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Abstract: Cyber-attacks on the numerous parts of today’s fast developing IoT are only going to
increase in frequency and severity. A reliable method for detecting malicious attacks such as botnet in
the IoT environment is critical for reducing security risks on IoT devices. Numerous existing methods
exist for mining IoT networks for previously discovered patterns that may be exploited to improve
security. This study used a hybrid deep learning approach, namely the CNN-LSTM technique, to
detect botnet attacks. Any software that infiltrates a computer system or is installed there without
the administrators’ knowledge or permission is malicious. There is a wide range of viruses that
cyber-criminals use to further their nefarious ends. A revolutionary deep learning system has been
developed to counteract the increasing quantity of harmful programs. The system takes advantage
of NLP methods as a baseline, mixes CNNs and LSTM neurons to capture local spatial correlations,
and learns from successive long-term dependencies. Spatial invariance, often known as symmetry, is
the property wherein the dataset size remains constant throughout iterations of an algorithm while
undergoing various transformations. Therefore, automated extraction of high-level abstractions
and representations aids in the malware categorization process. When compared to its predecessor
research study, the current level of categorization accuracy is significantly greater than 0.81. The
proposed CNN-LSTM method obtained an R2 = 99.19% in the dataset, with a correlation coefficient
for the CNN-LSTM technique of R2 = 100% utilizing the provided dataset. The symmetry correlation
of the CNN-LSTM, which illustrates that the CNN-LSTM method has the highest detection accuracy,
at 99%, among the other malware detection methods such as the SVM and DT. The rest of classifiers
had an accuracy of 98% for DT, and 95% for SVM. The accuracy of the LSTM model is 99%, the
precision of the CNN-LSTM is 99%, recall is 99% and F1 score is 1.

Keywords: CNN-LSTM; cyber-attacks; malware; Iot; malicious threats; machine learning algorithms;
cyber security; suspicious activity; cyber threats; malware detection

1. Introduction

Cyberattacks from hackers are currently the leading cause of concern in the techno-
logical world. The word refers to the action of exploiting a security flaw for malicious
purposes, such as gaining unauthorized access to data, changing a code, or destroying
the system. Malicious software is one example of a cyberattack. Malware is any program
or collection of instructions designed to damage a computer, user, business, or computer
network [1]. Malicious software, or malware, is any program designed to cause harm, such
as a computer virus, Trojan horse, ransomware, spyware, adware, rogue program, data
eraser, scareware, and many more [2]. Dangerous software is any piece of code that runs
on a computer without the user’s knowledge or consent. Malware detection modules are
designed to assess whether or not a specific piece of software or network connection consti-
tutes a security risk based on the data they have collected and been educated on [3]. Take,
as an example, a machine learning system that can explain the overarching principles it has
observed. Machine learning algorithms may improve their prognostic skills by analyzing
the data from their training sessions
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A. Contribution

• The main focus of this research study is to use the CNN-LSTM method and detect the
malware of IoT devices in the emerging technology [4].

• The proposed CNN-LSTM method aims to detect malware in real-time.
• The author divided the dataset in to two sets, one set is employed for the training the

dataset which is composed of 70% of the data, the second set represents 30% of the
data and is used to test the trained CNN-LSTM model.

• Our deep learning model achieves an accuracy rate of 99% without the use of any
complicated feature engineering.

Worldwide, cybercriminals pose a threat to businesses, governments, and individuals
by spreading malicious software and stealing private information [5]. Every day, hundreds
of hackers employ malicious software to breach networks, steal data, and make unlawful
financial transactions. Because of this, the security of personal information is becoming
a pressing concern in the scientific world. This study uses data mining and machine
learning classification methods to identify malicious software and prevent its access to
sensitive information [6]. To accomplish this, we perform an analysis of signature-based and
anomaly-based features in order to provide a trustworthy and effective way for malware
classification and detection. The experimental results have proven that the proposed
strategy is superior to the alternatives.

