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Abstract: In this paper, under some super- and sub-linear growth conditions, we study the existence
of positive solutions for a high-order Riemann-Liouville type fractional integral boundary value
problem involving fractional derivatives. Our analysis methods are based on the fixed point index
and nonsymmetric property of the Green function. Additionally, we provide some valid examples

to illustrate our main results.

Keywords: Riemann-Liouville fractional differential equations; integral boundary value problems;
positive solutions; fixed point index
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1. Introduction

In this paper, we investigate the existence of positive solutions for the following
high-order Riemann-Liouville type fractional integral boundary value problem involving
fractional derivatives:

D u(t) +f(t,u(t),D§1u(t),...,Dgrlu(t)) —0,0<t<1,

u(0) = u'(0) = -~ = u"2(0) = 0, M
1

Dfu(1) = /0 DEtu(t)dA(),

wheren—1<a<ni-1<pg;<i(i=12,...,.n—1),a —B,1>a—p>1and f, A
satisfy the conditions:

Hypothesis 1 (H1). f: [0,1] x R — R is continuous, and there is a M > 0, such that

flt,xn, xp-1,...,x1) > —M, ¥Vt € [0,1],x; e Ry,i =1,2,...,n,R; := [0, +00),

Hypothesis 2 (H2). A : [0,1] — R isa function of bounded variation and fol tr=Pr1dA(t) €
|:0 F(a—PBu-1) ) )
7 T(a=p)
Recently, useful properties of fractional calculus were discovered in many scientific engi-
neering phenomena which has motivated researchers to use this theory to analyze and apply
them in various fields. We refer the reader to system modeling, controller design, and biomedical

and signal processing fields. We also note that fractional differential equations have received
much attention and there are many papers studying various kinds of fractional boundary value
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problems using methods in non-linear analysis, see, for example, Refs. [1-25] and the references
cited therein. In [1], the authors used the method of mixed monotone operators to study unique
positive solutions for the fractional differential system

—Dgxat) = f(txa (), Dém(tm(t)), te(0,),
—D0+X2(t) g(t,xa(t)), t € (0, 1)

0+X1( )=0, D0+X1( ) = ij 19 D0+X1 (g]‘)/
X2(0> =0, DS+X2(1) Z]:l b]DoJrXZ(g])/

where Dg+ (0 = «,B,7v,1,0) is the Riemann-Liouville derivative and in [2], the authors
studied the solvability for the fractional differential system

Dg; xa(t) + Af(f xi(t), D§+X1(t)r)(2(f)> =0,

0+Xz(t) Agt,xi(t) =0,0<t <1,

Dy x1(0) = Dy x <o> =0, DO+X1 = [y Db x1(s)dA(s),
x2(0) = x5(0 )—0 x2(1) = [y x2(s)dB(s),

where D8‘+,D§+,Dg+ are the Riemann-Liouville derivatives, f : (0,1) x ]R3+ - R, g:
(0,1) x Ry — R are two semi-positone functions, and satisfy the following super-linear
or sub-linear conditions:

(HZ); There exists M > 0 such that limsup,, ,,+ max;c(o ] (t’ L« M (sub-linear
growth condition);

(HZ); There exists [a,b] C (0,1), such that limg; e minggp, g(i’)w) = +oo,

fltw,waws)
w3

Limyy; oo MIN 4egp) = +oo (superlinear growth condition).

w1,wy =0
In [3], the authors investigated the system of Riemann-Liouville fractional differen-

tial equations

Dt ED’* <t>§ Af(t (1), x2(8) = 0,t € (0,1),
D2 (D2 xa(1)) + ug(t, xa (1), xa(t)) = 0, € (0,1),

§”<>—o]—o = ZD§+X1<0>:0,Dg£m<1 =Ll fy Dy (di(x),
x7(0) =0,j=0,...,m—2; D% x,(0) = 0,DX x2(1) = X0, [ DY, xa(7)dKi(T),

where f, g are sign-changing singular non-linearities and satisfy the following growth
condition:

(HZ)3 There exist 0 < 07 < 0» < 1, such that
g ( t/ w1, wZ)

lim min ~—~’"—""%. — oo or lim min & — 0
w1+wy—+00 te[g’lr(fz] w1 + wn w1 +wy—+00 te[(Tl,(Tz] w1 + wy

