
Citation: Al-Daraiseh, A.A.;

Al-Muhammed, M.J. Strong and

Efficient Cipher with Dynamic

Symbol Substitution and Dynamic

Noise Insertion. Symmetry 2022, 14,

2372. https://doi.org/10.3390/

sym14112372

Academic Editors: Debiao He and

Christos Volos

Received: 21 August 2022

Accepted: 9 October 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Strong and Efficient Cipher with Dynamic Symbol Substitution
and Dynamic Noise Insertion
Ahmad A. Al-Daraiseh and Muhammed J. Al-Muhammed *

Faculty of Information Technology, American University of Madaba, Madaba 11821, Jordan
* Correspondence: m.almuhammed@aum.edu.jo

Abstract: As our dependency on the digital world increases, our private information becomes widely
visible and an easy target. The digital world is never safe and is full of adversaries who are eager
to invade our privacy and learn our secrets. Leveraging the great advantages of the digital world
must necessarily be accompanied by effective techniques for securing our information. Although
many techniques are available, the need for more effective ones is, and will remain, essential. This
paper proposes a new, robust and efficient encryption technique. Our technique has an innovative
computational model that makes it unique and extremely effective. This computational model offers
(1) a fuzzy substitution method augmented with distortion operations that introduce deep changes to
their input and (2) a key manipulation method, which produces key echoes whose relationships to
the original encryption key are highly broken. These operations work synergistically to provide the
highest degree of diffusion and confusion. Experiments on our proof-of-concept prototype showed
that the output (cipheredtexts) of our technique passed standard security tests and is therefore highly
immune against different attacks.

Keywords: encryption method; mobile-point substitution method; key echo generation; key expansion

1. Introduction

Although the digital world opens great opportunities to store and exchange informa-
tion, it is creating real and dangerously growing challenges. In particular, threats against
privacy have become critical issues that undermine our trust in the digital world. These
threats stem from two perspectives. First, unless sufficiently protected, our information
is highly exposed to an unfriendly environment, where adversaries are ready to exploit
every opportunity to learn this valuable information. Second, as our tools for securing
information reasonably advance, so do the privacy-violating tools.

Encryption is undoubtedly a key element of comprehensive information-centric se-
curity since it maximizes information protection regardless of whether the information
is on a device or in a transit and provides an effective way to ward off privacy intruders.
Researchers have proposed many encryption techniques. The conventional encryption
techniques [1–11] offer the most widely used models whose effectiveness is built on the en-
cryption key and the masking operations. These methods can be classified according to the
way they process their input (stream or block ciphers) and according to the number of keys
used (symmetric or asymmetric). The DNA techniques [12–20] offer an encryption model
that makes use of the genetic properties of the DNA sequences. The general idea behind all
these methods is to conceal the plaintext within complex DNA sequences. More specifically,
a DNA-encoded message is first camouflaged within the enormous complexity of human
genomic DNA and then further concealed by confining this message to a microdot [21].
Honey encryption techniques [22–25] provide an intriguing model for data encryption.
This model purports to ensure resilience against a class of attacks called brute-force. The
main idea is that for every incorrect key, the decryption process yields a plausible, but fake
document. Researchers finally proposed hybrid approaches [26–29]. In hybrid approaches,

Symmetry 2022, 14, 2372. https://doi.org/10.3390/sym14112372 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112372
https://doi.org/10.3390/sym14112372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1845-4364
https://doi.org/10.3390/sym14112372
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112372?type=check_update&version=1


Symmetry 2022, 14, 2372 2 of 24

two or more encryption algorithms are orchestrated and executed in a certain order. To
maximize the strength of the hybrid algorithm, some of the parameters of the involved
encryption methods may be tuned.

We do, however, understand that privacy intruders are working diligently to improve
their hacking techniques. This incredible enhancement of hacking techniques makes
the digital world the most privacy-threatening place on one hand and imposes critical
challenges to the encryption techniques on the other hand. Honey encryption techniques
have their own weaknesses and attacks against them are reported in [30]. Attacking
techniques against the other methods do exist [31–35]. Constantly looking for highly
effective techniques seems to be justifiable and supports our efforts to contend advanced
threats and beat the ever-advancing cryptanalysis techniques.

This paper proposes a fully-fledged encryption technique. This technique combines a
deep masking process with smart/fuzzy key manipulation operations along with a secure
random generator to provide the maximum information protection. The deep masking
process conceals the plaintext in enormously complex computations resulted from the
fuzzy substitution and intelligent noise insertion operations. The output of the technique is
further camouflaged within enormously complicated codes generated from the encryption
key using a fuzzy operation.

The paper offers the following contributions. First, it proposes a deep masking process
whose functionality combines both fuzzy substitutions and intelligent noise insertions.
Second, it proposes an effective way to double (expand) the key. Third, it proposes an
innovative method for generating key echoes, and finally it utilizes all three techniques
above to provide a robust and efficient cipher.

2. Chaotic Random Number Generator

The proposed cipher uses three-dimensional Brownian motion [36]. The effectiveness
of Brownian motion as a source of confusion is reported in many articles [37,38]. This
motion can be simulated by the following equations.

xk+1 = xk +
(

Random(0, 1)− 1
2

)
× dt

yk+1 = yk +
(

Random(0, 1)− 1
2

)
× dt

zk+1 = zk +
(

Random(0, 1)− 1
2

)
× dt

(1)

where Random (0, 1) returns a random value within the interval (0, 1) and 0 < dt < 1. It is
clear that the principal parameters that influence the computed values of x, y, and z using
the equations above are the seed of the random generator and dt. To effectively link the 3D
Brownian motion to our system, it is imperative to base the initialization of both the seed
and dt on the encryption key. Suppose the key has n symbols c1c2 . . . cn. The following
Equations (2) and (3) use the key to compute values for these two parameters.

dt = Fraction [
n

∑
i=1

c′i × Loge([2p]n−i)] (2)

Seed = Floor ([∑n
i=1 c′i × Loge([2p]n−i)]× 10m) (3)

where c′i (i = 1 . . . n) are the deeply transformed values that correspond to the original key
symbol ci, Loge is the logarithm function with base e, p is the maximum number of bits that
represent the used symbols (typically, p = 8 because we use the symbols from 0 to 255), and
m is the number of decimal digits that constitute the seed. The operator Fraction (x) returns
the fraction part of the number x and Floor (x) returns the largest integer less than x. It is
important to mention that we calculated three different pairs for the three dimensions x, y,
and z.

The paper proposes the routine Algorithm 1 for computing key-dependent values for
the two parameters using the Equations (2) and (3) and Transform (.) subroutine (Figure 1).



Symmetry 2022, 14, 2372 3 of 24

The subroutine Transform (Figure 1) plays a vital role in deeply manipulating the key (n
symbols) and producing a new sequence with n symbols but with a higher entropy. It uses
a random behavior (subroutine Randomize ()) and an XOR operation to produce values pc’s
that result from XORing the input key symbol c′ with p bits extracted from the rightmost
of L using the division remainder operator (Mod). Observe, the variable L accumulates
the effect of all the previously processed symbols due to the way it is updated. This
effectively enables the previous symbols to influence the transformation of the symbol
being processed. Additionally, thanks to the randomization of L, the influence of the
previously processed symbols induces high confusion, making the transformation produce
very different sequences.

Algorithm 1 Computing values for Seed and dt

Key: C1C2 . . . Cn
Key’ = (C′1 C′2 . . . C′n) = Transform (Key)
Compute dt using Equation (2)
C′1 C′2 . . . C′n = Transform (Key’)
Compute Seed using Equation (3)

Figure 1. The transformation subroutine (arrows just indicators of call direction).

After initializing the parameters, the chaotic random numbers (xr, yr, zr) are gen-
erated using the following algorithmic steps. As a convention throughout the paper,
we call the sequence of random numbers xr’s the X-channel. Likewise, we call the
sequences of random numbers yr’s and zr’s the Y-channel and Z-channel, respectively.

Generating chaotic numbers (xr, yr, zr)

Repeat

Execute the Equation (1)

xr = Mod (floor (xk+1 × 1014), 2p)

yr = Mod (floor (yk+1 × 1014), 2p)

zr = Mod (floor (zk+1 × 1014), 2p)

End



Symmetry 2022, 14, 2372 4 of 24

3. The Deep Masking Round

Secure ciphering requires effective transformation of the symbols from their plaintext
space to an entirely different space in which the relation between the plaintext symbols and
the resulting symbols is untraceable. The deep masking round consists of two effective
methods (the substitution method and the distortion method) that deeply mask the blocks
of plaintext. Each method uses different techniques to make sharp changes to its input
block. Their collective impact on the input results in an output block whose relation to the
input block is highly complicated. This section therefore first discusses these two methods
(Sections 3.1 and 3.2) and then discusses how these two methods work synergistically to
perform deep masking for its input blocks (Section 3.3).

