z = Z∪ {∞} with addition opera-
tion and multiplication operation as follows:

for all a, b ∈ Z, a⊕ b = min(a, b), a⊗ b = a + b.

∞ is a element satisfying the equations : ∞⊕ a = a, ∞⊗ a = ∞. for all a ∈ S.

Then (Z ,⊕,⊗) is a commutative semi-ring. Its zero element and identity element are
∞ and 0, respectively [12]. Let Mk(Z) be the set of all k× k matrices over Z . We can also
define the tropical matrix addition operation and multiplication operation.

for all P =
(

pij
)

k×k, Q =
(
qij
)

k×k ∈ Mk(Z),

P⊕Q =
(

pij ⊕ qij
)

k×k, P⊗Q =

(
n
∑

l=1
pil ⊗ ql j

)
k×k

A matrix A is called a t-circular matrix if it has the following form,

A =


a0 ak−1 + t ak−2 + t · · · a1 + t
a1 a0 ak−1 + t · · · a2 + t
a2 a1 a0 · · · a3 + t
...

...
...

. . .
...

ak−1 ak−2 ak−3 · · · a0

.

We denote A by [a0, a1, · · · , ak−1]k,t (or [a0, a1, · · · , ak−1]t). Let

Ck,t = {P ∈ Mk(Z)|P is a circular matrix}.

It is easy to verify that Ck,t is a commutative sub-semiring of Mk(Z).
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For a matrix A, the transpose of A is denoted by AT . If AT = A, then A is called a
symmetric matrix. For matrices A, B ∈ Mk(Z), if there exists a matrix P ∈ Mk(Z) such
that PT ⊗ A⊗ P = B, then A, B are congruent. Let

Sk = {Y ∈ Mk(Z)|Y is symmetric}.

If Y is a symmetric matrix and P ∈ Mk(Z), then PT ⊗Y⊗ P is also symmetric.
Let P1 and P2 be two computational problems. P1 is said to polytime reduce to P2,

written P1 ≤p P2, if there is an algorithm that solves P1 which uses, as a subroutine, an
algorithm for solving P2, and which runs in polynomial time if the algorithm for P2 does. If
P1 ≤p P2 and P2 ≤p P1, then P1 and P2 are said to be computationally equivalent.

Let Z [x1, x2, · · · , xn] be the n-ary polynomial semiring over Z . Let

p1(x1, x2, · · · , xn), p2(x1, x2, · · · , xn), · · · , pm(x1, x2, · · · , xn) ∈ Z [x1, x2, · · · , xn].

If degpi ≥ 2, (i = 1, 2, · · ·m), then the following tropical system is called a tropical
system of nonlinear equations,

p1(x1, x2, · · · , xn) = 0
p2(x1, x2, · · · , xn) = 0

· · · · · ·
pm(x1, x2, · · · , xn) = 0.

As we know, the problem of solving a tropical system of nonlinear equations is
NP-hard [12].

In what follows, we sometimes denote A⊗ B as AB for simplicity, and k, t is two
positive integers.

3. Cryptosystems Based on Congruent Transformation of Symmetric Matrix
3.1. Key Establishment Protocol Based on Congruent Transformation Problem

Definition 1. Let Y ∈ Sk and P ∈ Ck,t. Suppose that X = PTYP. The congruent transformation
problem (CTP) is to find a matrix P ∈ Ck,t such that X = PTYP, given the matrices X and Y.

Protocol 1. Let Y ∈ Sk. k and Yare public.

(1) Alice selects randomly a matrix P ∈ Ck,t and computes U = PTYP. She sends the
matrix U to Bob.

(2) Bob selects randomly a matrix Q ∈ Ck,t and computes V = QTYQ. He sends the
matrix V to Alice.

(3) Alice and Bob compute Ka = PTVP and Kb = QTUQ, respectively. The shared secret
key K = Ka = Kb.

Since the Ck,t is the commutative subsemi-ring of Mk(Z), we have PQ = QP and
PTQT = QT PT . Then

Ka = PTVP = PT(QTYQ)P = (PTQT)Y(QP) = (QT PT)Y(PQ) = QT(PTYP)Q = QTUQ = Kb.

Definition 2. Let P, Q ∈ Ck,t and Y ∈ Sk. Suppose that U = PTYP and V = QTYQ. The
computational congruent transformation problem (CCTP) is to find a matrix K ∈ Mk(Z) satisfying
K = PTQTYQP, given U, V and Y.

Proposition 1. CCTP ≤p CTP.

Theorem 1. Finding the shared secret key from the public information of Protocol 1 is equivalent to
solving CCTP.
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The conclusions of Proposition 1 and Theorem 1 are obvious, so we omit the proofs of
them. In Appendix A, we provide a toy example of Protocol 1.