It is widely known that certain conditions involving the eigenvalues of relevant linear
operators play an important role in the study of fractional boundary value problems, see,

for example, [4-9]. In [4], the authors used fixed point index theory to study positive
solutions for the fractional integral boundary value problem

Dg. x(t) + ()f( x()=00<t<1,
X(O) =X (O) = X (0) 0, ()
/\fo s)ds,

where f € C([0,1] x R4, R ) satisfies the following growth conditions:

f( £) > Ay and lim SUP;_, 4 oo f(gC) < A1, uniformly on ¢ € [0,1],
f( )

(HZ)s limsup, o, L < A; and liminf_, |, {42

(HZ) lim 1nf€_)0+
> A1, uniformly on t € [0,1],
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where A1 > 0is the first eigenvalue of the operator L denoted by (L{) (¢ f 0 )C(s)ds,
and G is the Green’s function associated with (2). In [5], the authors generahzed the meth-
ods in [4], and studied the following higher order fractional differential equation with
integral boundary conditions

= Dgx() = f(xO X @), x"DW), 0<t<,

®)
x(0)=x(0) = =x"2D)=0, x"2(1)= )L[X(H)},
where Ay fo ),and f € C([0,1] x (R4)"1, R ) satisfies the following growth
conditlons
hmmff(t gl"”'gn_l) > Ay, limsup f(t:8yr- s Gnn) <M
(HZ)6 Cl_)o gl +oot é’i’lfl O+ +l1—+00 gnfl 4
Cn 1—)0 Cn—1—>+00
uniformly on t € [0,1],
liminf (8b=buct) < ) fimsup  esdea) 5 )
HZ); &—0 Cn-1 ! C1+~~-+€n71ri>+°° it Fn ! , uniformly on ¢ €
gnfl‘)O
[0,1],
where A1 > 01is the first eigenvalue of the operator L denoted by (L) (¢ fo s)ds,

and H is the Green’s function associated with (3).

Comparing these results there seems to be no real improvement in the stategy for these
problems. However, in this paper we consider a different linear operator (see the operator
By 1,...n in Section 2), and discuss the effects of integral boundary conditions on its
eigenvalues involving non-symmetric Green function. Moreover, the problem considered
here involves fractional derivatives and a semi-positone non-linearity. As a result, our
methods and results are more general than those in the aforementioned works.

2. Preliminaries

In this section, we first provide some basic material for Riemann-Liouville fractional
calculus, for details see [21,22].

Definition 1. The Riemann-Liouville fractional derivative of order « > 0 of a function ¢ :
(0, +00) — R is given by

Do(t) = oot () [ =9 gt

where n = [a] + 1, [«] denotes the integer part of number a, provided that the right-hand side is
pointwise defined on (0, +00).

Definition 2. The Riemann-Liouville fractional integral of order o > 0 of a function ¢ : (0, +-00) —
R is given by
1 gt
o _ _ -1
IO+¢(t) - Iﬂ(“) /0 (t S) §0<S)dsr

provided that the right-hand side is pointwise defined on (0, 4+00).

Lemma 1. Assume that ¢ € C(0,1) N L'(0,1) with a fractional derivative of order & > 0 that
belongs to C(0,1) N L'(0,1). Then

I8, DEp(t) = @(t) + Ct* 1+ Cot* 24 - 4 Cyt* N,

forsome C; € R(i=1,2,...,N), where N = [a] + 1.
Let v(t) = Dgi’lu(t) in (1). Then, we can obtain the following lemma.
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Lemma 2 (see [15,16]). Problem (1) can be transformed into the following boundary value problem

D Frto(t) + f(t, Iggflv(w,lfffﬁlv(t),...,v(t)) =0,te(0,1),

4)
12 B 1 (
P20y =0, DEPrio(1) = /O o(DdA(1).
Furthermore, (4) is equivalent to the following integral equation
! - L@=p) ap, -1 [
_ Bn—1 Bn-1—P1 a—PBu_1 1/
o(t) /0 K(ts)f (s 10 0(s), 1507 Pros), ... o(s) ) ds + e g ! oA,
where
a—Bu_1—1(1 _ o\a—B—-1 _ (¢ _ \a—Pu_1—1 <g<t<
K(ts) = 1 t (1-5) (t—s) , 0<s<t<1, 5)
T(a—Bp_1) |t Pu1=1(1 —s)2—F-1 0<t<s<l1.

