# Radar-Jamming Classification in the Event of Insufficient Samples Using Transfer Learning

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Radar-Jamming Signals

#### 2.1.1. Interrupted Sampling Repeater Jamming (ISRJ)

#### 2.1.2. Dense False Target Jamming (DFTJ)

#### 2.1.3. Smart Noise Jamming (SNJ)

#### 2.1.4. Blocking Jamming (BJ) and Spot Jamming (SJ)

#### 2.1.5. Linear Sweep Jamming (LSJ):

#### 2.2. Joint Time–Frequency Analysis

#### 2.2.1. Short-Time Fourier Transform (STFT)

#### 2.2.2. Wigner–Ville Distribution (WVD)

#### 2.2.3. Smoothed Pseudo-WVD (SPWVD)

#### 2.3. Pretrained Network Modification

#### 2.3.1. Convolutional Layers

#### 2.3.2. Dropout Layers

#### 2.3.3. Fully Connected Layers

## 3. Results

#### 3.1. Simulation of 1D Radar-Jamming Signals

#### 3.2. Jamming TFI Processing

#### 3.3. Modification of Deep Learning Networks

#### 3.4. Comparisons

#### 3.4.1. The More-Efficient SqueezeNet

#### 3.4.2. Comparison between STFT and WVD

#### 3.4.3. SPWVD Method Performed Better in the Event of Insufficient Samples

## 4. Conclusions and Discussion

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Li, N.-J.; Zhang, Y.-T. A Survey of Radar ECM and ECCM. IEEE Trans. Aerosp. Electron. Syst.
**1995**, 31, 1110–1120. [Google Scholar] [CrossRef] - Guo, J.M.; Li, J.X.; Lv, Q. Survey on Radar ECCM Methods and Trends in Its Developments. In Proceedings of the CIE International Conference of Radar, Shanghai, China, 16–19 October 2006; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Cardillo, E.; Cananzi, R.; Vita, P.; Caddemi, A. Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems. Appl. Sci.
**2022**, 12, 1524. [Google Scholar] [CrossRef] - Chen, F.; Li, R.; Ding, L.; Liu, L.; Dai, L.; Deng, G. A Method against DRFM Dense False Target Jamming Based on Jamming Recognization. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Wen, C.; Peng, J.; Zhou, Y.; Wu, J. Enhanced Three-Dimensional Joint Domain Localized Stap for Airborne FDA-MIMO Radar under Dense False-Target Jamming Scenario. IEEE Sens. J.
**2018**, 18, 4154–4166. [Google Scholar] [CrossRef] - Tao, R.; Zhang, N.; Wang, Y. Analysing and Compensating the Effects of Range and Doppler Frequency Migrations in Linear Frequency Modulation Pulse Compression Radar. IET Radar Sonar Navig.
**2011**, 5, 12–22. [Google Scholar] [CrossRef] - Shao, G.; Chen, Y.; Wei, Y. Convolutional Neural Network-Based Radar Jamming Signal Classification with Sufficient and Limited Samples. IEEE Access
**2020**, 8, 80588–80598. [Google Scholar] [CrossRef] - Liu, H.; Zhang, H.; He, Y.; Sun, Y. Jamming Strategy Optimization through Dual Q-Learning Model against Adaptive Radar. Sensors
**2022**, 22, 145. [Google Scholar] [CrossRef] [PubMed] - Li, Z.; Li, J.; Liu, S.; Yang, W.; Zhao, X. Design and Implementation of Operational Effectiveness Evaluation Simulation System for ECM. In Proceedings of the First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC’06), Beijing, China, 30 August–1 September 2006; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2006; pp. 95–98. [Google Scholar]
- Nallabolu, P.; Li, C. A Frequency-Domain Spoofing Attack on FMCW Radars and Its Mitigation Technique Based on a Hybrid-Chirp Waveform. IEEE Trans. Microw. Theory Tech.
**2021**, 69, 5086–5098. [Google Scholar] [CrossRef] - Wu, Q.; Zhao, F.; Ai, X.; Liu, X.; Xiao, S. Two-Dimensional Blanket Jamming Against ISAR Using Nonperiodic ISRJ. IEEE Sens. J.
**2019**, 19, 4031–4038. [Google Scholar] [CrossRef] - Yuan, H.; Wang, C.Y.; Li, X.; An, L. A Method against Interrupted-Sampling Repeater Jamming Based on Energy Function Detection and Band-Pass Filtering. Int. J. Antennas Propag.
**2017**, 2017, 6759169. [Google Scholar] [CrossRef][Green Version] - Ren, J.; Wang, P. Novel Smart Noise Jamming Suppression Method Based on Smeared Spectrum. Prog. Electromagn. Res. Lett.
**2017**, 67, 81–88. [Google Scholar] [CrossRef][Green Version] - Hao, H.; Zeng, D.; Ge, P. Research on the Method of Smart Noise Jamming on Pulse Radar. In Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication, and Control, IMCCC, Qinhuangdao, China, 18–20 September 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1339–1342. [Google Scholar]
- Liu, S.; Liu, H.; Yang, C.; Yang, S.; Wang, M. Separable Attention Capsule Network for Signal Classification. IEEE Access