3.2. Public-Key Encryption Cryptosystem Based on Congruent Transformation Problem

Cryptosystem 1.

(1) Key generation.

Let Y ∈ Sk. k, t and Y are public. Suppose that P ∈ Ck,t and U = PTYP. User’s public
key is U. User’s private key is P.

(2) Encryption.

Alice wants to send a message M ∈ Mk(Z) to the user.

(i) Alice chooses randomly Q ∈ Ck,t and computes V = QTYQ.
(ii) Alice computes W = M + QTUQ, where “+” is the addition of the standard

integer matrix.
(iii) Alice sends the ciphertext (V, W) to the user.

(3) Decryption.

After receiving the ciphertext (V, W), the user attempts to decrypt it.

(i) Using the secret key P, the user computes T = PTVP.
(ii) The user computes W − T, where “−” is the subtraction of the standard

integer matrix.

Note that
W − T = M + QTUQ− PTVP

= M + QT(PTYP)Q− PT(QTYQ)P
= M + QT PTYPQ− PTQTYQP
= M + PTQTYQP− PTQTYQP
= M.

So the user gets the plaintext M.

Definition 3. Let P, Q ∈ Ck,t and Y, E ∈ Sk. Suppose that U = PTYP and V = QTYQ. The
decisional congruent transformation problem (DCTP) is to decide whether E = PTQTYQP, given
the matrices U, V, E and Y.

Proposition 2. DCTP ≤p CCTP.

Proposition 2 is obvious, so we omit its proof.

Theorem 2. DCTP is computationally equivalent to the problem of deciding the validity of the
ciphertexts of Cryptosystem 1.

Proof of Theorem 2. Suppose that there is an algorithm A1 that can decide whether the
decryption of Cryptosystem 1 is correct.

A1(Y, U, (V, W), M) =

{
1, if M is the decryption of (V, W);
0, otherwise.

Then, we use A1 to solve the decisional congruent transformation problem. Suppose
we are given Y, U(= PTYP), V(= QTYQ), E and we want to determine if E = PTQTYQP or
not. Take U as the public key and V as the first part of the ciphertext. Moreover, take
W = E as the second part of the ciphertext and M = 0k which is zero matrix in Mk(Z).
Input all of these into A1. (Note that P is the secret key.) We have
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A1(Y, U, (V, E), 0k) =

{
1, if 0k is the decryption of (V, E);
0, otherwise.

0k is the decryption of (V, E) if and only if E− PTQTYQP = 0k. So A1 outputs 1 exactly
when E = PTQTYQP. The decisional congruent transformation problem is resolved
in this way.

Conversely, suppose that there is an algorithm A2 that can solve the decisional con-
gruent transformation problem. That is,

A2(Y, U, V, E) =
{

1, if E = PTQTYQP;
0, otherwise,

where U = PTYP, V = QTYQ. Then we use A2 to decide whether M is the decryption of
the ciphertext (V, W). After inputting Y, U, V, W −M, we have

A2(Y, U, V, W −M) =

{
1, if W −M = PTQTYQP;
0, otherwise,

where U = PTYP, V = QTYQ and Y, U is the public key. Since W −M = PTQTYQP if
and only if M = W − PTQTYQP, A2 outputs 1 if and only if M is the correct plaintext. �

Theorem 3. CCTP is computationally equivalent to the problem of decrypting the ciphertexts
of Cryptosystem 1.

Proof of Theorem 3. Suppose that there is an algorithmA3 that can decrypt the ciphertexts
of Cryptosystem 1. Input U = PTYP and V = QTYQ. Take any matrix in Mk(Z) as
W. Then, A3 outputs M = W − PTVP = W − PTQTYQP. Therefore, W −M yields the
solution PTQTYQP to the computational congruent transformation problem.

Conversely, suppose that there is an algorithmA4 that can solve the computational con-
gruent transformation problem. If the ciphertext is (V, W), then we input U = PTYP and
V = QTYQ. Then, A4 outputs PTQTYQP. Since

M = W − PTVP = W − PTQTYQP

we get the plaintext M. �

4. Security Analysis and Parameter Selection

According to Theorems 1–3, Protocol 1 and Cryptosystem 1 can be attacked using a
successful algorithm for resolving the congruent transformation problem.

Proposition 3. CTP can be reduced to the problem of solving tropical system of nonlinear equations
in polynomial time.

Proof of Proposition 3. Let Y ∈ Sk and P ∈ Ck,t. Suppose X = PTYP. Now, we want to
find a matrix P ∈ Ck,t such that X = PTYP, given the matrices X and Y.