3.1. The Substitution Method

The substitution uses a dynamic method to replace the plaintext symbols bi with new
ones ci. It adopts a fuzzy and data-dependent computational model whose functional
behavior depends not only on the symbols to be substituted, but also on move operations
that fuzzify the substitution operation by executing different move patterns within the
substitution space. This section explains the main constituents of the substitution method:
the substitution space, the move operations, and then concludes the section by offering a
specific way for selecting a particular move operation.

3.1.1. The Substitution Space

The substitution space (M-TAB) is a 2p/2 × 2p/2 array that contains all possible per-
mutations of p bits. The entries are initially organized in M-TAB as specified by AES
encryption technique. The substitution technique uses M-TAB for mapping symbols to new
ones. Specifically, the substitution method maps a symbol bi by splitting its bits into two
halves, where the left half indexes a row, and the right half indexes a column. The indexed
cell is the mapping outcome. For instance, to map the symbol “i” (“01101001”), the left four
bits (“0110”) index row 6 and the right four bits (“1001”) index column 9. The value at the
cell (6, 9) is, therefore, the outcome of mapping the symbol “i”.

3.1.2. The Move Operations

The move operations add a high degree of fuzziness to the substitution. Table 1
shows the move operations along with descriptions of their functionality. The operations
execute either unidirectional or bidirectional moves. Left (g) and Right (g) are examples of
unidirectional move operations. The former moves g steps to the left of a specific cell (r,
c), while the latter moves g steps to the right of the cell (r, c). For instance, the operation
LU (5, 12) performs moves in two different directions: move 5 cells to the left then 12 cells
up. LU (i, g) (i, g =1 . . . 2p/2) is an example of a bidirectional operation since it executes a
move with two different directions: it first moves i positions to the left of a cell (r, c) and
then moves g positions up. It is worth mentioning that we use (i + r) mod 2p/2 instead of
simply adding i to r, to stay in the grid. Similarly, we use c and g.

Table 1. The move operations.

Operation Functionality Operation Functionality

Left (g) Move g positions from the
current position tothe left Right (g) Move g positions from the

current position to the right.

Top (g) Move g positions from the
current position tothe top Down (g ) Move g positions from the

current position to the down

LU (i, g) Move first left i steps, then
move up g steps LD (i, g) Move first left i steps, then

move down g steps.

RU (i, g) Move first right i steps, then
move up g steps RD (i, g) Move right left i steps, then

move down g steps



Symmetry 2022, 14, 2372 5 of 24

Each move operation has an inverse operation. Table 2 shows the move operations
and their respective inverse operations. For instance, if Left (g) performs a move within
M–TAB from the position (r, c) to (r′, c′), Right (g) performs a move back from (r′, c′) to the
original position (r, c). In addition, if we move from position (r, c) to the new position (r′, c′)
using the operation LU (i, g), we can move back from the new position (r′, c′) to the original
position by executing the inverse operation RD (i, g).

Table 2. The move operations and their inverse.

Operation Its Inverse Operation Its Inverse

Left (g) Right (g) LU (i, g) RD (i, g)

Up (g) Down (g) LD (i, g) RU (i, g)

Right (g) Left (g) RU (i, g) LD (i, g)

Down (g) Up (g) RD (i, g) LU (i, g)

3.1.3. Move Operation Selection

The way in which the move operations are selected is extremely important. Chaotic
but key-based selection enables the substitution method to execute haphazard patterns of
moves within the substitution space. These move-patterns, though haphazard, are repro-
ducible due to their dependency on the key. Such a functional behavior induces substantial
confusion in the substitution process and yields a large shift from the plaintext space.

The paper proposes a selection method that uses key-driven chaotic numbers (from X,
Y and Z-channels) to chaotically choose a move operation. Figure 2 outlines the selection
process. The selection method makes use of three lists (OP, i, g), each with 2p entries. The
list OP is populated with even replications of the move operations (Table 1). The lists i and
g provide values for the arguments of the move operations and are populated with the
integers in the range [0 . . . 2p/2]. The entries of each list are randomly reordered using a
sequence of random numbers obtained from the chaotic system.

Figure 2. The move operation selection method.

The chaotic selection receives the chaotic input value ck (obtained from X, Y, or Z-
channel in a round robin fashion) and this input ck is consumed by two actions that both
stimulate the chaotic behavior in the selection method. The first action left shifts the entries
of the three lists (OP, i, g) before indexing them. The action maintains for this purpose a



Symmetry 2022, 14, 2372 6 of 24

16-bit state variable W, which is initialized with a chaotic value from the chaotic system
and is updated using the formula: W = W ⊕ (ck << (i × p)), where i is the rightmost bit of
ck and p is the maximum number of bits that represent a symbol. The 16 bits (bi’s) of the
state variable W are split to three values h1, h2, and h3 and these values are used to left-shift
the three lists as shown in Figure 2. The second action uses the chaotic input symbol ck
to index the same entry of the three lists (OP, i, g) to retrieve a move operation from OP
and two values for the arguments of the selected method from the lists i and g. If the move
operation is unidirectional, the extra value from the list i is discarded.

3.2. Symbol-Distortion Method

This method manipulates the output symbols of the substitution method. The method
defines several distortion operations and proposes a specific way of selecting any of them.
The distortion method processes its input symbols using either individual operations or
composite operations, where each composite operation consists of two or three all-different
operations that execute sequentially left to right.

3.2.1. Distortion Operations

Table 3 presents three operations that manipulate the individual input symbol. All
these operations perform bitwise processing on the input symbol b. Mutate (b, u) XORes the
input symbol b with a selected pattern u, where u is composed of 0′s and 1′s. Unlike Mutate
(.), Swap (b, u) operation modifies the internal structure of the input symbol but not its bits.
In particular, this operation permutes the bits of b according to some pattern u, where the
symbol b consists of p bits and the pattern u consists of p integers d1d2 . . . dp, where di ∈ [0
. . . p]. The swap operation permutes the bits of b by swapping b[i] with b[di] only if di > 0.
The value di =0 instructs the swap operation to skip to the next digit in the pattern without
permuting. The L-Rotate (b, n) operation rotates the bits of the input symbol n positions to
the left. The number of positions n is an integer less than the number of bits representing
the symbol b. The selection of the patterns and n is explained below.

Table 3. Noise operations.

Operation Functionality

Mutate (b, p)

Flips a number of bits of the input symbol b based on the input p. The pattern
p specifies the positions of the bits to be flipped. For instance, the pattern
“01001010” flips the 2nd, 5th, and 7th bits. The flipping is performed by XOR
operation: b ⊕ p. Note if the symbol b is represented by 8 bits, then we have
256 possible mutation operations

Swap (b, p)
Swaps bits from b based on the pattern p. For instance, if the pattern
“05020000”, repositions the 5th in the second position, the 2nd in the
4th position.

L-Shift (b, n) Left shifts the bits of b by n bits.

There is a distortion operation inverse for each distortion operation. When a symbol
x is processed using Mutate (x, e), it can be restored by executing this function with the
same pattern e. When a symbol x is processed using Swap (x, z) to yield the symbol y, the
symbol x can be restored using the inverse operation Swap−1 (y, z). The functionality of
Swap−1 (y, z) is slightly different from that of Swap (y, z): it parses the swapping pattern
z from right to left and swaps the bits when di > 0 by swapping b[di] with b[i]. When a
symbol x is processed using L-Rotate operation, it can be restored using the R-Rotate (right
shift) operation. Finally, when a symbol x is processed using a composite operation, the
symbol x can be restored by executing the composite inverse operation in the reverse order.
For instance, if x is processed by executing the composite operation Swap ()→Mutate ()→
L-Rotate (), the symbol can be restored by executing the composite operation in the reverse
order R-Rotate ()→Mutate ()→ Swap−1 ().



Symmetry 2022, 14, 2372 7 of 24

To effectively use the distortion operations, we need to define (1) the flipping and
swapping patterns and (2) the way in which the noise operations are selected to process a
specific input. The patterns used for flipping bits are the integers from 0 to 2p − 1 and we
do not discuss them any further. However, the swapping patterns and the noise operation
selection method need further discussion.