Multiple cyberattacks, such as those depicted in Figure 1, can be launched in the
context of cyberwarfare. Today’s malware is prevalent and complex; as a result, it presents
a significant threat to the security of online platforms [7]. Malicious software, or malware,
is software with the intent of harming a computer or network in some way, most com-
monly for financial gain. Malware attacks increasingly target IoT devices, medical gear,
and infrastructure control systems in both natural and constructed settings [8]. Modern
spyware is notoriously hard to detect since it constantly updates its code and behavior. The
proliferation of malware has reached a stage where traditional signature-based defenses are
ineffective. There needs to be a broader set of safeguards in place instead of just ignoring
these cyber threats [9].
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The identification and classification of malware have become more difficult tasks in
recent years [9]. Polymorphism and metamorphism are only two of the many strategies
used by malware writers to confuse detectors and avoid “pattern matching” detection.
Malware analysis might benefit from monitoring actual infection rates and pattern mining
based on the virus changing behaviors in the field [10].
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Malware attackers have developed a number of automated malware-generating toolk-
its, allowing for the quick manufacture of malicious programs with an infinite number of
variations that may easily circumvent standard pattern matching detections. Since this is
the case, we need cutting-edge methods to automatically analyze malware, find trends,
and stop common ways of avoiding detection. In recent years, deep learning’s popularity
has surged as a tool for tackling difficult pattern recognition and machine learning prob-
lems [11]. With the help of these local representations of features, it is possible to learn
and remember higher-level abstractions. In this paper, we compare the order of API calls
to the syntax of a sentence. We proposed a new model for malware classification that
makes use of deep neural networks and a model of natural language processing to improve
classification accuracy.

The number of organizations (including corporations, banks, universities, social media
accounts, and government departments) that rely on internet connectivity is increasing
at an exponential rate. This [12] growth might be jeopardized by cybercriminals who use
malicious software and network threats in their attacks. When triggered, malware instructs
a computer to perform abnormal operations, which may compromise the victim’s data
or software. In recent years, malicious software (or “malware”) has become increasingly
pervasive and damaging to computer systems worldwide. Every day, thousands of new
malicious programs are created. Figure 2 depicts annual data from malware attacks over the
last decade, indicating that more than 900 million pieces of malware were in circulation in
2019, representing a nearly 2000% increase from 2010. Even the smallest businesses may lose
millions of dollars due to malware infestations. The identification of viruses requires more
than merely routing protocols, which is a major drawback. Therefore, machine learning is
used by researchers and antivirus vendors to detect and classify infections. Many studies
have focused on binaries as a subset of malware because of how frequently they are used
to infect systems. Malware evaluation may be conducted both statically and dynamically.
The malware’s dynamic behavior is analyzed in a sandbox while static analysis is utilized
to extract features of the virus that may be used for detection or classification by machine
learning [13].
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2. Literature Review

Deep learning is a subfield of machine learning that has garnered increasing attention
from academic and corporate researchers in recent years. Originally developed for use in
computer vision, deep learning has now expanded to other fields [14]. Voice recognition
and NLP used as extra feature engineering methods are two areas where deep learning has
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demonstrated very strong potential [15]. Deep learning is different from more traditional,
shallow machine learning methods in that it can benefit from starting with the raw data
itself, thereby doing away with the time-consuming task of feature generation by hand [16].
Deep neural network CNN-LSTMs also collect representations from different levels, which
are abstractions of different layers, by stacking several layers in a hierarchical way. Tuning
parameters across several layers allows for training a model with more granularity [17].

Several types of deep learning networks have been used in a wide range of settings,
employing a broad variety of datasets [18]. Creating networks and unit operations in
a number of different methods is required for capturing and learning features from a
wide range of sources [19]. For example, CNNs (convolutional neural networks) excel in
processing visual and aural data because of their capacity to operate in a two-dimensional
plane. RNNs have excelled in the field of natural language processing. Even with a small
amount of training data, RBM (restricted Boltzmann machines)-built generic DBN (deep
belief networks) are good at modeling and fine-tuning convergence speed [20]. Malware
is a major threat to cyber security on all scales, if not identified quickly after it has been
introduced. Malware is proliferating at an alarming rate, making it difficult for even
highly experienced network administrators to recognize it, much less typical internet
users. Traditional detection approaches focused on feature extraction and comparison are
becoming more useless as a result [21].

Chen’s [22] research results depict that the accuracy of the Chen [22] proposed CNN
method for malware detection is 91.01%. Malicious software comes in various forms,
including source code, binary files, Perl scripts, shell scripts, instructions, and others, and
its complexity has only grown over the years, making detection even more of a Herculean
task. Because of the added intricacy, mistakes in judgement are punished more heavily.