Let P = [x0, x1, · · · , xk−1]t. Then

[x0, x1, · · · , xk−1]
T
t ·Y · [x0, x1, · · · , xk−1]t = X.

Since X and Y are known, we get a tropical system of nonlinear equations about
x0, x1, · · · , xk−1 with k unknowns and k(k + 1)/2 equations. Note that N is also symmetric.
�
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As is well known, it is typically NP-hard to solve tropical systems of nonlinear
equations [12]. We provide an exponentially complex problem-solving approach for
congruent transformations.

Proposition 4. There is an algorithm of solving CTP with computational complexity O(k3k!).

Proof of Proposition 4. Through Proposition 3, we can get a tropical system of nonlinear
equations about x0, x1, · · · , xk−1 with k unknowns and k(k + 1)/2 equations. Every term
of the equations is in the form of xixj (i, j = 0, 1, · · · , k− 1). Denote

z1 = x2
0, z2 = x0x1, · · · , zk(k+1)/2 = x2

k−1

Subsequently, a tropical system of linear equations is obtained with k(k + 1)/2 un-
knowns zi and k(k+ 1)/2 equations. We can obtain a tropical system of nonlinear equations
by solving the tropical system of linear equations of zi as follows,

x2
0 = z1, x0x1 = z2, · · · , x2

k−1 = zk(k+1)/2.

Since the multiplication in tropical algebra is the ordinary addition, it is actually
a system of linear equations over an integer ring. However, we have k unknowns and
k(k + 1)/2 equations. The linear equation system typically has no solution. However,
if k equations of these k(k + 1)/2 equations have a solution, it may be possible to find
x0, x1, · · · , xk−1 such that

[x0, x1, · · · , xk−1]
T
t ·Y · [x0, x1, · · · , xk−1]t = X.

The complexity of solving a tropical system of linear equations with k(k + 1)/2 un-
knowns zi and k(k + 1)/2 equations is O((k(k + 1)/2)2). Since there are k equations with
xi(i = 0, 1, 2, · · · , k− 1) in the system

x2
0 = z0, x0x1 = z1, · · · , x2

k−1 = zk(k+1)/2.

There are more than k! options available when choosing k equations from k(k + 1)/2
equations. When there are k equations and k unknowns, the complexity of solving integer
linear equations is O(k3). As a result, O(k3k!) is the computational complexity of the
aforementioned algorithm. �

In Appendix B, an example of CTP with small parameters is demonstrated.
The commutative subsemiring in our cryptosystems is that of t-circular matrices. This

is different from [12,14]. They used a known matrix M and then adopted the commutative
subsemi-ring Z [M] = {p(M)|p(x) ∈ Z [x]}. Kotov and Ushakov [13] created an effective
technique (KU Attack Algorithm) to attack the key exchange protocol in [12] because the
secret matrix may be represented as a polynomial of M. Let

T1 =
d

∑
i=0

xiPi
1, T2 =

d

∑
i=0

yiPi
2

where xi, yj ∈ Z , and d is the upper bound for the degrees of polynomials. T1YT2 = X

gives
d
∑

i=0
xiyjPi

1YPj
2 = X. This gives

min(xi + yj + Aij
rs) = 0, for all 1 ≤ r, s ≤ k

where Aij = Pi
1YPj

2 − X. Algorithm 1 is a precise description of a KU attack.
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Algorithm 1: (KU Attack)

Input: P1, P2, X(= p1(P1)Yp2(P2)).

Output: x1, · · · , xd, y1, · · · , yd, such that T1YT2 = X,where T1 =
d
∑

i=0
xiPi

1, T2 =
d
∑

i=0
yiPi

2.

(1) Compute mij = min
i,j

(Aij
rs) and Bij =

{
(r, s)

∣∣∣Aij
rs = mij

}
;

(2) Among minimal covers of {1, 2, 3, · · · , k} × {1, 2, 3, · · · , k} by Bij, which are all minimal
subsets D ⊆ {0, 1, 2, · · · , d} × {0, 1, 2, · · · , d} such that
∪

(i,j)∈C
Bij = {1, 2, 3, · · · , k} × {1, 2, 3, · · · , k}

find the cover satisfying the following conditions{
−mij = xi + yj, if (i, j) ∈ D;
−mij > xi + yj, if (i, j) ∈ D.

Our cryptosystems can withstand KU attack because the employed commutative
subsemi-rings of circular matrices cannot be represented by a known matrix.