3.2.2. Swapping Pattern Generation Process

The distortion operation Swap requires swapping patterns for manipulating the bits
of its input symbols. Effective generation of the swapping patterns must depend on the
encryption key so that different keys produce different swapping patterns. Let us suppose
that each symbol is represented by p bits. A swapping pattern consists of p integers di,
where di ∈ [0 . . . p]. For instance, if each symbol is represented by eight bits, the swapping
pattern consists of eight integers in the range [0 . . . 7]. Figure 3 outlines the three stages
for creating swapping patterns along with their logic. The initialization stage populates
the list SWL with N = 2p integers, each integer is in [0 . . . p]. The population stage receives
two input values: α ∈ (0, 1] is the percentage of the non-zero digits in the list SWL and p
is the number of bits that represent a symbol—we call α the intensity of active swapping.
To give each non-zero digit that same chance to be part of a pattern, we set the number
of non–zeros digits in the list SWL to M = MULTp (α ∗ N), where MULTp(x) returns the
least upper bound of its argument x that is divisible by p. In this case, each non-zero digit
is repeated M/p times in the list SWL. The remaining “2p − M” entries in the list SWL
are zeros. After the list SWL is fully populated, its entries are randomly shuffled using a
sequence of random numbers r1r2 . . . rN. The entries of SWL are randomly shuffled by
swapping the entry at index i with the entry at index ri.

Figure 3. The swapping pattern generation operations.



Symmetry 2022, 14, 2372 8 of 24

To illustrate, suppose that p = 8 and α = 0.65. The total number of non–zero elements
in the list SWL is 0.65 * 256 = 166.5. The operation MULTp (166.5) returns the least upper
bound divisible by 8, which is 168. Therefore, the list SWL is populated with 168 non-zero
digits, where each of the digits 1 . . . 8 is repeated 168/8= 21 times. The remaining entries
(256 – 168 = 88) are populated with zeros.

Once the SWL is fully initialized, the pattern generation operation starts. The input to
this method is a sequence of p symbols b1b2 . . . bp. (The sequence of the symbols b1b2 . . .
bp is obtained from the key in a process (key doubling) that is described in later sections.)
The output is a swapping pattern with p digits, each of which is an integer in [0 . . . p].
The output is a swapping pattern with p digits each of which is an integer in [0 . . . p].
The method uses an effective computational model that uses each symbol bi to obtain two
integers CIndex = bi/L and Offset = bi Mod R, where L = R = 2p/2 and p is the number of bits
that represent the symbol bk. The number CIndex represents how many positions the SWL
is left rotated. After the left rotation is performed, the entry at the index Offset is retrieved
and appended to the intermediate pattern. The operation “Generate swapping patterns”
can repeat with new input until the desired number of patterns is created.

3.2.3. Distortion Operation Selection

After discussing the distortion operations, we propose a specific method, called the
symbol-sensitive sliding technique, of selecting any of them to manipulate the input
symbols. Figure 4 shows the main components of the sliding technique and its logic. It
utilizes a 4 × 2p array, a ring of 2p entries, and a state variable Gi (initialized to 0). Each
of the entries of the first row contains either a single distortion operation 〈Mutation (M),
Swap (S), L-Shift (L)〉 or a composite operation consisting of two or three operations. The
composite operations are: LS, SL, LM, ML, SM, MS, LMS, LSM, MLS, MSL, SLM, and SML.
These operations (single or composite) are replicated evenly in the array. If there are fewer
entries than the number of the distortion operations, these entries are populated with N
(NULL operation that does nothing). The second row contains the swapping patterns Wi
(i = 1 . . . 2p). The third row contains mutation patterns Mi, which are the integers from 0 to
〈2p − 1〉. The fourth row contains the amount of left shifting (Li), which are the integers
Li = i Mod p (i = 1 . . . 2p − 1). These four rows are randomly scattered using a sequence of
random numbers from X to channel. The 2p entries of the ring contain random numbers,
where each entry contains a number from the range [0, 1].

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 26 
 

 

the entries of the first row contains either a single distortion operation ⟨Mutation (M), 

Swap (S), L-Shift (L) ⟩ or a composite operation consisting of two or three operations. The 

composite operations are: LS, SL, LM, ML, SM, MS, LMS, LSM, MLS, MSL, SLM, and 

SML. These operations (single or composite) are replicated evenly in the array. If there 

are fewer entries than the number of the distortion operations, these entries are popu-

lated with N (NULL operation that does nothing). The second row contains the swapping 

patterns Wi (i = 1…2p). The third row contains mutation patterns Mi, which are the inte-

gers from 0 to ⟨2p − 1⟩. The fourth row contains the amount of left shifting (Li), which are 

the integers Li = i Mod p (i = 1…2p − 1). These four rows are randomly scattered using a 

sequence of random numbers from X to channel. The 2p entries of the ring contain ran-

dom numbers, where each entry contains a number from the range [0, 1]. 

 

Figure 4. The noise operation selection method. 

The sliding technique takes a symbol bk as input. It uses its logic to generate a new 

value for the state variable Gi and use this variable to access one of the four-row arrays 

columns. To update Gi, the sliding technique exploits both the value of the input symbol 

bk (bk is a key symbol) and its bit structure. First, Gi is XORed with the current input 

symbol bk. The new value of Gi is additionally updated using the structure of bk’s bits. In 

particular, the sliding technique parses the bits of the input bk one at a time and tunes the 

value of Gi as follows. The pointer Gi moves around the ring clockwise or counterclock-

wise depending on whether the currently parsed bit is respectively “1” or “0”. The 

amount of the move is fully determined by the 1-lookahead bit (the bit immediately after 

the current bit). If the 1-lookahead bit is different from the current bit, the pointer Gi 

moves clockwise or counterclockwise by only one. If the 1-lookahead bit is the same as 

the current bit, Gi moves clockwise or counterclockwise by 1+e. The value e is called the 

sliding value and is computed by multiplying the value γ (from the ring) to which Gi 

currently points and 2p (the total number of the ring’s entries). For instance, if Gi currently 

points to the value 0.0456 and the number of entries in the ring is 256, Gi is moved from its 

current position by “1+0.0456 * 256 = 12” steps clockwise/counterclockwise based on 

whether the current and lookahead bits are 1′s or 0′s. After processing all the bits of bk, the 

pointer Gi indexes one of the columns, where the corresponding distortion operation 

along with the necessary arguments for this operation are accessed. For instance, if the 

corresponding operation is S (swapping), only the swapping pattern is accessed. 

Figure 4. The noise operation selection method.



Symmetry 2022, 14, 2372 9 of 24

The sliding technique takes a symbol bk as input. It uses its logic to generate a new
value for the state variable Gi and use this variable to access one of the four-row arrays
columns. To update Gi, the sliding technique exploits both the value of the input symbol bk
(bk is a key symbol) and its bit structure. First, Gi is XORed with the current input symbol
bk. The new value of Gi is additionally updated using the structure of bk’s bits. In particular,
the sliding technique parses the bits of the input bk one at a time and tunes the value of Gi

as follows. The pointer Gi moves around the ring clockwise or counterclockwise depending
on whether the currently parsed bit is respectively “1” or “0”. The amount of the move
is fully determined by the 1-lookahead bit (the bit immediately after the current bit). If
the 1-lookahead bit is different from the current bit, the pointer Gi moves clockwise or
counterclockwise by only one. If the 1-lookahead bit is the same as the current bit, Gi

moves clockwise or counterclockwise by 1 + e. The value e is called the sliding value and
is computed by multiplying the value γ (from the ring) to which Gi currently points and
2p(the total number of the ring’s entries). For instance, if Gi currently points to the value
0.0456 and the number of entries in the ring is 256, Gi is moved from its current position
by “1 + 0.0456 * 256 = 12” steps clockwise/counterclockwise based on whether the current
and lookahead bits are 1′s or 0′s. After processing all the bits of bk, the pointer Gi indexes
one of the columns, where the corresponding distortion operation along with the necessary
arguments for this operation are accessed. For instance, if the corresponding operation is S
(swapping), only the swapping pattern is accessed.

Prior to processing any new input symbol bk+1, the array’s rows are left shifted using
the value to which the pointer Gi is currently pointing. For instance, if Gi is currently
pointing to value γ (0.λ1λ2 . . . λm) ∈ (0, 1), the rows 1 through 4 are left shifted by λi
(i = 1, 2, 3, 4). Note due to the specific way in which Gi is calculated, changes in any input
symbol will affect all the subsequent values of Gi. Furthermore, due to the left shifting after
processing each input symbol, the indexing outcome changes for every subsequent input
symbol, making the distortion operation selection highly fuzzy.