The Chen [22] CNN method testing accuracy, which is 91.01% even when the FPR is
21%, remained same as in training of the CNN-LSTM method for malware detection. In
this study, convolutional neural networks (CNNs), one of the most successful deep learning
methodologies, are used. The experimental findings show a success rate of over 90% in
differentiating malicious from safe programs. In addition to recognizing binary and source
code, CNN was able to identify harmful code that had been introduced into otherwise safe
code, as shown by the experiment. In today’s tough network environment, IT workers need
a way to take preventative steps and plan for future cyberattacks, so this study suggests a
practical way to find malware at its source.

Luo proposed a CNN-LSTM method tested on the small dataset. It is clear from the
results that by decreasing FPR to 0.2% the accuracy of the Chen [22] proposed LSTM-CNN
method increased to 99.6%, but this accuracy was recorded when the dataset is completely
normalized and the dataset is small.

3. Research Problem

Threat components of malware can be identified by static analysis or dynamic analysis.
The goal of both static analysis and the reverse engineering technique used to decompile
the virus is to parse the malware files and locate the malicious strings inside them. Dynamic
analysis, on the other hand, involves keeping an eye on malicious code even as it runs
in a secure setting such as a virtual machine. Although each approach has benefits and
drawbacks, using both is recommended when analyzing malware. If malware detection
were to improve, it would be because fewer harmful traits were used in its creation. We
worry that a plethora of features are being utilized to identify malware when a smaller set
of traits with greater reliability is sufficient. Finding potential techniques or algorithms is
the first step in picking which harmful features to employ [23]. There needs to be a way to
both greatly reduce the number of features needed to find malware and find malware that
has never been seen before.
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4. Research Framework

Deep learning requires no labeled information to identify its next move. The CNN-
LSTM method reduces the need for time-consuming feature engineering, which is needed
for shallow machine learning techniques but might not be able to pull out enough useful
features for classification tasks, as well as relationships between variables including depen-
dency, consistency, and structural information in the collected data [24]. When trained on
the same data, CNNs and RNNs may pick up representations from different angles and
capture different attributes at higher levels. Convolutional neural networks (CNNs) excel
at capturing local spatial correlation, but recurrent neural networks (RNNs) are particularly
strong at gathering temporally sequential data. The CNN’s strength in this area lies in
its ability to extract features at each position in the sequence while sliding over the entire
series via convolution operations between filters and the sequence, making it ideal for
modeling the API call sequence. Long short-term memory (LSTM) can automatically figure
out long-term relationships from a set of random data points [25].

An overall representation of the suggested mixed deep model is depicted in Figure 3,
combining both the temporal and geographical interactions of the CNN-LSTM, at the micro
and macro levels. The CNN-LSTM model solves the problem of classifying malware by
automatically abstracting and expressing high-level n-gram API requests as sequential
feature maps.
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5. Research Methodology

Figure 4 depicts a high-level outline of our machine learning-based malware detec-
tion process. Classifier training, advanced malware detection, and feature selection from
promising datasets all figure into this procedure. The methodology that was used in this
investigation is described in further depth below [26].
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5.1. Dataset

The study relied entirely on data collected on the website Kaggle. Various pieces of
malware have stolen log information, which is included in many of the files in the collection.
Models may be trained using the recovered log features in a wide variety of ways [22]. It
was discovered that five distinct families of malware were included in the samples. Over
43867 individual pieces of information acquired from diverse sources are included. There
are 100 columns and 5 rows in the data set as shown in Figure 5 [27].
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5.2. Features Extraction

For feature extraction from the dataset, we are using utilizing deep neural networks
(the author used embedded CNN layers) for feature extraction which is illustrated in
Figure 6. In the twenty-first century, it is not unusual for datasets to include tens of
thousands of features [28]. As the number of features included in a machine learning model
grows, the phenomenon of overfitting has come into sharper focus in recent years. As a
workaround, we condense the original, larger number of qualities into a more manageable
set by selecting just the most pertinent details to provide. The goal of this study is to
improve the existing dataset by picking out the most important static and dynamic features
as shown in Figure 6 and getting rid of the rest [29].
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5.3. Features Selection

Feature selection follows feature extraction, which entails the discovery of even addi-
tional features [30]. Choosing features from a pool of newly recognized attributes is called
feature selection, and it plays a significant role in improving accuracy, simplifying the
model, and reducing overfitting. In the past, researchers have attempted to spot malicious
software by employing a wide variety of feature categorization algorithms. In this research,
the feature rank approach is used a lot because it works well to choose relevant features for
building malware detection models [31].