**2020**, 8, 181744–181750. [Google Scholar] [CrossRef] - Cardillo, E.; Li, C.; Caddemi, A. Embedded Heating, Ventilation, and Air-Conditioning Control Systems: From Traditional Technologies toward Radar Advanced Sensing. Rev. Sci. Instrum.
**2021**, 92, 061501. [Google Scholar] [CrossRef] [PubMed] - Zhu, J.; Zhao, Y.; Tang, J. Automatic Recognition of Radar Signals Based on Time-Frequency Image Character. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013; pp. 1–6. [Google Scholar]
- Liu, Q.; Zhang, W. Deep Learning and Recognition of Radar Jamming Based on CNN. In Proceedings of the 2019 12th International Symposium on Computational Intelligence and Design, ISCID, Hangzhou, China, 14–15 December 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; Volume 1, pp. 208–212. [Google Scholar]
- Brynolfsson, J.; Sandsten, M. Classification of One-Dimensional Non-Stationary Signals Using the Wigner-Ville Distribution in Convolutional Neural Networks. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 326–330. [Google Scholar]
- Zhang, Z.; Wang, C.; Gan, C.; Sun, S.; Wang, M. Automatic Modulation Classification Using Convolutional Neural Network with Features Fusion of Spwvd and Bjd. IEEE Trans. Signal Inf. Process. Over Netw.
**2019**, 5, 469–478. [Google Scholar] [CrossRef] - Shao, G.; Chen, Y.; Wei, Y. Deep Fusion for Radar Jamming Signal Classification Based on CNN. IEEE Access
**2020**, 8, 117236–117244. [Google Scholar] [CrossRef] - Lv, Q.; Quan, Y.; Feng, W.; Sha, M.; Dong, S.; Xing, M. Radar Deception Jamming Recognition Based on Weighted Ensemble CNN With Transfer Learning. IEEE Trans. Geosci. Remote Sens.
**2022**, 60, 1–11. [Google Scholar] [CrossRef] - Wang, C.; Wang, J.; Zhang, X. Automatic Radar Waveform Recognition Based on Time-Frequency Analysis and Convolutional Neural Network. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2437–2441. [Google Scholar]
- Huang, L.; He, A.; Zhai, M.; Wang, Y.; Bai, R.; Nie, X. A Multi-Feature Fusion Based on Transfer Learning for Chicken Embryo Eggs Classification. Symmetry
**2019**, 11, 606. [Google Scholar] [CrossRef] - Li, X.; Fu, D.; Mou, W.; Liu, W.; Wang, F. An Identification Method of Navigation Signal Interference Type Based on SqueezeNet Model. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; pp. 875–880. [Google Scholar]
- Iqbal, Y.; Jawad, M. An Effective Coherent Noise Jamming Method for Deception of Wideband LFM Radars. In Proceedings of the 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2020; pp. 622–626. [Google Scholar]
- Wang, X.; Huang, G.; Zhou, Z.; Gao, J. Radar Emitter Recognition Based on the Short Time Fourier Transform and Convolutional Neural Networks. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar]
- Wang, X.; Ying, T.; Tian, W. Spectrum Representation Based on STFT. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI, Chengdu, China, 17–19 October 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 435–438. [Google Scholar]
- Liang, Z.; Lv, M. A Joint Rapid Parameter Estimate Method of Frequency-Hopping Signals. In Proceedings of the 2012 International Conference on Control Engineering and Communication Technology, ICCECT 2012, Shenyang, China, 7–9 December 2012; pp. 952–954. [Google Scholar]
- Yuan, J.; Bu, Y.; Yang, S.; Chi, Q. Refined Recognition and Intelligent Smart Interference of Radar Signal. In Proceedings of the 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 17–19 October 2019; pp. 616–622. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Available online: http://code.google.com/p/cuda-convnet/ (accessed on 9 March 2022).
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv
**2016**, arXiv:1602.07360. [Google Scholar]