3.3. The Deep Masking Process

Referring to Figure 5, the deep masking process consists of two operations: the
substitution operation 〈1, 2, 3〉 and the distortion operation 〈4, 5〉. (The numbers at the top
of the boxes represent the execution order.) The substitution operation replaces the symbols
b1b2 . . . bn of plaintext using the actions (1, 2, and 3). The Move Operation Selection uses
the symbol x to choose one of the move operations M -Opl and its arguments as described in
Section 3.1.3. The input plaintext symbol bk designates a location (i, j) within M-TAB, where i
is the left half bits of bk and j is its right half bits. The selected move operation M -Opl is then
executed starting from (i, j) to yield a new location (L1, L2) within the substitution space.
The symbol T is retrieved from the new location (L1, L2) of the substitution space M-TAB
as an intermediate substitute for the input plaintext symbol bk. To increase the fuzziness
of the masking process, the symbol x is also used to obtain a distortion operation D-Opz
along with the required arguments as described in Section 3.2.3. The selected distortion
operation is executed on the symbol T to yield the new symbol T′, which is the deeply
masked substitute for the input symbol bk.

3.4. Deep Masking Inverse Process

The deep masking inverse process reverses the effects of the deep masking process.
That is, this inverse process restores the plaintext symbols from the masked symbols.
Figure 6 shows the operations of the deep masking inverse. The logic of this process is
similar to that of the deep masking process except that the order of the execution is reversed:
distortion operation inverse is executed first then the substitution operation inverse. The
distortion operation inverse receives the masked symbol T′ as an input and removes the
masking effect of the distortion operation (used during the masking). It removes the
impact of the distortion operation by using the input x to retrieve the appropriate distortion
operation inverse and executes this operation on the input symbol T′. The output is a new



Symmetry 2022, 14, 2372 10 of 24

symbol T that is passed to the substitution operation inverse for removing the impact of
the substitution operation as follows. The symbol T is looked up from the M-TAB and its
location within the substitution space (L1, L2) is passed to action 5 for further processing.
Next, the deep masking inverse process uses the symbol x to select a move operation
inverse M-Op−1. The selected move inverse operation slides back from the index (L1, L2)
to the original index (i, j). Finally, the bits i and j are concatenated (ij) to yield the original
symbol bk.

Figure 5. The deep masking process.

Figure 6. Deep masking inverse process.

4. Key Doubling Operation

The Key Doubling operation expands its n-symbol sequence input to a 2n-symbol
sequence. It is intended mainly to extend the key. Figure 7 shows the main four actions of
this operation.



Symmetry 2022, 14, 2372 11 of 24

Figure 7. The Key Doubling operation algorithmic steps.

4.1. Diffusion Action (D-Action)

The diffusion action processes its input in two passes: Forward-pass and Backward-
pass (See Figure 8). Due to its bidirectional processing model, the diffusion action (1) is
highly sensitive to the input changes regardless of their position and magnitude and (2)
makes any change that occurs to a symbol in its input affect all the symbols in the input
sequence. The forward-pass uses M-TAB to substitute the input symbol b1 to yield a new
symbol c1. For the remaining input symbols bi (i > 1), the forward-pass first XORes bi with
the previous output symbol ci−1 and substitutes the outcome of the XOR to produce the
symbol ci.

Figure 8. The algorithmic steps of the diffusion action.



Symmetry 2022, 14, 2372 12 of 24

The backward-pass processes the output of the forward-pass to deepen the mutual-
impact between the symbols. It uses similar logic as the forward-pass except that it
processes the input backward: from the end of the input block. The backward-pass
therefore substitutes cn to yield the output symbol Sn. For the remaining symbols ci (i = n–1,
n–2, . . . , 1), it performs an XOR operation between the current input symbol ci and the
previous output symbol Si+1 and substitutes the outcome of the XOR to yield the output
symbol Si.

The forward-pass drives the impact of the symbol bi forward to influence the subse-
quent symbols bj (j > i). The backward-pass drives the impact of the symbol bk backward
to affect the predecessor symbols bi (i < k). Thanks to the dual-direction processing, the
diffusion action is highly sensitive to symbol-changes and intensifies the mutual-influence
between input symbols.

4.2. Permutation Action (P–Action)

The permutation action adopts a data-dependent functionality to scramble the order
of the symbols of the input sequence. Algorithm 2 delineates the processing steps. In such a
data-dependent functionality, the symbol xi determines the new position for the immediate
successor symbol xi+1 (within the input sequence). As Algorithm 2 shows, the permutation
action moves the symbol x2 to the new position determined by the ascii index of the symbol
x1. When processing the remaining symbols, the data-dependence is intensified even more
by introducing other factors. For i > 1, the new position of the symbol xi+1 depends not only
on its immediate predecessor symbol xi but also on the last point of insertion LIP. When
the ascii index of the symbol xi is greater than the value LIP, the permutation action moves
xi+1 to the new position determined by the formula: xi ⊕ LIP. If otherwise, the permutation
action moves xi+i to the new position determined by the ascii index of x∼ (complement of xi).

Algorithm 2 The algorithmic steps of the permutation action

PERMUTE (xi, xi+1)
If i = 1, the symbol xi+1 is moved to the position k = xi
For all i > 1, PERMUTE (xi, xi+1) moves xi+1 to a new position as follows

a. Compute the position k

If LIP > xi move xi+1 to the position k = xi XOR LIP
Else move xi+1 to the position k = Complement (xi)

b. Update LIP = k

4.3. Mutation/Augmentation Actions

The mutation action utilizes both the diffusion action and the M-TAB substitution to
impose radical changes to the original input sequence x1x2 . . . xn and decays the relation-
ship between the input and the output y1y2 . . . yn. In particular, the diffusion action makes
sharp changes to its input making the output far different from the input. Furthermore,
the M-TAB substitution also has the impact of shifting the input sequence to a different
space (set of symbols) that dissolves the correlation to the original symbol (As reported
in [39], substituting the symbols of an input sequence using the M-TAB deteriorates the
relationship between the sequence input and the output of the substitution). Collectively,
the final output sequence s1s2 . . . sn, which is the outcome of the XOR operation between
the original input sequence and the processed sequence, has no correlation to the original
input. The augmentation action essentially carries out the same steps, except that the
outcome of the substitution ai is appended to the end of the input s1s2 . . . sn.

Using these four actions, the input doubling operation is executed as follows. The
input x1x2 . . . xn is deeply manipulated using the mutation action. The augmentation
action doubles the input to produce a sequence of 2n symbols. Finally, the permutation
action scrambles the block by imposing data-dependent reordering. The right n symbols



Symmetry 2022, 14, 2372 13 of 24

are passed back to produce more 2n-symbol sequences. The left n symbols are used to
support different operations of the encryption/decryption process.

5. Key Echo Generation Method

This method is a three-stage process that uses the encryption key to produce a long
stream of codes for hiding the ciphertext symbols. The method conservatively passes
the key through sophisticated processing operations that dissolve the trace of the key
within the enormously complicated generated codes. Figure 9 shows the logic of the
processing stages.

Figure 9. The key echo generation operation.

The first processing stage consists of the Diffusion Action and the Re-Directives. The
diffusion action uses D-Action (Section 4.1) to maximize the avalanche effect due to the
input changes.

The Re-Directives operation is a multi-stage mapping operation that is composed of m
layers Li (i = 1 . . . m). Each layer is populated with integers from 0 to some specific integer
(2p − 1), where p is the maximum number of bits that represent a symbol. The integers in
each array are independently reordered using a sequence of random numbers ri (i = 1, 2,
. . . , 2p), where the integer at index k is swapped with the integer at the index rk. The input
to the first layer is a symbol si and the output is a symbol xi indexed by the ascii value of
si. The output of each layer Li−1 is first processed by diffusion action and is passed as an
input to the next layer Li.

The second processing stage is the mutation operation. This operation imposes fine-
grained changes to some symbols by flipping their bits according to a mutation value
defined next. The mutation operation adopts a probabilistic model for selecting which of
the symbols passing through must be subjected to the mutation. In such a probabilistic
model, the mutation operation is activated to handle the symbol with a probability of
γ ∈ [0, 1]. We call γ the intensity of mutation, where γ = 0 means no symbol-mutation,
while γ = 1 means all of the symbols are mutated. To effectively implement this probabilistic
model; we define a list with 2p entries. This list is populated with H (≤2p) replications
of mutation operation, where H = Max (2p/4, h) and h is a random value. The remaining
entries “2p − H” are populated with the NULL operation (Idempotent operation). The
content of this list is randomly scattered using a sequence of 2prandom numbers. Given



Symmetry 2022, 14, 2372 14 of 24

this list, the intensity of the mutation is defined by γ = H/2p. Note, due to the random
reordering of the elements in the list, the probability of selecting the mutation operation is
H/2p.