Proof. Letv(t) = Dgflu(t). Then, from Lemma 4 of [15], Lemma 2.3 of [16], we have

u(t) = 1Bro(t), ™2 (t) = 15" 20(t), DY u(t) = D Pro(t), DE u(t) = DS, Prto(t),

0
and
Dftu(ty = 16 Pio(t),i=1,2,--- ,n—2.
Therefore, we easily obtain (4).
Lety(s) = f(s, Igﬂ‘lv(s), Igf‘lfﬁlv(s), ey v(s)), and we have
o(t) = —Igfﬁ”’ly(t) + Cyt* P71 and Dg;ﬁ”’lv(t) = _1"(oc1—ﬁ) /Ot(t —5)* P 1y (s)ds + C1Wt“_ﬁ_l,

where C; € R. Hence, we obtain

o
I(a—p)

Solving this equation, we have

DEPr1o(1) = — /01(1 )Py (s)ds 4+ Cy LA —Pr) _ /01 o(DdA(1).

I(a—p)

1
x— ,anl

c, = e—p) /Olz;(t)dA(t) v

1
I'(a—Bn-1) )/0(1_5) F=1y(s)ds

and then

o(t) = mtaﬁnll /01 v(t)dA(t) + r(“_l,Bnl) /01 pr=Bn-1-1 (1-— s)“*ﬁfly(s)ds

1
T(a—Bu-1)

-/ K (t,s)y(s)ds + m:f“‘ﬁnl‘l Ji Lo(BAR).

This completes the proof. [

t
| (=5 Bty (s)as ©

Remark 1. Integrate (6) over [0,1] and use (H2) to obtain

/Olv(t)dA(t) :/01 /011<(t,s)y(s)dsam(t)+F(Z("i;f_)l)/O1 P14 A () /Olv(t)dA(t),
and

1

T'(a—B) 1,408 .—
1= Mg,y Jo t#*7Pr171dA

/01 o(DdA(t) = a /01 /(;1 K(t,s)y(s)dsd A(t).
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Therefore, we have

0 = ' S S)as t“iﬁnflilr(lx—ﬁ) ' ! S S )ds
“*:AK“>W>d+rm_ﬁ%ﬂ_rm_mﬁﬁwmlamﬂwéLAK“'W<WdA@

1
= /0 G(t,s)y(s)ds,

where

# 1T —p)

G(t,s) = K(t,s
(o) (o) T(a—Bn-1)—T(a—p) fol tPu1m1d A(t)

/01 K(t,s)dA(E),t,5 € [0,1].

Note that the function G appears in Lemma 2.3 of [16] (I(f) = 1).

Lemma 3 (see [15,16]). The function K has the properties:
(i) KecC([0,1] x[0,1],Ry) and K(t,s) > 0fort,s € (0,1),
(i) t*P171K(1,5) < K(t,5) < K(1,s), t,s € [0,1].

Let E = C[0, 1] with the norm || ¢|| = maxo<¢<1 |¢(t)|. Define a cone Pby P = {¢ € E :
@(t) > 0,t € [0,1]}. Then, E is a Banach space, and P a closed cone on E. From ([26], p. 188), we
know that the conjugate space of E, denoted by E*, is V = V[0,1],i.e., E* =V, where V := {z : z
has bounded variation on [0, 1]). Moreover, the bounded linear functional on E can be given by
the Riemann—Stieltjes integral

1
2(g) = | o(=(), ¢ € Ez € " )
By ([27], p. 125), we have
P*:={z€E":z(¢) >0,¢ € P}

is the dual cone of P. From (7), we have
1 n
2(9) = |, #l0d=(0) = lim ) p(&0) () —2(05-0)] 2 0, ®

where 0 = tg < h < - <t 1 <t, =1, A= maxlgign(ti — ti—l)/ Ve € [ti—lrti}ri =
1,2,---,n.From ¢ € P(¢(;) > 0), for all division t; (8) holds, we only need z(t;) —z(t;_1) > 0
fori=1,2,--- ,n. Therefore, the dual cone of P can also be expressed by

P* := {z € E* : zis non-decreasing on [0,1]}.

