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Abstract: Many techniques have been recently used by various researchers to solve some types of
symmetrical fractional differential equations. In this article, we show the existence and uniqueness to
the solution of ς-Caputo stochastic fractional differential equations (CSFDE) using the Banach fixed
point technique (BFPT). We analyze the Hyers–Ulam stability of CSFDE using the stochastic calculus
techniques. We illustrate our results with three examples.
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1. Introduction

Fractional calculus is a mathematical axis studying the characterizations of non-integer
order derivatives and integrals [1,2]. In fact, this field contains the methods and notions
of solving symmetrical differential equations with fractional derivatives. The theory of
fractional calculus began almost in the same decade as the definition of classical calculus
was decided. It was first defined in Leibniz’s letter to L’Hospital in 1695, where the notion
of semi-derivative was presented. During this period, fractional derivative was founded
by many famous scientists, e.g., Riemann, Lagrange, Liouville, Fourier, Grünwald, Euler,
Heaviside, Abel, etc. The fractional calculus has been used to describe many real-world
phenomena: control theory, electrical networks, fluid flow, optics and signal processing,
dynamical processes, etc. (see [1,3–7]). Particularly, in [8], the authors analyzed a system of
neural networks in the sense of fractional derivatives. In [4], some novel applications of the
non-integer order operators in the theory of viscoelasticity were derived. The authors of
ref. [9] have proposed a scheme of approximate non-integer order differentiation, including
noise immunity. A fruitful discussion on the Adams method in the fractional-order sense
was given in the ref. [10]. In the last few decades, some new fractional derivatives have
been introduced by various researchers to improve the literature on fractional calculus.
In [11], Almeida suggested a new fractional derivative with respect to a kernel function
called ς-Caputo fractional derivative, and generalized the work of several researchers [1,12].
In this context, several research papers showed interest in the ς-Caputo fractional derivative;
for instance, see [11,13,14]. In [15], a numerical study on the non-integer order relaxation–
oscillation equations in terms of ς-Caputo fractional derivatives are proposed. In [16],
a study on the Ulam stability for Langevin non-integer order differential equations in the
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sense of two different fractional orders of ς-Caputo derivative has been given. In [17], the
authors explored an initial value problem for differential equations in the sense of ς-Caputo
derivative via a monotone iterative approach.

Recently, the theory of Hyers–Ulam stability (HUS) has attracted the attention of
several famous scientists due to its real-world applications in biology and fluid flow, where
identifying the explicit solutions is a very hard task. Some novel research studies on this
topic have been proposed in the following references [18–20]. In [21], the authors discussed
the results regarding the existence and HUS of solutions for almost periodic stochastic
differential equations in a fractional sense. In [22], some novel results on the existence
and HUS of random stochastic impulsive functional differential equations with delay have
been established. In [23], Ulam stability for partial integro-differential equations with
uncertainty in a fractional-order sense has been explored. Most of the existing papers
consider the Caputo fractional derivative for the existence, uniqueness and HUS of the
solutions of fractional differential equations. There are a lot of papers which discuss the
ψ-Caputo fractional derivative (see [24–26]) for the deterministic case. In this paper, we
have studied this concept for the stochastic case.

In this work, the existence and uniqueness of CSFDE are provided. The HUS for the
proposed problem with the help of the novel features of stochastic calculus is simulated.

This paper extends the work on [27–29] for the Caputo and Caputo–Hadamard frac-
tional derivative.

We highlight the main advantages of our article as follows:

• To investigate the existence and uniqueness of the solution of CSFDE via BFPT.
• To investigate the HUS of CSFDE by using the stochastic calculus techniques.

We summarize the content of the article: Section 2 presents the basic definitions
of ς-CFD and some fundamental notations. Section 3 investigates the global existence
and uniqueness of the solution of CSFDE. In Section 4, we analyze the HUS of CSFDE.
In Section 5, we give three illustrative examples.

2. Basic Notions

Denote by {Σ,F ,FΠ,P}, where FΠ = {Fη}η∈[1,Π] and Π > 1, the complete probability
space; W(η) is the standard Brownian motion.

Let Xη = L2(Σ,Fη ,P) (for every η ∈ [1, Π]) be the family of all Fη-measurable and
mean square integrable functions λ = (λ1, . . . , λp)

T : Σ→ Rp satisfies

||λ||ms =

√√√√ p

∑
l=1

E(|λl |2) =
√
E||λ||2,

where || · || is the usual Euclidian norm.