The third processing stage uses the noise operations to change the structure of the
output sequence by reordering its symbols. The noise operations make use of two actions:
Permute (or P-Action) and left shift (L-Shift) action. The Permute action reorders its input
as described in Section 4.2. The L-Shift action left shifts the input sequence symbols to a
number of positions.

The update handler maintains a set of M state variables that are used to perform
specific actions on the re-directive lists, mutation operation, and the noise operations.
Table 4 lists these state variables, their descriptions, and how they are updated. We
associate a state variable VLi with each layer Li of the re-directives. These state variables are
used to perform some reordering to the elements of the corresponding layer. We associate
two state variables VM1 and VM2 to the mutation operation, where the first variable is
used as an activator for the mutation operation and the second is used as a mutation value.
We finally associate two state variables VSL and VLp to the noise operations to support
its functionality.

Table 4. The state variables and their update mechanism.

Processing Stage State Variables Description Update Method

Re-Directives
Operation VL1, VL2, . . . , VLm

Each state variable VLi is
used to update the order of
the corresponding layer Li.

Performing an XOR
operation between
the state variable VLi
and the output of the
layer Li before the
diffusion takes place.

Mutation Operation VM1, VM2

VM1 is used to activate the
mutation operation. VM2 is
used as a mutation value

VM1, VM2 are
up-dated by XORing
them with
respectively the
content of
Lj[l] and Lj+1[l].

Noise Operations VSL, VLP

VSL determines the order in
which the noise operations
are executed. VLP is the
shift amount (used by the
shift operation).

These two variables
are refreshed by
XORing their values
with two random
numbers.

All the state variables are initialized to 0 (zero). The update handler uses the inter-
mediate results of the re-directives operation to continuously tune the values of the state
variables (after processing each input symbol) as follows. The update handler refreshes
the values of the state variables VLi by XORing VLi with the output of the layer Li before
the diffusion has taken place. It refreshes the values of the state variables VM1 and VM2
using the content of the layers Li. Namely, the values of VM1 and VM2 are refreshed by
XORing VM1 and VM2 with the content of Lj[l] and Lj+1[l] respectively. The indexes j and
l are calculated by j = Ik MOD m and l = Ik/m, where m is the number of layers, Ik is the
symbol of the original input corresponding to the symbol that is being processed sk, and
MOD is the division remainder. The state variables VSL and VLp associated with the noise
operations are refreshed by XORing them with two random numbers obtained from the
random generator. The rationale behind this update mechanism is to make the first two
processing stages highly influenced by the input symbols, while the third processing stage
masks the trace of the input symbols but maintains their impact on the output.

After defining the three processing stages of the key echo method, we describe how
the key echo generation works. Suppose a key of n symbols I1I2 . . . In. The symbols are
diffused using the diffusion action, yielding the new sequence s1s2 . . . sn. Each symbol si



Symmetry 2022, 14, 2372 15 of 24

is subjected to successive mappings through the re-directive layers. Each layer maps its
input to a new output symbol. The output symbol is used to update the corresponding
state variable and then is passed to the diffusion action (using D-Action) before mapping it
to the next layer. The output of the re-directives may be further manipulated by applying
the mutation operation. The state variable VM1 is used to access the list (associated with
the mutation operation). If the accessed element is NUL, no mutation is performed on
the current symbol. Otherwise, the mutation operation flips bits of the input symbol by
XORing this symbol with the state variable VM2. Regardless of whether the mutation
operation is invoked or not, the two state variables (VM1 and VM2) must be updated as
described above. The sequence of symbols is eventually passed to the noise operations.
The noise operations apply the two actions: Permutate and L-Shift. The state variable VSL
determines the sequence in which the two operations are executed (Permutate→ L-Shift or
L–Shift→ Permutate). Basically, the order of the execution is “Permutate→ L-Shift” if VSL
MOD 2 = 0; the order is “L-Shift→ Permutate” otherwise. The state variable VLP determines
the shift amount, namely we take the rightmost three bits as the amount of shift.

Before processing any new input sequences, the entries of the layers of the re-directives
must be partially reordered. In particular, the layer Li is first left shifted one position and
the entry of Li[0] is swapped with the entry of Li[VLi]).

6. The Encryption Process

The encryption process uses the operations that we discussed in the previous sections
to cipher blocks of plaintext a1a2 . . . an. Figure 10 delineates the encryption process
components and the control flow between these components. The encryption process has
two fundamental subprocesses: initialization and ciphering (the numbers on the operations
represent the order of the execution. Operations with the same numbers can execute in
parallel). The initialization stage prepares the different inputs that are required by the
ciphering operations. The initialization subprocess feeds the encryption key (n symbols) as
an input to the input doubling operation, which produces 2n symbol sequence (Section 4).
The left half of the 2n sequence (n symbols) becomes an input to the random number
generator and the right n symbols are passed as a new input to the doubling operation
to produce more 2n symbol sequences. The random number generator uses the seed
to generate sequences of random numbers. The random shuffling operation uses these
sequences of random numbers to reorder (1) the contents of the lists (i, g, Op, NOP, and
SWL) that are used to support the functionality of the deep masking method and (2) the
contents of the lists (MUTOP, L1, L2, . . . , Ln) that support the functionality of the key round.
In addition, the Swap Pattern Generation operation uses the input from the input doubling
operation to generate the swapping patterns during the initialization stage.

The ciphering subprocess receives plaintext blocks a1a2 . . . an as input and output-
ciphered-blocks δ1δ2 . . . δn. The ciphering applies first the deep masking operation to the
input block. This operation processes its input by first performing substitution (Section 3.1)
followed by block distortion (Section 3.2). The deep masking operation iterates itself one
time before it passes the intermediate output to the key round operation. The key round
operation receives an input from the input doubling operation and generates the key echo
β1β2 . . . βn. The key echo effect is added to the output of the deep masking operation (α1α2
. . . αn) by XORing each symbol αi with the corresponding key echo symbol βi to yield the
ultimate ciphered-block symbols δi.



Symmetry 2022, 14, 2372 16 of 24

Figure 10. The encryption process.

7. The Decryption Process

The decryption process takes a ciphered block as an input and outputs the original
plaintext block. Like the encryption process, the decryption process consists of two stages.
The initialization stage is identical to that of the encryption process and thus we will not
discuss it further. The decryption stage slightly differs in both the order of the operations
execution and the operations functionality. Figure 11 shows only the part of the decryption
process that needs detailed explanation.



Symmetry 2022, 14, 2372 17 of 24

Figure 11. The Decryption process.

The decryption process executes its operations backwards: the key round first followed
by the block deep distortion. The key round generates a key echo sequence β1β2 . . . βn
and XORes each βi with the input ciphered text symbols δi. The outcome is the sequence
α1α2 . . . αn, which is passed to the inverse deep masking process for further processing.
The inverse deep masking applies first the inverse distortion operations to the input and
then inverse substitution operations. The outcome is the original plaintext input block
a1a2 . . . an.

8. Performance Analysis

The performance analysis consists of three important tasks. First, we study the security
of the proposed technique by applying variety of randomness tests (Section 8.1). Second,
we study the time requirement of the proposed technique (Section 8.2). Third, we discuss
common cryptanalyses attacks (Section 8.3).

8.1. Security Analysis

We analyze the performance of the proposed technique in this section. In our analysis,
we follow the guidelines of the NIST testing framework. To effectively test the performance,
we created the following test cases as specified by NIST framework.

1. Key test case. The objective of this test is to analyze the reaction of the encryption
technique to the key changes. Effective techniques should react to any change in the
key by producing different and random ciphertext. To create this test case, we used
1000 different keys that only differ by one bit and one plaintext (fixing the plaintext
ensures that the only changing factor is the key). All of the keys were 16 bytes, while
the plaintext was 50,000 bytes.



Symmetry 2022, 14, 2372 18 of 24

2. Plaintext test case. This test case was used to study the reaction of the encryption
technique to the plaintext changes. To create this test case, we neutralized the impact
of the key by using only one key and used 1000 different plaintext sets. Similar to the
key test case, all the plaintexts were 50,000 bytes and the fixed key was 16 bytes.

3. Plaintext/ciphertext correlation. The main objective of this test case is to test if there
is any correlation between plaintext and its corresponding ciphertext. To create this
text case, we performed an XOR operation between each plaintext (in the plaintext
test case) and its corresponding ciphertext. The XOR operation was performed at
the symbol level: each symbol of the plaintext was XORed with the corresponding
symbol of the ciphertext.