Let p; > 0(i = 1,2, ...,n) with Y}y y? # 0, and

1
(Luy g0 (£) = /0 Ky gy (8, T)0(T)dT, © € E,

where Ky, yy ... (8, T) = unK (t,T) + py—1 Ky (8, T) + - - - + u2Ko (8, 7) + 1K (8, 7), (£, 7) €
[0,1] x [0,1], and K;(i = 2,...,n) are
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[ 1 1 )
— [ K(t,s)(s —1)Pr17Pr271ys
Kz(t, T) r(ﬁn—l 1— ;anz) /Fl
K3(t, T) W / K(t,s) (S — T),Bn—l_.aniS_lds
. _ n—1" Pn— T
: a 1
Ky—1 (t, T) M / K(t,s)(s — T)ﬁn—l—ﬁl—lds
K”(t/ T) n— . T
F(ﬁl_l) /T K(ts)(s = 7)P17lds _

©)

Let7(Lyy juy,....uy ) denote the spectral radius of Ly, ..., 1., and we can obtain the following lemma.

Lemma4. 7(Ly, uy,...0,) > 0.
Proof. From Lemma 3(ii) and (9), we have
P11k (1, 1) < Ki(t, 1) < Ki(1,7), V4T €(0,1),i = 2,3, -+ ,n.
This implies that
P K i (L) < Ky (8T) < Ky g (1,7), V8, T € [0,1],

Consequently, for all m € N, we have

I | > ma / / I Kt 650K 51,52) -+ Ky 5m s
—Bu_1—1 n— -1 “Pn— -1
= tren[oa)l(] e / / / Kot e (1,51)87 Pt Kyus pigeoen (152) - - anﬁ U Ky (1, 8m)dsdsy -

1 m=1
— {/0 Kyl,yz,...,y,,(l,s)saﬁnl1d5] /()Km,m,.._,yn(l,s)ds.

By Gelfand’s theorem, we have

! n-1—1
P o) = T /1Ly >/ Koty giayon (1,8)5*~Pr-1=1ds > 0,

This completes the proof. [

We denote an operator By, ,,... i, as follows

(10)

° dSm

1 I'(a— — — 1
(Byrize®) () = Jo K i (6, D0(0)dT + i pi=Pu=t fRo(H)dA(t), 0 € E.

Now, By, u,,..u, : P — P is a completely continuous, linear, positive operator.
Note that the spectral radius 7(By, uy,...1,) > *(Lyjp,...nn) > 0. Now, the well-known
Krein-Rutman theorem [28] guarantees that there exist two functions ¢, ..., € P\{0}

and Yy, ..., € P*\{0} with ¢, 4, .0, (1) = 1 and

— * _
Bus gtz et Ppis izt = 1 (Bpis pizecttn) P iz e fins B sy itn v piz,eeitn = 7(Byuy et Wits piaestin

where B

Jipia,qin - ET — E™ is the conjugate operator of By, y,,....u,, denoted by

(11)

(BEU) (t) := /Ot ds /01 Ky, o, ..., un(t,s)do(T) + rr(lxi_ﬁ)A(t) /01 P 1dy(1).

(‘X - ,Bn—l)

Remark 2. From Lemma 4 and the definition of operator By, y, ... u,, we have
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1 1 w—p) [
—By_1—1
) Kz (19151 < (L) < P Bngsen) < [ Ko (18)ds + g g5 [T aA()

Define a modified function [-]* for any z € C[0,1] by

and consider the following boundary value problem

Dy Prto(t) +f(t, Bt fo(t) — w(B)], I P o(t) — w(®)], ..., [o(t) — w(t)]*) FM=0,te(0,1),
1 (12)
1B 7250y =0, DEPrio(1) = /O o(H)dA(t),

where .
w(t) = M/O G(t, 5)ds. (13)

From Lemma 2.6 in [13], we have the following lemma.

Lemma 5. Suppose that v is a solution of (12) withv(t) > w(t),t € [0,1]. Then, v — w is a positive

solution of (4). Consequently, u(t) = 151’] [v(t) — w(t)] is also a positive solution of (1).
Proof. Since v is a solution of (12) with v(t) > w(t),t € [0,1], then we have

Dy Prto(t) + £ (1 15 o(t) = (), 5P [o(t) = w(B)],..., [o() —w(B)]) + M =0, t € (0,1),

Bn—1—n+2 B—Bn-1 ! (14)
18 0(0) =0, DEPrio(1) = /O o(DdA(H).
From (13), Lemma 2 and Remark 1 we have
Dy Prlw(t)+ M=0,te(0,1),
(15)

1
a1 —12 B
1B 720 0) =0, DEZF 1w(1)='/0 w(DdA(Y).