Definition 1 ([14]). Denote by ϕ > 0 and let ς ∈ C1[c, b] the function satisfying ς′(σ) 6= 0,
∀σ ∈ [c, b]. The ς-fractional integral of order ϕ for an integrable function g is defined as

Iϕ,ς
c+ g(x) =

1
Γ(ϕ)

∫ x

c
ς′(σ)(ς(x)− ς(σ))ϕ−1g(σ)dσ. (1)

Definition 2 ([14]). Denote by ϕ > 0 and let ς ∈ C1[c, b] the function satisfying ς′(σ) 6= 0,
∀σ ∈ [c, b]. The ς-Riemann–Liouville fractional derivative of order ϕ of a function g is defined by

Dϕ,ς
c+ g(x) =

(
1

ς′(x)
d

dx

)
I1−ϕ,ς
c+ g(x). (2)
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Definition 3 ([14]). Let ϕ > 0 and ς ∈ C1[c, b] the functions satisfying ς′(σ) 6= 0, ∀σ ∈ [c, b].
The ς-Caputo fractional derivative of order ϕ of a function g is defined by

CDϕ,ς
c+ g(t) = Dϕ,ς

c+

[
g(t)− g(c)

]
. (3)

Definition 4 ([1]). Eρ,κ(y) is called a Mittag–Leffler function with two parameters if:

Eρ,κ(y) =
+∞

∑
m=0

ym

Γ(mρ + κ)
,

where ρ > 0, κ > 0, y ∈ C.

Theorem 1 ([30]). Let (E, d) be a complete metric space and let B : E→ E (with z ∈ [0, 1)) be a
contraction. Assume that j ∈ E, d(j,B(j)) ≤ υ and υ > 0. Then, there is a unique u ∈ E such
that B(u) = u.

Let the following CSFDE:

CDϕ,ς
a+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)

dη
, (4)

where the initial condition is ξ(a) = δ, ς : [a, Π] → R be a C1-increasing function with
ς′(η) 6= 0, ∀η ∈ [a, Π], 0 < ϕ < 1, f1 : [a, Π]×Rp −→ Rp and f2 : [a, Π]×Rp −→ Rp are
measurable functions.

Let the following hypothesis:
H1: There is L > 0 satisfying

|| f1(η, ξ1)− f1(η, ξ2)|| ∨ || f2(η, ξ1)− f2(η, ξ2)|| ≤ L||ξ1 − ξ2||, (5)

for all (η, ξ1, ξ2) ∈ [a, Π]×Rp ×Rp.
H2: f1(·, 0) and f2(·, 0) satisfying

|| f2(·, 0)||∞ = ess sup
η∈[a,Π]

|| f2(η, 0)|| < ∞, (6)

∫ Π

a
|| f1(σ, 0)||2dσ < ∞.

3. Existence and Uniqueness of Solutions

Denote by H2([a, Π]) the family of all the processes ξ which are FΠ-adapted, measur-
able such that

||ξ||H2 = sup
a≤r≤Π

||ξ(r)||ms < ∞.

It is not hard to prove that (H2([a, Π]), || · ||H2) is a Banach space. Let the operator Nδ :
H2([a, Π])→ H2([a, Π]), for δ ∈ Xa, given by:

Nδy(η) = δ +
1

Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, y(σ))dσ

]
+

1
Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, y(σ))dW(σ)

]
. (7)

Lemma 1. Nδ, for every σ ∈ Xa, is well defined.
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Proof. Let q ∈ H2([a, Π]). Then, one has

||Nδq(η)||2ms ≤ 3||δ||2ms +
3

Γ(ϕ)2E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

+
3

Γ(ϕ)2E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)

. (8)

Using the Cauchy–Schwartz inequality, one gets

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

≤
(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2dσ

)
E
(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ M

(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2dσ

)
E
(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ M

2ϕ− 1
(ς(η)− ς(a))2ϕ−1E

(∫ η

a
|| f1(σ, q(σ))||2dσ

)
, (9)

where M = sup
σ∈[a,Π]

ς′(σ). ByH1, one can derive that

|| f1(σ, q(σ))||2 ≤ 2L2||q(σ)||2 + 2|| f1(σ, 0)||2. (10)