6. Results and Discussion

The training and testing phases constitute the backbone of any classification method.
In order to train the system, it must be exposed to both harmful and safe data [31]. A
classifier may be trained using machine learning techniques to automatically generate
reliable predictions. With each new set of labeled data, the classifier, the CNN-LSTM model,
improves its performance. The classifier is given a collection of new files, some of which
are malicious and some of which are not, and is asked to assign a category to each one
during the validation phase as shown in Figure 7 [32].
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Figure 7 illustrate the CNN-LSTM model. The CNN-LSTM model employs dropout at
the last fully connected layer. Dropout does not seem to be a method for regularization as
much as it seems to be a way to add layers to the whole model as illustrated in Figure 8 [33].

This section contains the experimental findings from our assessment of the effective-
ness of the malware categorization and detection method we suggested [34]. The generated
malware and cleanware datasets are used in experiments as shown in in Figure 8. In this
work, we look at malware and put it into categories by using supervised machine learning
with the CNN-LSTM classifier [35].The results see Figure 9.
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Figure 10 illustrates two trending lines: the red line represents the training of the
dataset and the blue line represents the validation of the dataset [28]. After balancing the
dataset, the precision of the training of the proposed model is 0.95, recall 0.87, and the
average weighted accuracy is 99% [36].
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Figure 10. CNN-LSTM model report.

Figure 11 shows the accuracy, recall, and F1 score of the proposed CNN-LSTM model.
This study highlights the increasing attention that academics are paying to ML algorithmic
approaches for malware detection [37]. Here, we offer a safeguard that uses three distinct
machine learning (ML) algorithms to determine which is the most effective in detecting
malware. According to the findings, the CNN-LSTM outperforms other classifiers in terms
of detection accuracy, with 99% accuracy, 99% precision, 99% recall, and an F1 score of
1 [38].
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Figure 11 helps us visualize the confusion matrix of the CNN-LSTM proposed model.
The prevalence and sophistication of malicious software are both on the rise. In this
experiment, we compare an ML classifier trained on Python language on Google Colab
python compiler [38,39]. The data sets are analyzed using static analysis against another
ML classifier trained on other data sets in order to evaluate and quantify the detection
accuracy of each [40]. Thanks to our research, machine learning algorithms can now
identify harmful data from safe data. The CNN-LSTM machine learning approach’s 99%
accuracy was the best of any classifier we tested. The results of the experiments show that
proposed CNN-LSTM model for malware detection accuracy is 99% when tested on python
language [41].
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Table 1 illustrates that the CNN-LSTM model has the highest detection accuracy (99%)
among the other malware detection methods. DT accuracy is 98% and SVM accuracy
is 95%.

Table 1. CNN-LSTM method comparison.

Method TPR FPR Detection Accuracy

CNN-LSTM 1 0.0031 99%

DT 0.99 0.0039 98%

SVM 0.97 0.0043 95%

Limitation

Raw binary files’ semantics are not taken in to account. The spatial patterns of each
class of malware are in the raw binary files, and our tests show that deep learning models
can use these patterns to correctly identify the class of a malware file.

7. Conclusions

In this research study, through the utilization of the CNN-LSTM to overcome major
malware detection deficiencies, including the inefficiency of human feature building and
the limitations of existing learning algorithms, we built a novel deep neural network
ensemble by stacking CNN and LSTM techniques. The proposed CNN-LSTM method
is used for the detection of advance malware without any feature engineering. Table 1,
provided above, illustrates that the CNN-LSTM has the highest detection accuracy, which
is 99%, among the other malware detection methods. For the rest of the classifiers, accuracy
is 98% for DT and 95% for SVM. The accuracy of the LSTM model is 99%, precision of the
CNN-LSTM is 99%, recall accuracy is 99%, and F1 score is 1. With the proposed CNN-LSTM
model, malware detection accuracy is improved during training to around 1, with testing
accuracy extremely close to training accuracy. All of this is possible thanks the interplay
between the skills of a CNN-LSTM to extract spatially local correlations and the ability of a
CNN-LSTM to represent sequences and learn from long-term dependencies.
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