**Figure 3.**The real-part waveforms of 1D active jamming signals. In each subgraph, the abscissa is discrete time, and the ordinate is normalized amplitude. (

**a**) Signal without jamming, (

**b**) Interrupted sampling repeater jamming, (

**c**) Dense false target jamming, (

**d**) Smart noise jamming, (

**e**) Blocking jamming, (

**f**) Spot jamming, (

**g**) Linear sweep jamming, (

**h**) DFTJ + SNJ, (

**i**) ISRJ + LSJ.

**Figure 5.**Three kinds of TFIs for nine types of radar-jamming signals. (

**a**) Pure noise, (

**b**) ISRJ, (

**c**) DFTJ, (

**d**) SNJ, (

**e**) BJ, (

**f**) SJ, (

**g**) LSJ, (

**h**) DFTJ + SNJ, (

**i**) ISRJ + LSJ.

Jamming | Parameter | Value |
---|---|---|

ISRJ | JNR | 30~60 dB |

Sampling duration | 5~10 μs | |

Pulse repetition | 1~4 | |

DFTJ | JNR | 30~60 dB |

False targets | 3~5 | |

False target delay | 1~10 μs | |

SNJ | JNR | 30~60 dB |

Sampling duration | 5~10 μs | |

Pulse repetition | 1~4 | |

BJ | JNR | 30~60 dB |

Jamming bandwidth | 50~80 MHz | |

SJ | JNR | 30~60 dB |

Jamming bandwidth | 20~40 MHz | |

LSJ | JNR | 30~60 dB |

Sweep bandwidth | 20 MHz | |

Sweep cycle | 40~80 μs |

Layer | Changed (Y/N) | Note | |
---|---|---|---|

End-5 | Drop | Y | 60% dropout |

End-4 | Conv | Y | nine 1-by-1 convolutions |

End-3 | ReLU | N | ReLU |

End-2 | Pool | N | 2-D global average pooling |

End-1 | Prob | N | softmax |

End | Output | Y | 1 × 9 |

Jamming | WVD | SPWVD |
---|---|---|

a | 99.98 ± 0.04 | 100.0 ± 0.00 |

b | 83.50 ± 0.00 | 99.86 ± 0.26 |

c | 100.0 ± 0.00 | 100.0 ± 0.00 |

d | 100.0 ± 0.00 | 96.30 ± 3.14 |

e | 100.0 ± 0.00 | 100.0 ± 0.00 |

f | 100.0 ± 0.00 | 97.60 ± 0.40 |

g | 99.16 ± 1.65 | 99.90 ± 0.14 |

h | 99.96 ± 0.05 | 98.38 ± 0.61 |

i | 96.88 ± 3.97 | 98.34 ± 2.53 |

OA (%) | 97.71 ± 0.38 | 98.92 ± 0.49 |

Training Ratio | ||||
---|---|---|---|---|

TFIs | 0.5% | 1% | 3% | 5% |

WVD | 89.07 ± 1.21 | 97.71 ± 0.38 | 99.82 ± 0.06 | 99.88 ± 0.02 |

SPWVD | 91.98 ± 0.76 | 98.92 ± 0.49 | 99.41 ± 0.04 | 99.79 ± 0.12 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hou, Y.; Ren, H.; Lv, Q.; Wu, L.; Yang, X.; Quan, Y.
Radar-Jamming Classification in the Event of Insufficient Samples Using Transfer Learning. *Symmetry* **2022**, *14*, 2318.
https://doi.org/10.3390/sym14112318

**AMA Style**

Hou Y, Ren H, Lv Q, Wu L, Yang X, Quan Y.
Radar-Jamming Classification in the Event of Insufficient Samples Using Transfer Learning. *Symmetry*. 2022; 14(11):2318.
https://doi.org/10.3390/sym14112318

**Chicago/Turabian Style**

Hou, Yanbin, Huidong Ren, Qinzhe Lv, Lili Wu, Xiaodong Yang, and Yinghui Quan.
2022. "Radar-Jamming Classification in the Event of Insufficient Samples Using Transfer Learning" *Symmetry* 14, no. 11: 2318.
https://doi.org/10.3390/sym14112318