Combining with (14)—(15), we have

Dy P o) — w(t)] + £ (& 15 o) — w(B) I8 P o(t) — w(®)],.., [o(t) = w(B)]) =0, t€ (0,1),
" 0(0) — (O] =0, DY () — ()] = [ [o() - w(D}A().

This implies that v — w is a positive solution of (4). From the relation between (1)
and (4), we obtain u(t) = Igfl [v(t) — w(t)] is a positive solution of (1). This completes
the proof. O

From Lemma 5, we define an operator T : P — P as

(To)(t) : = /01K<t,s> £ (510 o) = w(s)] 15 P o(s) = w ()], [o(s) = w(s)]) + M]ds

r(“_ﬁ) a—LBy_1— 10
st ) podA

= /01 G(t,s) [f(s, Igﬁ‘l[v(s) - w(s)]*,lgjf‘lfﬁl [v(s) —w(s)]*, ..., [v(s) — w(s)]*) + M} ds.
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If there exists v* € P\{0}, such that Tv* = v* with v*(t) > w(t),t € [0,1], then v* — w
is a positive solution of (4), and u*(t) = Igﬁ’l [v*(t) — w(t)] is a positive solution for (1).
Lemma 6. Let Py = {v € P:v(t) > t* Pr17Y|o||,t € [0,1]}. Then T(P) C P,.

From Lemma 3(ii), we can obtain this lemma, so we omit its proof.

Note if Tv* = v* and
v* € Py then

1
05 (1) — w(t) > 18 P11 |p¥| —M/ G(t,s)ds

a—Py-1—1 ) S)aiﬁil fO tS dA (“_'B) ) S‘|
>t [II - M/( (& — B 1)+r(a—ﬁn_1)—F — B) [} t=Bra-1dA(t) |

Therefore, lfHU*H > MfO ((l 5)ep-1 o K(t,8)dA(ET (a—p) )ds ‘= Omxa,
0,1].

TE—Fo1) | Tlau 1) Tla— B) Jy £ Pn-17laA(r)
we have v*(t) > w( Asa result we seek the fixed point of T, with the norm greater

than ®M,K,A~

Lemma 7 (see [29]). Let Q) C E be a bounded open set and A : QN P — P a continuous, compact
operator. If there exists uy € P\ {0}, such that u — Au # pug forall p > 0 and u € 9Q NP,
then i(A, QAN P, P) = 0, where i denotes the fixed point index on P.

Lemma 8 (see [29]). Let Q C E be a bounded open set with 0 € Q. Suppose that A : QNP — P
is a continuous, compact operator. If u # pAu forallu € 0QNPand 0 < y < 1, then
i(A,QNP,P)=1.

3. Main Results

In this section, we first list our assumptions.
Hypothesis 3 (H3). There exist vy; > with Yy 7* # 0, such that (B, y,,..»,) > 1 and

lim inf f(t/xn/xi’l—ll"'/x]) +M

> 1, uniformly on t € [0,1].
TX1+72X0+ A uXn =400 Y1X1 + Y2Xo2 + 0+ YnXn

Hypothesis 4 (H4). There exist Q : [0,1] — Ry with fo HQ(t)dt < Oppk a, such that
flt,xn, xp—1,...,x1) + M < Q(f), t€[0,1],x; € [0,Opmkal,i=12,...,n

Hypothesis 5 (H5). There exist §; > with } ;" (512 # 0, such that r(Bg, 5, 5,) < 1and

<1, uniformly on t € [0,1].

lim sup flt,xpn,xp-1,...,x1) + M
5121483 Xg-Horet oo O1XT F02Xp + -+ 4 OnXy

Hypothesis 6 (H6). There exist Q : [0,1] — R with fo HQ(t)dt > Onik A, Such that
f(t,xn,xn,l,. . .,xl) +M > é(f), te [0,1],9(?1' S [O,G)M,K,A],i =12,...,n
Theorem 1. Suppose that (H1)—(H4) hold. Then, (1) has at least one positive solution.