The initial approach was enhanced by Grigoreiv and Shpilrain [14], who also suggested
public key cryptosystems based on the semidirect product of tropical matrices. However,
the addition of the tropical matrix is included in the first part of the semidirect product
multiplication. As a result, the powers of semidirect product multiplication have partial
order preservation. By this characteristic, Rudy and Monico [15] created a straightforward
binary search algorithm (RM Attack), which they used to break the cryptosystem of [14].
The RM attack is described in pseudocode in Algorithm 2.

Algorithm 2: (RM Attack)

Input: M, H, A ∈ Mk(Z), where (M, H)n = (A, Hn), for an integer n (1 ≤ n ≤ r).
Output: n.
(1) Let p = 1 and q = r;
(2) Run the subsequent loop when p ≤ q.
(i) m = p + (q− p)/2
(ii) Compute (M, H)m = (S, T).
If S < A, q = m− 1;
If S > A, p = m + 1;
If S = A, output n = m.

In our cryptosystems, there is no tropical matrix addition operation and the partial
order cannot be used. Thus, our cryptosystems can resist RM attack.

Isaac and Kahrobaei [16] proposed another cryptanalysis of the cryptosystems in [13].
They use the public matrices to derive a user’s private key by finding the almost lin-
ear period of tropical matrix. Let {Hn|n ∈ Z+} is a sequence of matrices. If there exist
positive integers p, d and a constant c such that for all n > d indices i, j the equation
Hn+p

ij = c + Hn
ij holds, then d is called the defect of the sequence of matrices and p is

called the almost linear period of the sequence of matrices. The IK attack is described in
pseudocode in Algorithm 3.

Algorithm 3: (IK Attack)

Input: M, H, A ∈ Mk(Z), where (M, H)n = (A, Hn), for an integer n (1 ≤ n ≤ r).
Output: n.
(1) Construct a sequence of matrices

{
Mn
∣∣n ∈ Z+

}
, where M1 = M, Mn = Mn−1 ◦ H ⊕M;

(2) Find the defect d and almost linear period p of
{

Mn
∣∣n ∈ Z+

}
by the sequence of matrices{

Dn
∣∣n ∈ Z+

}
, where Dn = Mn −Mn−1;

(3) Enumerate r from 1 to p-1 such that A−Md+1 −
r
∑

i=1
Dd+i is x times

d+p
∑

i=d+1
Di;

(4) Output n = d + xp + r.

In our cryptosystems, there is not any power of matrix. This class of attack does not
work for our cryptosystems.
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We evaluate the security of our proposed cryptosystem [12,14], and other pertinent
cryptosystems. Table 1 presents the comparing findings.

Table 1. Comparison of several tropical cryptosystems.

Cryptosystems Problems KU Attack IK Attack RM Attack

Grigoriev et al. [12] Two-side abelian action problem ×
√ √

Grigoriev et al. [14] Semidirect product problem
√

× ×
Our cryptosystem Congruent transformation problem

√ √ √
√

means that the cryptosystem can withstand the corresponding attack, and ×means it does not.

Note that the length of public key and private key of our cryptosystem is half that
described in [12,14] by using symmetric matrices and congruent transformation. Let secret
key P = [a0, a1, · · · , an−1]t. It is clear that (a0, a1, · · · , an−1) can be taken as the secret key. If
ai ∈ [0, 2s), then the length of a secret key is less than n log s bits. Public key U = PTYP is a
symmetric matrix. We can take the upper triangular part of U as the public key. The length
of a public key is less than k(k + 1) log(3s)/2 bits.

Let t ∈ (0, 210) and the entries of matrices are the integer in [0, 220). The highest limits
of the size of the secret key and public key for various values are shown in Table 2. The
experimental results show that the time of the operation PTYP is about 1ms (Experimental
platform: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz). We suggest k ≥ 50 to avoid poten-
tial heuristic attacks similar to KU attacks. The larger k can ensure that the cryptosystem is
more secure. However, in a resource-constrained environment, the public key and private
key should not be too large. Therefore, the size of k depends on the occasion of use.

Table 2. Performance evaluation under various k.

k Length of sk (kB) Length of pk (kB) Complexity of Solving CTP

20 0.049 1.538 O(274)
30 0.073 3.406 O(2122)
40 0.098 6.006 O(2175)
50 0.122 9.338 O(2231)
60 0.146 13.403 O(2290)
70 0.171 18.201 O(2351)
80 0.195 23.730 O(2414)

sk denotes secrete key, and pk denotes public key.

5. Conclusions and Further Research

This article suggests brand-new public-key cryptosystems based on tropical congruent
transformation of a symmetric matrix by a circular matrix. The NP-hard problem of solving
tropical systems of nonlinear equations underlies the security of cryptosystems. Since a
known matrix cannot express the used commutative subsemi-rings of circular matrices and
there is no tropical matrix addition operation and power of matrix, the cryptosystems can
withstand known attacks, including the KU attack, RM attack, and IK attack.