We ran the three test cases using the same hardware and software (the encryption
technique was implemented in Python 3.11). We then tested the ciphertext resulting from
encrypting each test case using NIST standard randomness tests.

Tables 5–7 show the results. The results are presented in terms of the number of
passed/failed sequences and the success percentage (Pass percentage).

Table 5. Key test case: NIST randomness test results.

Randomness Tests Passed Sequences Failed Pass Percentage Max Fail

Runs test 960 40 96% 105

Monobit test 960 40 96% 105

Spectral test 880 120 88% 105

Serial test 910 90 91% 105

Cumulative sums test 920 80 92% 105

Non-overlapping template
matching 940 60 94% 105

Overlapping template
matching 940 60 94% 105

Linear Complexity 920 80 92% 105

Approximate entropy 920 80 92% 105

Table 6. Plaintext test case: NIST randomness test results.

Randomness Tests Passed Sequences Failed Pass Percentage Max Fail

Runs test 970 30 97% 105

Monobit test 980 20 98% 105

Spectral test 900 100 90% 105

Serial test 930 70 93% 105

Cumulative sums test 890 110 89% 105

Non-overlapping template
matching 960 40 96% 105

Overlapping template
matching 950 50 95% 105

Linear Complexity 980 20 98% 105

Approximate entropy 960 40 96% 105



Symmetry 2022, 14, 2372 19 of 24

Table 7. Plaintext/ciphertext test case: NIST randomness test results.

Randomness tests Passed Sequences Failed Pass Percentage Max Fail

Runs test 980 20 98% 105

Monobit test 990 10 99% 105

Spectral test 880 120 88% 105

Serial test 910 90 91% 105

Cumulative sums test 910 90 91% 105

Non-overlapping template
matching 930 70 93% 105

Overlapping template
matching 920 80 92% 105

Linear Complexity 970 30 97% 105

Approximate entropy 940 60 94% 105

Referring to Tables 5 and 6, one can see that the performance of the technique is stable:
the technique reacts to the changes in the plaintexts and the keys by producing random
ciphertexts with high percentage. In most of the cases, we have a more than 90% pass rate.
Although the spectral test (Table 5) has a pass percentage of 88%, which is lower than other
tests, this percentage is still reasonably high. The results in Table 7 show that the sequences
that resulted from XORing plaintext with its corresponding ciphertext are random with a
high percentage. Note that the pass percentage was higher than 90% (except for Spectral
test). The randomness of these XOR-created sequences indicates that the plaintext has no
significant correlation with its corresponding ciphertext.

We realize that these performance numbers must be based on standard security
measurements for better interpretation. Given that it is impossible to test any encryption
technique for all possible inputs, NIST developed a criterion (Equation (4)) that gives
assurance (with some confidence level) of whether the encryption technique is secure. The
values in equation 8.1 are the number of used sequences (S), and the level of significance
used (α). According to NIST recommendations, the values of α should be less than 10%.

Max Fail = S×
(

α + 3× 2

√
α× (1− α)

S

)
(4)

Equation (4) computes an upper bound of the number of sequences (ciphertexts)
that possibly fail a particular randomness test. If the number of sequences that fail each
randomness test exceeds the upper limit (Max Fail), the security of the encryption technique
becomes questionable. To abide by the NIST recommendation, we computed the maximum
number of sequences that fail a particular test for our data sets (recall that each of our three
data sets consists of 1000 sequences). We used a level of significance of 0.05. The rightmost
column of each of Tables 5–7 show the results. Observe that the number of sequences that
failed a particular randomness test is less than the maximum number of sequences that
possibly fail as predicted by Equation (4). However, there are three incidences in Tables 5–7,
where the number of failed sequences slightly exceeds the maximum. For instance, in
Table 6, the number of sequences that failed the “Cumulative sums test” randomness test is
110, which slightly exceeds the maximum expected number (105).

The performance of the proposed technique is a result of the effectiveness of the
constituent operations. First, although the substitution operation uses AES Sbox, the
substitution operation is significantly different from the substitution technique used in
AES. While the AES substitution operation is static (mapping is fully determined by the
symbol itself), the substitution technique of the proposed technique is dynamic. That is,
the outcome of substituting a symbol depends on the symbol itself and the state of the



Symmetry 2022, 14, 2372 20 of 24

substitution operation, which is controlled by the move operations. Second, the deep
distortion operation has a deep modification impact on its input. It utilizes several actions
that perform deep bit manipulations and uses a data-dependent mechanism to specify both
the applied distortion action and the manipulation pattern. Third, the key echo generation
method uses a novel generation technique that produces a highly complicated key stream.
This key stream significantly contributes to the security of the proposed technique.

8.2. Time Complexity Analysis

In this section, we show the time complexity of the individual operations first and
then the overall complexity of the system:

1. Key Transform: Main steps are

A. Forward pass: is a for loop from 1 to n, each operation in the loop is carried out
in a constant time and hence the loop is O(n × c), where c is a constant. But n
is very small (number of symbols in the key), hence, the loop is executed in a
constant time C.

B. Backward pass: similar to the forward pass.

Therefore, the key transformation is carried out in a constant time.

2. Move Operations

All the move operation are index manipulation operations and hence are carried out
in O(1).

3. Move operation selection

The main operation here is updating the variable W (Xor, Sub, and Shift) then indexing
the different lists Op, i and g. All of them are carried out in constant time O(c).

4. Symbol distortion methods

a. Mutate: is only an Xor carried out in O(1)
b. Swap: is a loop from 1 to 8, each iteration is carried out in a constant time and

hence the whole loop is carried out in a constant time.
c. Shift operation: is a simple shift that is also carried out in a constant time.

5. Swap pattern generation

Is a loop from 1 to n (n usually 8). Each iteration has an And, Mod and Shift operation,
all of which are carried out in a constant time, hence, the whole operation is carried out in
a constant time.

6. Mutate Patterns

Mutate patters are simple random numbers, hence, they need constant time.

7. Symbol distortion methods selection:

The main operations here are a. updating the Gi variable b. selecting the operation
from the specific lists based on Ring[Gi] value. To update Gi we use a loop from 1 to
n − 1 (n is 8). In the loop, each iteration has an if statement and an addition or subtraction
operation; both are carried ou in constant time and, hence, the whole loop is carried out
in constant time. Selecting the operation is simply involves indexing the specific list and,
hence, is carried out in O(1).

8. Deep masking: It has the following steps:

a. Select Move operation: carried out in constant time from the above.
b. Execute Move operation: carried out in constant time from the above.
c. Substitute operation: is an array indexing carried out in O(1).
d. Distortion operation/s selection: carried out in constant time from the above.
e. Execute Distortion operations: carried out in constant time from the above.

All of these operations are carried out in constant time and, hence, the Deep Masking
process is also carried out in a constant time.



Symmetry 2022, 14, 2372 21 of 24

9. Key doubling operation This process has the following steps:

a. Diffusion Action: Has two loops from 1 to n − 1 (n number of symbols in the
key). Each iteration has an Xor operation and a substitution, both of which
require constant time and, hence, the overall operation is carried out in constant
time.

b. Mutation Action: A loop from 1 to n. Each iteration has an Xor, hence it requires
a constant time.

c. Augmentation Action: Similar to the Mutation Action.
d. Permutation Action: A loop from 1 to 2n, where the symbols are reordered. The

process is carried out in constant time since n is very small (8, 16, or 32).

10. Key echo generation

This operation has a main loop from 1 to n (n number of symbols in key). In each
iteration, we update a number of state variables. Updating the variables is carried out
through arithmetic operations, Diffusions and Mutation. All the operations require constant
time as shown above and, hence, the whole process is carried out in constant time.

11. Encryption Process

This process has one main loop from 1 to n (n is the number of bytes in a block of data).
In each iteration, a data symbol (character), is deeply masked, a key echo is generated, and
the deeply masked output is Xored with the key echo. Deep masking requires constant
time as shown above. Key echo also requires a constant time. The Xor operation is also
carried out in a constant time. Hence, all three actions in each iteration require a constant
time c, then the encryption process is carried out in O(c × n) and, hence, in linear time.

8.3. Common Cryptanalysis Attacks

Strong ciphers are designed in a way that makes it extremely hard for a cryptanalyst to
break them. In this section, we discuss how the proposed design is secure against common
cryptanalysis attacks.