Thus,

E
(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ 2L2(Π− a) sup

σ∈[a,Π]

E
(
||q(σ)||2

)
+ 2

∫ Π

a
|| f1(σ, 0)||2dσ. (11)

Then,

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

≤ M(ς(Π)− ς(a))2ϕ−1

2ϕ− 1

[
2L2(Π− a) sup

σ∈[a,Π]

E
(
||q(σ)||2

)
+ 2

∫ Π

a
|| f1(σ, 0)||2dσ

]
. (12)

Using Itô’s isometry formula, one gets

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)

= E
(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2|| f2(σ, q(σ))||2dσ

)
. (13)

UsingH1, one has

|| f2(σ, q(σ))||2 ≤ 2L2||q(σ)||2 + 2|| f2(·, 0)||2∞. (14)

Hence,

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)
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≤ 2ML2E
(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2||q(σ)||2dσ

)
+ 2M|| f2(·, 0)||2∞

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2dσ

≤ 2ML2

2ϕ− 1
(ς(Π)− ς(a))2ϕ−1||q||2H2

+
2M

2ϕ− 1
(ς(Π)− ς(a))2ϕ−1|| f2(·, 0)||2∞. (15)

Therefore, Nδ is well defined.

Theorem 2. Under H1 and H2, for every σ ∈ Xa, Equation (4) has a unique global solution
ξ(·, σ) on [a, Π].

Proof. Let Π > a be arbitrary. Let θ > 0, such that θ2ϕ−1 > 2L2M(Π + 1)
Γ(2ϕ− 1)

Γ(ϕ)2 . We

define a norm || · || on the space H2([a, Π]) by

||ξ||θ = sup
η∈[a,Π]

√√√√E
(
||ξ(η)||2

)
eθ(ς(η)−ς(a))

, ∀ξ ∈ H2([a, Π]). (16)

It is not hard to show that || · ||H2 and || · ||θ are equivalent. Consequently, (H2([a, Π]), || · ||θ)
is a Banach space.

Let ξ1, ξ2 ∈ H2([a, Π]). Using (7), we get ∀η ∈ [a, Π]

E
(
||Nδξ1(η)− Nδξ2(η)||2

)

≤ 2
Γ(ϕ)2E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ1(σ))− f1(σ, ξ2(σ)))dσ

∣∣∣∣∣∣∣∣2
)

+
2

Γ(ϕ)2E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, ξ1(σ))− f2(σ, ξ2(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
)

.

Using Hölder inequality, one has

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ1(σ))− f1(σ, ξ2(σ)))dσ

∣∣∣∣∣∣∣∣2
)

≤ L2M(η − a)
∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ.

Moreover, using Itô isometry, we have

E
(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, ξ1(σ))− f2(σ, ξ2(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
)

= E
(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2|| f2(σ, ξ1(σ))− f2(σ, ξ2(σ))||2dσ

)
≤ L2M

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ. (17)

Then,
E
(
||Nδξ1(η)− Nδξ2(η)||2

)
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≤ 2L2 M
Γ(ϕ)2 (Π + 1)

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ

=
2L2 M
Γ(ϕ)2 (Π + 1)

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E
(
||ξ1(σ)− ξ2(σ)||2

)
eθ(ς(σ)−ς(a))

eθ(ς(σ)−ς(a))dσ

≤ 2L2 M
Γ(ϕ)2 (Π + 1)||ξ1 − ξ2||2θ

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2eθ(ς(σ)−ς(a))dσ. (18)

Set J =
∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2eθ(ς(σ)−ς(a))dσ. Thus, by using Lemma 2.6 in [16], we get

J ≤ Γ(2ϕ− 1)
θ2ϕ−1 eθ(ς(η)−ς(a)). (19)

Therefore, we have

E
(
||Nδξ1(η)− Nδξ2(η)||2

)
eθ(ς(η)−ς(a))

≤ 2L2M
Γ(ϕ)2 (Π + 1)

Γ(2ϕ− 1)
θ2ϕ−1 ||ξ1 − ξ2||2θ . (20)

Hence,
||Nδξ1 − Nδξ2||θ ≤ C||ξ1 − ξ2||θ , (21)

where C =

√
2L2M
Γ(ϕ)2 (Π + 1)

Γ(2ϕ− 1)
θ2ϕ−1 . Therefore, there is a unique solution of (4) such

that ξ(a) = δ.