Proof. Step 1. There exists a sufficient large number R; > Oy k 4, such that

v —To # 00p,0 > 0,0 € dBg, NP, (16)
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where 0y is a fixed element in Py, Bg, = {v € P : ||v|| < Ry}. Suppose the contrary i.e.,
there exist v; € dBg, N P, 01 > 0, such that

vy — Tvy = 010p. (17)
Together with Lemma 6, this implies that
v € Po. (18)
From (H3) there exists c¢; > 0, such that
flt,xn, xp-1,...,x1) + M >yx1+ 7200+ +ynxn—cp,t €[0,1],x; eRy,i=1,2,..,n.
Consequently, note that ||v1]| = Ry > Oy x 4 and by (17) we have

oi(t) 2 (Tor) (1)
= [ K[ (s B or(s) @Ol 1 P er(s) ~ (o)) o, foa(s) — wlo)]) + M]ds

r(“_,B) a—PBp_1— 10
R TTE | euaa
1
> [ K(ts) (1lf o1() = @(6)] v I P o1() = w(s)] 4+ + milor (6) — w(s)] — 1) ds
r([x_;B) a—PBp_1— lv
iyt | euhaa
-1 o — 1
> /0 [YuKu(t, T) + yn-1Kuy—1 (£, T) + - - - + 71 K(t, 7)][01(T) — w(7)]dT + %t“’ﬁnﬂ’l /0 v1(t)dA(t)

1
—c1/0 K(1,s)ds
1 Tla — g 1 [ 1 1
2/0 Ky e, 7n(t,T)01(T)dT+ﬁt Pu 1/0 vl(t)dA(t)fcl/O K(l,s)dsf/0 Koy yaeyn (L T)w(T)dT.
This implies that

U1 (t) 2 (B')’l/'YZ/-“r'YnUl)(t) — C2, (19)

where ¢; = 1 fol K(1,s)ds + fol Ky yayn (1, T)w(T)dT. Multiply both sides of (19) by
AP, 7a,...7. (t) and integrate over [0,1] and use (11) to obtain
1 1
/0 01()dPyy 27 () 2 /0 (Byp12,m 70 01) (D)% 75, (F) — €2

1 1 _ 1
= ./0 APy, 73,y (1) (/o Koy ypiyn (£,8)01(8)ds + m%_ﬁ"l_l /0 01(t)dA(t)> -

= /01 v1(s)d (/OS dt /01 Koy en (B DAYy 7,7 (T)>
+ /O ' vl(s)d(A(T) | /0 ' F(I‘;(liﬁ‘g))t"‘_ﬁ”1_1d1,1771,72,..‘,fy,1(t)) e

n—1
= <B:1/Vz/.~,%z Y1, 7200emr 01 > (t) —c2
1
= Borsmers) [ 01 OB 13,0 (1) = 2
Solving this inequality, we have

(%]

1
L) o) <

B’Y] I’YZI"'/’YVI) - 1 '
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Using (18), we have

1 -1
c2 a—B,_1-1
< th P17 t .
||UlH = T’(B'yl,'yz,..‘,yn) -1 |:/O lp71r72r-»-r7n( ):|

Note that if we can take

1 -1
Rl > max{@M,K,A, 7’( €2 |:/ tlx*ﬁnilildlp’hr’h,‘..ﬁn (t):| }
0

B’Yl/YZ:-u/Yﬂ) -1

and when v; € dBg, N P, (17) is not satisfied. Hence, we obtain (16), and Lemma 7
implies that
i(T,Bg, NP,P) =0. (20)

Step 2. We prove that
v # ¢Tv,v € dBg,,, , N P,0 € [0,1]. (21)
Suppose the contrary, i.e., there exist v, € E)B@M’K’ 4, NP, €[0,1], such that
vy = 02T0s.

This implies that
[o2]] < [[ T2 (22)

Note that ||v2|| = Op1 x 4 and from (H4) we have

(Toa)(6) = [ Glt,5)[f (5 1 [o2(6) (o)) Bt P [on(s) — (5] [ea(s) - o(s)]) + M]as

< /O1 G(1,5)Q(s)ds

<O M,K,A-
This contradicts with (22). Hence, (21) holds, and Lemma 8 implies that

i(T,Beyx, NP, P)=1 (23)
Combining (20) and (23) we obtain
i(T, (Bry\Bey o) NP, P) =i(T,Br, N P,P) —i(T,Bey, ,NP,P)=0-1=—1.