If we regard PTYP as YP, then CTP corresponds to discrete logarithm problem, CCTP
correlates to CDH problem, and DCTP correlates to DDH problem. Theoretically, any
public key cryptosystem based on CDH problem (or DDH problem) can be transformed
into the scheme based on CCTP (or DCTP) of tropical matrix semi-ring. We can construct
identity authentication and digital signature methods based on CCTP or DCTP.

Funding: This work is supported by the Science and Technology Foundation of Guizhou Province
(QIANKEHEJICHU-ZK [2021] Ordinary313) and the National Natural Science Foundation of China
(No. 61462016).

Data Availability Statement: Not applicable.

Conflicts of Interest: The author states there are no competing interests.
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Appendix A. A Toy Example of Protocol 1

Let k = 5, t = 28. The entries of matrices are in [0, 210). The public symmetric matrix
Y is as follows,

Y =


455 554 271 892 794
554 676 463 340 580
271 463 250 784 365
892 340 784 310 407
794 580 365 407 883

.

(1) Alice selects randomly a t-circular matrix P as follow.

P = [87, 90, 780, 219, 128]28

Alice computes U = PTYP. She sends the matrix U to Bob.

U =


629 448 445 514 586
448 430 427 496 479
445 427 424 487 476
514 496 487 484 545
586 479 476 545 622

,

(2) Bob selects randomly a t-circular matrix Q as follow.

Q = [702, 452, 796, 363, 823]28

Bob computes V = QTYQ. He sends the matrix V to Alice.

V =


1036 1133 1125 1094 1306
1133 1154 1114 1269 1093
1125 1114 1214 1183 1053
1094 1269 1183 1423 1208
1306 1093 1053 1208 1032

,

(3) Alice computes K = PTVP. Bob computes K = QTUQ.

K =


1210 1271 1268 1250 1241
1271 1291 1288 1233 1230
1268 1288 1357 1230 1227
1250 1233 1230 1212 1209
1241 1230 1227 1209 1206

.

Appendix B. An Example of CTP with Small Parameters

Let k = 3, t = 10. The entries of matrices are in [0, 100]. The public matrix Y is
as follow.

Y =

17 0 35
0 60 48

35 48 31

.

Alice selects randomly a t-circular matrices P = [38, 2, 18]10. Alice computes U = PTYP.
She sends U to Bob.

U =

40 30 14
30 35 49
14 49 40

.

Given k, t, Y and U, Bob tries to find Alice’s secret matrix P.
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Let P = [x0, x1, x2]10.Then

[x0 x1 x2]
T
10

17 0 35
0 60 48

35 48 31

[x0 x1 x2]10 =

40 30 14
30 35 49
14 49 40

 (]).

From it, he can get a multivariate quadratic equation system over a tropical semi-ring
as follows, 

17x2
0 ⊕ 0x0x1 ⊕ 35x0x2 ⊕ 60x2

1 ⊕ 48x1x2 ⊕ 31x2
2 = 40

0x2
0 ⊕ 35x0x1 ⊕ 27x0x2 ⊕ 48x2

1 ⊕ 10x1x2 ⊕ 45x2
2 = 30

35x2
0 ⊕ 27x0x1 ⊕ 10x0x2 ⊕ 10x2

1 ⊕ 45x1x2 ⊕ 58x2
2 = 14

60x2
0 ⊕ 48x0x1 ⊕ 10x0x2 ⊕ 31x2

1 ⊕ 45x1x2 ⊕ 37x2
2 = 35

48x2
0 ⊕ 10x0x1 ⊕ 45x0x2 ⊕ 45x2

1 ⊕ 37x1x2 ⊕ 20x2
2 = 49

31x2
0 ⊕ 45x0x1 ⊕ 58x0x2 ⊕ 37x2

1 ⊕ 20x1x2 ⊕ 80x2
2 = 40

.

where axixj means a⊗ xi ⊗ xj. By solving the tropical linear equations, the attacker can
obtain a solution, 

x0 ⊗ x0 = 30 (A1)
x0 ⊗ x1 = 40 (A2)
x0 ⊗ x2 = 25 (A3)
x1 ⊗ x1 = 4 (A4)
x1 ⊗ x2 = 20 (A5)
x2 ⊗ x2 = 29 (A6)

.

Obviously, the number of possible situations that has a solution is greater than 3!. It is
easy to verify that only the Equations (A2), (A4) and (A5) have a solution satisfying (]).
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