4. Hyers–Ulam Stability

In this section, we study the Hyers–Ulam stability of Equation (4) using the generalized
Gronwall inequality and the stochastic calculus techniques.

Definition 5. Equation (4) is Hyers–Ulam stable with respect to ε if there is a number M1 > 0
satisfying for each ε > 0, and for each solution y ∈ H2([a, Π]), with y(a) = δ, of the following
inequality:

E

∣∣∣∣∣
∣∣∣∣∣y(η)− y(a)−

(∫ η

a

ς′(σ)(ς(η)− ς(σ))ϕ−1

Γ(ϕ)
( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣∣∣
∣∣∣∣∣
2

≤ ε, (22)

for all η ∈ [a, Π], there exists a solution ξ ∈ H2([a, Π]) of (4), with ξ(a) = δ, such that

E||y(η)− ξ(η)||2 ≤ M1ε, ∀η ∈ [a, Π].

Theorem 3. Under AssumptionsH1-H2, the ς-Caputo stochastic fractional differential Equation (4)
are Hyers–Ulam stable with respect to ε on [a, Π].

Proof. Let ε > 0 and y ∈ H2([a, Π]) be a function satisfying (22) and denote by ξ ∈
H2([a, Π]) the solution of (4) with initial data y(a); thus

ξ(η) = y(a) +
1

Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ(σ))dσ + f2(σ, ξ(σ))dW(σ))

]
. (23)

Thus,
E||y(η)− ξ(η)||2

≤ 2E||y(η)− y(a)− 1
Γ(ϕ)

(
∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1[ f1(σ, y(σ))dσ

+ f2(σ, y(σ))dW(σ)])||2
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+2E|| 1
Γ(ϕ)

(
∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1[( f1(σ, y(σ))− f1(σ, ξ(σ)))dσ

+( f2(σ, y(σ))− f2(σ, ξ(σ)))dW(σ)])||2.

Then, applying assumptionsH1-H2 and Cauchy–Schwartz inequality, we have

E||y(η)− ξ(η)||2

≤ 2ε + 4E
∣∣∣∣∣∣∣∣ 1

Γ(ϕ)

∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, y(σ))− f1(σ, ξ(σ)))dσ

∣∣∣∣∣∣∣∣2
+ 4E

∣∣∣∣∣∣∣∣ 1
Γ(ϕ)

∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, y(σ))− f2(σ, ξ(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
≤ 2ε +

4L2M(ς(η)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2 E
(∫ η

a
||y(σ)− ξ(σ)||2dσ

)
+

4L2M
Γ(ϕ)2 E

(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2||y(σ)− ξ(σ)||2dσ

)
.

Then,

E||y(η)− ξ(η)||2 ≤ 2ε +
4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2

∫ η

a
E||y(σ)− ξ(σ)||2dσ

+
4L2M
Γ(ϕ)2

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2E||y(σ)− ξ(σ)||2dσ. (24)

Set z(η) = E||y(η)− ξ(η)||2. Thus, one gets

z(η) ≤ α1 + α2

∫ η

a
z(σ)dσ + α3

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2z(σ)dσ, (25)

where α1 = 2ε, α2 =
4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2 and α3 =
4L2M
Γ(ϕ)2 .

Applying the generalized Gronwall inequality (see [31]), we have

z(η) ≤
[

α1 + α2

∫ η

a
z(σ)dσ

]
E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(η)− ς(a))2ϕ−1

)
≤ α4 + α5

∫ η

a
z(σ)dσ, (26)

where α4 = 2εE2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
and α5 =

4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2

E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
.

Applying the classical Gronwall inequality, we can derive that

z(η) ≤ α4eα5(η−a) ≤ α4eα5(Π−a). (27)

Hence,
z(η) ≤ M1ε, (28)

where M1 = 2E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
eα5(Π−a).

Therefore, Equation (4) is Hyers–Ulam stable with respect to ε.
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5. Examples

This section is devoted to show our results in three examples.

Example 1. Let the CSFDE for each ε > 0 and for η ∈ [1, e2], given by

CD
2
3 ,ς
1+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E
∣∣∣y(η)− y(1)− 1

Γ(ϕ)

(∫ η
1 ς′(σ)(ς(η)− ς(σ))−

1
3 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(1) = δ,

(29)

where ϕ = 2
3 , ς(η) = ln(η) and

ξ(η) ∈ H2([1, e2],R)

f1(η, ξ(η)) =
√

ln(η)(arctan(ξ(η)) + cos(ξ(η)))

f2(η, ξ(η)) =
√

η cos(ξ(η)).