Then T has a fixed point in (Bg, \Be,,, ,) N P, i.e., there exists v* € (B, \Ba,, 4) N P,

such that Tv* = v*, and then u*(t) = Igfl [v*(t) — w(t)] is a positive solution for (1).
This completes the proof. [

Theorem 2. Suppose that (H1)—(H2) and (H5)—(H6) hold. Then, (1) has at least one positive solution.

Proof. Step 1. We claim that
v—Tv # go1,0 > 0,0 € 9Bg,,, , NP, (24)

where 07 € P is a fixed element. Suppose the contrary, i.e., there exist v3 € dBg,,, , N P
and 03 > 0, such that
v3 = Tvs + 03071.

This implies that

[03]| = [ Tvs + gson]| = [|Tos|| + [[ezonl| = [| T3 (25)
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Note that ||v3]| = Ok 4, and from (H6) we have

| Tos]| = max /01 G(t,s) {f(s, 151—1 [03(s) — w(s)},lgg—rﬂl [03(s) — w(s)],..., [v3(s) — w(s)]) + M} ds

€[0,1]
1
> t“*ﬁn*l/ G(1,5)0(s)d
= max | G(1,5)Q(s)ds
>®M,K,A-

This contradicts with (25). Therefore, Lemma 7 implies that
i(T, Boy, s NP, P) =0. (26)
Step 2. There exists a sufficient large number Ry > @y g 4 such that
v # ¢Tv,v € d0Bg, NP,0 € [0,1]. (27)
Suppose the contrary, i.e., there exist v4 € dBg, N P, 04 € [0, 1], such that
vy = 04Ty, (28)
This, combined with Lemma 6, implies that
vy € Pp.
By (H5) there exists c3 > 0 such that
fltxn, Xp—1,...,x1) + M < 61x1 +xp+ -+ dpxn+c3,t€[0,1],x;, e Ry, i=1,2,..,0n

Note that ||v4]] = Ry > Opk 4, and from (28) we have

0s(1) < (Toa) (1) < [ K1,5) [ (518 foa(s) — w(5)) 12 1 oa(s) —wl5) - oa(s) — w()]) + M s

F(“_ﬁ) x—PBn_1— 1U
e’ Ty 0A0
< /0-1 K(t,9) (3018 [04(5) — (&) + by 2 P o(s) — (s)] 4+ + & [oas) — o(s)]) s N
L T@=p) pi /01 o(DdA(E) + ¢ /01 K(1,s)ds

r(‘x - ,Bn—l)
= /01[5"K”(t' )+ Gp-1Kna (b, T) + - -+ S1K(E D]o(T)dT + %t**ﬁn—fl /01 v(t)dA(t) +c3 /01 K(1,5)ds
= '/01 K5, 5,,...8,(t, T)0(T)dT + 1_,(1;(0:7;15)1)1}“*5%1’1 /01 v(t)dA(t) + c3 /01 K(1,s)ds.

Multiply both sides of (29) by difs, 5,5, (t) and integrate over [0, 1] and use (11) to obtain

1

/01 v4(t)dps, 5,,..5, (1) < /1(351 50y 04) (E)AY5, 5, 5, (F )+Cs/ K(1,s)ds

= / vy(s ( / dt / Kal,az,...,(sn(t,T)dl/%s],(sz,...,zsn(T))

+/O v4(s)d ( / il "‘—,Bn l)t"‘ B 1—1d1,b5152 5, (t )) +63/0.1K(1,s)ds

1
. *
- <B51,52 ,,,,, 5111/J51/52/~--/5n’v4 +C3 0 K 1, S ds
1

=7(Bsy65,..0,) /01 4(1)ds, 55,6, (t) + C3 / K(1,s)ds.
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Consequently, we have

1
1 cs3 [y K(1,s)ds
t)d s (1) < =20 T
/0 04( ) lp51/52[~..,on( ) —_ 1 _ r(B§1,§2,"_,§n)

Note that vy € Py, and, thus,

C3f01 a—PBp_1—1 !
foul < 0 EIE ] iecpitag, s o)

(B§1/52! ;511

If we choose

-1
c3 fo (1,s)ds /1 s 1
R ) ,— P11y t ,
5> max{ MK A T r(Bas.s) Lo V51,69, (1)

then (28) is false. Hence, we obtain (27), and Lemma 8 implies that
i(T,Bg,NP,P) =1. (30)
Combining (26) and (30), we obtain
i(T, (BRZ\m) NP,P)=i(T,Bg, N P,P) —i(T, Bk NP,P)=1-0=1.