8.3.1. Known-Plaintext Analysis (KPA)

By knowing parts of the plaintext and their ciphertext and by using reverse engineer-
ing, the attacker tries to recover the key and use it to decipher the rest of the ciphertext.
This attack may work when one key is used to cipher the whole text. In the proposed
cipher, each individual plaintext symbol is encrypted with a separate key (Key Echo) and,
hence, it is immune to this attack.

8.3.2. Chosen-Plaintext Analysis (CPA)

By choosing random plaintexts and obtaining the corresponding ciphertext, the at-
tacker tries to recover the key. Similar to KPA, knowing one key will not allow the attacker
to decrypt the rest of the ciphertext as other key echoes are used in the encryption process.

8.3.3. Ciphertext-Only Analysis (COA)

The attacker knows only the ciphertext and needs to recover both the key and the
plaintext. This attack is very hard but most probable. Figures 4–6 show that our cipher
produces excellent randomness results, which indicates that the relation between plaintext
and ciphertext symbols is very random. The results indicate that recovering a plaintext
symbol from a ciphertext symbol is extremely hard.

8.3.4. Brute-force Attacks

Trying out all possible key values is referred to as brute-force attack. This attack works
well on short keys but is unfeasible for longer keys (using current computing infrastructure).
In the proposed algorithm, we do not impose a limit on the length of the key. It could be
256, 512 or more bits and hence it is safe here as well.



Symmetry 2022, 14, 2372 22 of 24

8.3.5. Differential Cryptanalysis

This attack is a type of CPA attack, where the attackers monitor a number of plaintext
parts and analyze how they transform into ciphertext, hoping to deduce the key. Since
we use multiple key echoes to encrypt, our cipher can effectively withstand these type
of attacks.

8.3.6. Linear Cryptanalysis

In this attack a number of KPAs is performed on a number of messages that were
encrypted using the same key. The more messages the attacker has the higher the probability
of finding a key. In our approach, we never use the original key to encrypt with. We use
key echoes instead. Knowing a key echo will not reveal the original key due to the fact
that we use chaotic random numbers to produce key echoes, and we use the Transform
function (Figure 1) to seed the chaotic random number generators. The Transform function
produces a random value from the original key. To obtain the original key from a key echo,
the attacker needs to know the sequence of random numbers leading back to the seed and
then from the seed, the attacker needs the inverse of the Transform function to obtain the
original key.

8.3.7. Side Channel Attacks

The attackers here monitor power consumption, radiation emission and/or time of
data processing. This technique may reveal some information leading to the key if the
cipher is not well designed. In the proposed system, although we use plaintext dependent
actions, we made sure that processing is unified. That is, regardless of the symbol we
are processing, time and power consumption are almost identical. All relevant loops are
iterated on all bits of the symbol (8 for example) and all the branches in any loop require a
similar amount of time as they are almost identical. In the dynamic substitution processes,
deciding the substituent requires the same amount of time and power regardless of the
input symbol. In addition to that, accessing the substituent cell is the same regardless
of the input. Additionally, selecting the noise patterns and adding noise to an input
symbol require the same amount of time and power regardless of the input symbol. We
strongly believe that this type of attack will not reveal any useful information to the attacker.
However, what if it did? The attacker may obtain information related to some key echoes
only. Recovering the original key is extremely hard, as we have shown above (Section 8.3.6).

9. Conclusions

We proposed in this paper an encryption technique. The technique has many pow-
erful processing operations that effectively transform its input (plaintext) to a random
uncorrelated ciphertext. In particular, the technique has a substitution technique whose
functionality depends not only on the input symbols but also on the set of distortion
operations that make the substitution nondeterministic. The technique is provided with
masking operations that increase the confusion and the avalanche effect. Importantly,
the functionality of the masking operations and their selection is carried out using a data
dependent mechanism. This means that any change in the input imposes changes to the
resulting ciphertext. The key echo generation process uses effective techniques and an
expansion method that produce powerful key codes for further hiding the ciphertext and
hiding the key identity. These features make the proposed technique highly dynamic and
very sensitive to the changes in the input.

The security tests showed that the technique is powerful and secure. As Tables 5–7
show, the output of the technique is random as a high percentage of the sequences passed
the standard NIST randomness tests. The technique is also time efficient. Our complexity
analysis indicates that the technique has linear complexity with the size of the input, making
it suitable for systems that need high speed.

The proposed algorithm can be utilized in a number of applications. For example, it
is very suitable for any application that runs on a smart device such as smartphone or an



Symmetry 2022, 14, 2372 23 of 24

IOT device with limited hardware. The current version is implemented in Python, which
makes time comparison with other Ciphers unfair.

Due to time constraints, we left a few issues for future work. First, we plan to
implement an optimized version of the proposed cipher using an efficient language such
as C language and compare its performance with state-of-the-art algorithms such as AES.
Second, we intend to review all constants and functions to make sure that they use “nothing
up my sleeve numbers”. Third, we also hope to review the applicability of the impossible
differential attack (used against ciphers with multiple rounds; ours use only one round)
and the algebraic attack (used mainly against stream ciphers).

Author Contributions: Conceptualization, M.J.A.-M.; methodology, M.J.A.-M.; software, A.A.A.-D.;
validation M.J.A.-M. and A.A.A.-D.; formal analysis, M.J.A.-M.; investigation A.A.A.-D.; writing
—original draft preparation, M.J.A.-M.; writing—review and editing, M.J.A.-M. and A.A.A.-D.; visu-
alization, M.J.A.-M.; supervision, M.J.A.-M. and A.A.A.-D.; project administration, M.J.A.-M. and
A.A.A.-D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the American University of Madaba, Jordan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the document.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Muhammed, M.J.; Abuzitar, R. Intelligent Convolutional Mesh-Based Encryption Technique Augmented with Fuzzy Masking

Operations. Int. J. Innov. Comput. Inf. Control. 2020, 16, 257–282.
2. Al-Muhammed, M.J.; Abuzitar, R. κ–Lookback Random–based Text Encryption Technique. J. King Saud Univ. Comput. Inf. Sci.

2019, 31, 92–104. [CrossRef]
3. Hendricks, J.; Burke, B.; Gamage, T. Polysizemic Encryption: Towards a Variable-Length Output Symmetric–Key Cryptosystem.

In Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA,
15–19 July 2019; Volume 2, pp. 688–693.

4. Daemen, J.; Rijmen, V. The Advanced Encryption Standard Process. In The Design of Rijndael, Information Security and Cryptography
(Texts and Monographs); Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–8.

5. Azam, N.A. A Novel Fuzzy Encryption Technique Based on Multiple Right Translated AES Gray S–Boxes and Phase Embedding.
Secur. Commun. Netw. 2017, 2017, 9. [CrossRef]

6. Modi, B.; Gupta, V. A Novel Security Mechanism in Symmetric Cryptography using MRGA. In Progress in Intelligent Computing
Techniques: Theory, Practice, and Applications; Sa, P., Sahoo, M., Murugappan, M., Wu, Y., Majhi, B., Eds.; Springer: Singapore, 2018;
Volume 719, pp. 195–202.

7. Biham, E.; Anderson, R.; Knudsen, L. Serpent: A Proposal for the Advanced Encryption. Available online: https://www.cl.cam.
ac.uk/rja14/serpent.html (accessed on 1 January 2020).

8. Patil, P.; Narayankar, P.; Narayan, D.G.; Meena, S.M. A Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES,
AES, RSA and Blowfish. Procedia Comput. Sci. 2016, 78, 617–624. [CrossRef]

9. Han, S.J. The Improved Data Encryption Standard (DES) Algorithm. In Proceedings of the IEEE 4th International Symposium on
Spread Spectrum Techniques and Applications, Mainz, Germany, 25 September 1996; pp. 1310–1314.

10. Wang, L.; Zhang, Y. A New Personal Information Protection Approach based on RSA Cryptography. In Proceedings of the
2011 IEEE International Symposium on IT in Medicine and Education, Cuangzhou, China, 9–11 December 2011; Volume 1,
pp. 591–593.

11. Rivest, L.R.; Robshaw, M.J.B.; Sidney, R.; Yin, Y.L. The RC6 Block Cipher. In Proceedings of the First Advanced Encryption
Standard (AES) Conference, Ventura, CA, USA, 20–22 August 1998.

12. Weiping, P.; Danhua, C.; Cheng, S. One-Time-Pad Cryptography Scheme based on a Three–Dimensional DNA Self-Assembly
Pyramid Structure. PLoS ONE 2018, 13, e0206612.

13. Cui, G.; Han, D.; Wang, Y.; Wang, Z. An Improved Method of DNA Information Encryption. In Bio-Inspired Computing-Theories
and Applications; Pan, L., P´aun, G., Pèrez-Jiménez, M.J., Song, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 472,
pp. 73–77.