We will prove that Equation (29) is Hyers–Ulam stable with respect to ε.

Let (η, ξ1, ξ2) ∈ [1, e2]×R×R, thus

| f1(η, ξ1)− f1(η, ξ2)| ≤ 4|ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ e|ξ1 − ξ2|.

Hence, assumptionH1 fulfilled. Moreover,

|| f2(·, 0)||∞ = ess sup
η∈[1,e2]

| f2(η, 0)| ≤ e,

and ∫ e2

1
| f1(η, 0)|2dη ≤ 2(e2 + 1).

Thus, assumptionsH1-H2 fulfilled. Hence, applying Theorem 3, Equation (29) has a unique
solution, and it is Hyers–Ulam stable with respect to ε on [1, e2].

Example 2. Let the CSFDE for each ε > 0 and for η ∈ [0.5, 6], given by

CD
3
4 ,ς
1+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E
∣∣∣y(η)− y(0.5)− 1

Γ(ϕ)

(∫ η
0.5 ς′(σ)(ς(η)− ς(σ))−

1
4 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(0.5) = δ,

(30)

where ϕ = 3
4 , ς(η) =

√
η and

ξ(η) ∈ H2([0.5, 6],R)

f1(η, ξ(η)) =
eη

1 + eη (1 + ξ(η))

f2(η, ξ(η)) =
1 + sin(ξ(η))

(1 + η)2 .

We will prove that Equation (31) is Hyers–Ulam stable with respect to ε.



Symmetry 2022, 14, 2336 9 of 11

(η, ξ1, ξ2) ∈ [0.5, 6]×R×R, then

| f1(η, ξ1)− f1(η, ξ2)| ≤ |ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ |ξ1 − ξ2|.

Thus, assumptionH1 holds. On the other hand,

|| f2(·, 0)||∞ = ess sup
η∈[0.5,6]

| f2(η, 0)| ≤ 1,

and ∫ 6

0.5
| f1(η, 0)|2dη ≤ ln(1 + e6).

Then, assumptions H1-H2 are fulfilled. Hence, applying Theorem 3, Equation (31) has a
unique solution, and it is Hyers–Ulam stable with respect to ε on [0.5, 6].

Example 3. Let the CSFDE, for each ε > 0 and for η ∈ [0, 5], given by

CD
1
5 ,ς
0+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E
∣∣∣y(η)− y(0)− 1

Γ(ϕ)

(∫ η
0 ς′(σ)(ς(η)− ς(σ))−

4
5 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(0) = δ,

(31)

where ϕ = 1
5 , ς(η) = η and

ξ(η) ∈ H2([0, 5],R)
f1(η, ξ(η)) = 2e−ηξ(η)

f2(η, ξ(η)) = 3 sin(ξ(η)).

We will prove that Equation (31) is Hyers–Ulam stable with respect to ε.

(η, ξ1, ξ2) ∈ [0, 5]×R×R, then

| f1(η, ξ1)− f1(η, ξ2)| ≤ 2|ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ 3|ξ1 − ξ2|.

Thus, assumptionH1 hold. On the other hand,

|| f2(·, 0)||∞ = ess sup
η∈[0,5]

| f2(η, 0)| = 0,

and ∫ 5

0
| f1(η, 0)|2dη = 0.

Then, assumptions H1-H2 are fulfilled. Hence, applying Theorem 3, Equation (31) has a
unique solution, and it is Hyers–Ulam stable with respect to ε on [0, 5].

6. Conclusions

In this research paper, we have proved the existence and uniqueness of CSFDE. We
have simulated the HUS for the proposed problem with the help of the novel features
of stochastic calculus. We have illustrated three examples to justify the correctness and
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applicability of the proposed results. The applications of some well-known terms of
functional analysis, such as the Cauchy–Schwarz inequality, properties of measurable
functions, supremum norm, Itô’s isometry formula, Hölder inequality, and generalized
Gronwall inequality make the study more visible to the literature. The proposed results
will be very useful to prove the existence of a unique solution and Hyers–Ulam stability of
ς-Caputo type fractional stochastic differential equations.
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