Then, T has a fixed point in (Bg,\Be,,  ,) N P, i.e., there exists v** € (Bg,\Be,, ,) N P

such that Tv** = v**, and then u**(t) = Igf’l [v**(t) — w(t)] is a positive solution for (1).
This completes the proof. [J

In what follows, we provide two examples to illustrate our main theorems.

Example 1. Let « =29,n =3, =05, =15=16,A(t) =t € [0,1]. Dlepuy)

" Ta-p)
% =0.99 > fol t=Pn1=14 A(t), and (H2) holds. From Remark 2, we have
! a—pB,_1—1
"By o) 2 /O Ky ppm(1,8)8" P17 ds.
Thus, there exist v; > with 2?21 71-2 # 0, such that ¥(By,,y,,95) > 1.
o, 1 _
Let f(t,x3,x2,%1) = %(71 + 724 73) Me T T (y1xq + yax2 + 3x3)M — M, x1 >
1,t €[0,1],x; € Ry,i =1,2,3. Then, when t € [0,1],x; € [0,Op k 4], we have
71@}\/1 I)?A 71@MKA
f(t,x3,x2,%1) + M (71 +72+73) MO} g 411+ 72+ 73)0 = Q(f),t€10,1].
f f (1,t)dt
0 0
Moreover,

.. t,x3,x3,x1) + M
liminf flt, x5, x5, 31)
T1X1+H 72X+ Y3X3— 400 Y1X1 + Y2X2 + Y3X3

1— X1
MKA

T
= lim inf Jo GAHat
T1X1+Y2X2 Y3 X3 +00 Y1X1 + Y2X2 + ¥3X3

Therefore, (H1), (H3)-(H4) hold. From Theorem 1, (1) has at least one positive solution.

(71 + 72 +73) Me 1 (y1x1 + Y2x2 + Y3x3)00

= o0, uniformly on t € [0,1].
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lim sup
61x1+0pxp— 00

References

f(t,xz,xl) + M
513{1 + 52x2 01x1+0px0— 400 513(1 + 52.7('2

Example 2. Leta« = 1.9,n = 2,81 = 0.2, = 0.8, A(t) = t,t € [0,1]. Then, (( [j*;g)l) =
?83 = 0.96 > fol t”‘*ﬂ"”’ldA(t), and (H2) holds. Note that in Remark 2 we have

e — 1
) < [ Kaslsits s g 5B [Laa
ne
Iffol Ks,5,(1,5)ds < 0.04, and then r(Bs, 5,) < 1. Therefore, there exist 61,6, > 0(6% +
63 #0) to ensure r(Bg, 5,) < 1.

Let f(t,xz,xl) = % eOmKk,a(01102) p— (0121 +02x0) +1 _ Ml > 1,t € [0/ 1]/x1,x2 c

R4. Then, when t € [0,1],x; € [0,Op g 4], we have

F(tx0,x1)+M > M eOMi,A(61+02) ,=Oni 4 (d1+02) _ C1OMmKA = Q(t) 0, 1.
3 G(1,t)dt 1 G, t)dt

Moreover,

7&@’\”/‘ eOMK, A (61102) p— (0131 +02x2) +t
Jy G(Lb)dt

= limsup =0, uniformly on t € [0,1].

Hence, (H1), (H5), and (H6) hold. From Theorem 2, (1) has at least one positive solution.

4. Conclusions

In this paper, we use the fixed point index to investigate the existence of positive
solutions for the higher-order Riemann-Liouville type fractional integral boundary value
problem (1) with fractional derivatives and a semi-positone non-linearity. We note that
in most integral boundary value problems, the usual approach in the literature is to incor-
porate integral boundary conditions into their Green functions (see Remark 1), so there
has been no real improvement in the approach. However, in this paper we consider a lin-
ear operator By, y, ..u,, and investigate the effects of integral boundary conditions on its
eigenvalues. Then, by using Gelfand’s formula and the Krein-Rutman theorem, we present
some properties of its first eigenvalue, and obtain our existence theorems for the considered
problem under conditions concerning the first eigenvalue of the linear operator By, y,,..
The results obtained here improve some results in the literature.
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