14. ElKamchouchi, D.H.; Mohamed, H.G.; Moussa, K.H. A Bijective Image Encryption System Based on Hybrid Chaotic Map
Diffusion and DNA Confusion. Entropy 2020, 22, 180. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jksuci.2017.10.002
http://doi.org/10.1155/2017/5790189
https://www.cl.cam.ac.uk/rja14/serpent.html
https://www.cl.cam.ac.uk/rja14/serpent.html
http://doi.org/10.1016/j.procs.2016.02.108
http://doi.org/10.3390/e22020180
http://www.ncbi.nlm.nih.gov/pubmed/33285955


Symmetry 2022, 14, 2372 24 of 24

15. Babaei, M. A Novel Text and Image Encryption Method based on Chaos Theory and DNA Computing. Nat. Comput. 2013, 12,
101–107. [CrossRef]

16. Zhang, Y.; Wang, Z.; Wang, Z.; Liu, X.; Yuan, X. A DNA-Based Encryption Method Based on Two Biological Axioms of DNA Chip
and Polymerase Chain Reaction (PCR) Amplification Techniques. Chem. A Eur. J. 2017, 23, 13387–13403. [CrossRef] [PubMed]

17. Thangavel, M.; Varalakshmi, P.; Sindhuja, R.; Sridhar, S. Towards Secure DNA Based Cryptosystem. In Data Science Analytics and
Applications; Sharma, R.S., Ed.; Springer: Singapore, 2018; Volume 804, pp. 163–177.

18. UbaidurRahmana, N.H.; Balamuruganb, C.; Mariappanc, R. A Novel DNA Computing based Encryption and Decryption
Algorithm. Procedia Comput. Sci. 2015, 2015, 463–475. [CrossRef]

19. Halvorsen, K.; Wong, W. Binary DNA Nanostructures for Data Encryption. PLoS ONE 2012, 7, e44212. [CrossRef] [PubMed]
20. Kalsi, S.; Kaur, H.; Chang, V. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key

Generation. J. Med. Syst. 2018, 42, 1–17. [CrossRef] [PubMed]
21. Clelland, C.T.; Risca, V.; Bancroft, C. Hiding Messages in DNA Microdots. Nature 1999, 399, 533–534. [CrossRef] [PubMed]
22. Juels, A.; Ristenpart, T. Honey encryption: Security Beyond the Brute-Force Bound. In Advances in Cryptology–EUROCRYPT;

Nguyen Phong, Q., Elisabeth, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8441, pp. 293–310.
23. Oludare, O.; Aman, J.; Oludare, A. A Comprehensive Review of Honey Encryption Scheme. TELKOMNIK-A Indones. J. Electr.

Eng. 2019, 13, 649–656.
24. Yin, W.; Indulska, J.; Zhou, H. Protecting Private Data by Honey Encryption. Secur. Commun. Netw. 2017, 2017, 9. [CrossRef]
25. Yoon, J.W.; Kim, H.; Jo, H.J.; Lee, H.; Lee, K. Visual Honey Encryption: Application to Steganography. In Proceedings of the 3rd

ACM Workshop on Information Hiding and Multimedia Security, Portland, OR, USA, 17 June 2015; pp. 65–74.
26. Iavich, M.; Gnatyuk, S.; Jintcharadze, E.; Polishchuk, Y.; Odarchenko, R. Hybrid Encryption Model of AES and ElGamal

Cryptosystems for Flight Control Systems. In Proceedings of the 5th International Conference on Methods and Systems of
Navigation and Motion Control (MSNMC), Kiev, Ukraine, 16–18 October 2018; pp. 229–233.

27. Li, X.; Yu, L.; Wei, L. The application of hybrid encryption algorithm in software security. In Proceedings of the 3rd International
Conference on Consumer Electronics, Communications and Networks, Xianning, China, 20–22 November 2013; pp. 669–672.

28. Goyal, V.; Kant, C. An Effective Hybrid Encryption Algorithm for Ensuring Cloud Data Security. In Big Data Analytics; Aggarwal,
V., Bhatnagar, V., Mishra, D., Eds.; Springer: Singapore, 2018; Volume 654, pp. 195–210.

29. Ren, W.; Miao, Z. A Hybrid Encryption Algorithm Based on DES and RSA in Bluetooth Communication. In Proceedings of the
2nd International Conference on Modeling, Simulation and Visualization Methods, Sanya, China, 15–16 May 2010; pp. 221–225.

30. Cheng, H.; Zheng, Z.; Li, W.; Wang, P. Probability Model Transforming Encoders Against Encoding Attacks. In Proceedings of the
28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 28 May 2019.

31. Courtois, N.T.; Pieprzyk, J. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In Advances in Cryptology
ASIACRYPT 2002. ASIACRYPT 2002; Zheng, Y., Ed.; Springer: Berlin, Heidelberg, Germany, 2002; Volume 2501, pp. 267–287.

32. Dewu, X.; Wei, C. A Survey on Cryptanalysis of Block Ciphers. In Proceedings of the 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; Volume 8, pp. 218–220.

33. Tiessen, T. Secure Block Ciphers–Cryptanalysis and Design. Ph.D. Thesis, Technical University of Denmark, Lyngby,
Denmark, 2017.

34. Liu, Y. Techniques for Block Cipher Cryptanalysis. Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium, 2018.
35. Dou, Y.; Liu, X.; Fana, H.; Liad, M. Cryptanalysis of a DNA and Chaos Based Image Encryption Algorithm. Optik 2017, 145,

456–464. [CrossRef]
36. Chai, X.-L.; Gan, Z.-H.; Yuan, K.; Lu, Y.; Chen, Y.-R. An Image Encryption Scheme based on Three–Dimensional Brownian Motion

and Chaotic System. Chin. Phys. B 2017, 26, 020504. [CrossRef]
37. Khan, M.; Masood, F.; Alghafis, A.; Amin, M.; Naqvi, S.I.B. Batool. A Novel Image Encryption Technique using Hybrid Method

of Discrete Dynamical Chaotic Maps and Brownian Motion. PLoS ONE 2019, 14, e0225031. [CrossRef] [PubMed]
38. Gan, Z.; Chai, X.; Zhang, M.; Lu, Y. A Double Color Image Encryption Scheme based on Three-Dimensional Brownian Motio.

Multimed. Tools Appl. 2018, 77, 27919–27953. [CrossRef]
39. Stallings, W. Cryptography and Network Security: Principles and Practice, 8th ed.; Pearson: London, UK, 2019.

http://doi.org/10.1007/s11047-012-9334-9
http://doi.org/10.1002/chem.201701411
http://www.ncbi.nlm.nih.gov/pubmed/28657690
http://doi.org/10.1016/j.procs.2015.02.045
http://doi.org/10.1371/journal.pone.0044212
http://www.ncbi.nlm.nih.gov/pubmed/22984477
http://doi.org/10.1007/s10916-017-0851-z
http://www.ncbi.nlm.nih.gov/pubmed/29204890
http://doi.org/10.1038/21092
http://www.ncbi.nlm.nih.gov/pubmed/10376592
http://doi.org/10.1155/2017/6760532
http://doi.org/10.1016/j.ijleo.2017.08.050
http://doi.org/10.1088/1674-1056/26/2/020504
http://doi.org/10.1371/journal.pone.0225031
http://www.ncbi.nlm.nih.gov/pubmed/31856231
http://doi.org/10.1007/s11042-018-5974-9

	Introduction 
	Chaotic Random Number Generator 
	The Deep Masking Round 
	The Substitution Method 
	The Substitution Space 
	The Move Operations 
	Move Operation Selection 

	Symbol-Distortion Method 
	Distortion Operations 
	Swapping Pattern Generation Process 
	Distortion Operation Selection 

	The Deep Masking Process 
	Deep Masking Inverse Process 

	Key Doubling Operation 
	Diffusion Action (D-Action) 
	Permutation Action (P–Action) 
	Mutation/Augmentation Actions 

	Key Echo Generation Method 
	The Encryption Process 
	The Decryption Process 
	Performance Analysis 
	Security Analysis 
	Time Complexity Analysis 
	Common Cryptanalysis Attacks 
	Known-Plaintext Analysis (KPA) 
	Chosen-Plaintext Analysis (CPA) 
	Ciphertext-Only Analysis (COA) 
	Brute-force Attacks 
	Differential Cryptanalysis 
	Linear Cryptanalysis 
	Side Channel Attacks 


	Conclusions 
	References

