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Abstract: The function PL(z) =
√

1 + z maps the unit disc D = {z ∈ C : |z| < 1} to a leminscate
which is symmetric about the x-axis. The conditions on the parameters α and n, for which the
associated Laguerre polynomial (ALP) Lα

n maps unit disc into the leminscate domain, are deduced in
this article. We also establish the condition under which a function involving Lα

n maps D to a domain
subordinated by φNe (z) = 1− z + z3/3, φe(z) = ez, and φA(z) = 1 + Az, A ∈ (0, 1]. We provide
several graphical presentations for a clear view of some of the obtained results. The possibilities for
the improvements of the results are also highlighted.
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1. Introduction

The generalized [1] or associated Laguerre polynomial (ALP) Lα
n(z) is the solution of

the differential equation

zy′′(z) + (α + 1− z)y′(z) + ny(z) = 0, α ∈ R, (1)

which is represented by the series

Lα
n(z) =

n

∑
i=0

(−1)i
(

n + α
n− i

)
zi

i!
=

(1 + α)n

n! 1F1(−n; 1 + α; z), (2)

where 1F1 is the confluent hypergeometric function, and (a)n is the well-known Pochham-
mer symbol defined as

(a)0 = 1, (a)n = a(a + 1) . . . (a + n− 1), n ∈ N.

The first few terms of the polynomial are given as

Lα
0(z) = 1,

Lα
1(z) = −z + α + 1,

Lα
2(z) =

z2

2
− (α + 2)z +

(α + 1)(α + 2)
2

,

Lα
3(z) = −

z3

6
+

(α + 3)z2

2
− (α + 2)(α + 3)z

2
+

(α + 1)(α + 2)(α + 3)
6

.

ALP has its own significance in various branches of mathematics and physics and has
a wide contribution in different aspects in mathematical research. The associated Laguerre
polynomials are orthogonal with respect to the gamma distribution e−zzαdz on the interval
(0, ∞). The generalized Laguerre polynomials are widely used in many problems of
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quantum mechanics, mathematical physics and engineering. In quantum mechanics, the
Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of
variables in spherical coordinates, and the radial part of the wave function is an ALP [2].
In mathematical physics, vibronic transitions in the Franck–Condon approximation can
also be described by using Laguerre polynomials [3]. In engineering, the wave equation is
solved for the time domain electric field integral equation for arbitrary shaped conducting
structures by expressing the transient behaviors in terms of Laguerre polynomials [4]. The
monographs by Szegó [5], and Andrews, Askey, and Roy [6] include a wealth of information
about ALP and other orthogonal polynomial families.

In this study, we consider

Fα,n(z) =
n!

(α + 1)n
Lα

n(z), z ∈ D. (3)

The function Fα,n satisfies the normalization condition Fα,n(0) = 1 and is a solution of
the differential equation

z2y′′(z) + (α + 1− z)zy′(z) + nzy(z) = 0. (4)

The following four functions are also important for this study.

PL(z) =
√

1 + z, φe(z) = ez, φA(z) = 1 + Az and φNe(z) = 1 + z− z3

3 .

The function PL maps D to a leminscate, φA shifted D to a disc center at (1, 0) with
radius A ∈ [0, 1), φe maps D to the exponential domain, and φNe maps D to the neuphroid
domain as shown in Figure 1.

e
z

1+ z

1+  A z, A=1

1+ z - 
z

3

3

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

Figure 1. Boundary of φNe (D), PL(D), φA=1(D) and φe(D).

Let A denote the class of functions f in the open unit disk D = {z : |z| < 1} and
normalized by the conditions f (0) = 0 = f ′(0)− 1. If f and g are analytic in D, then f is
subordinate to g, written f ≺ g, or f (z) ≺ g(z), z ∈ D if there is an analytic self-map ω of
D satisfying f (0) = g(0) and f (z) = g(ω(z)), z ∈ D. Especially, if g(z) is univalent in D,
then f (z) ≺ g(z) if and only if f (0) = g(0) and f (D) ⊂ g(D). It is worth noting here that
PL, φNe , φA and φe are not subordinate to each other as it is clear from Figure 1 that the
image of D by any one of these functions does not contain the image by others. Differential
subordination is an important technique to study geometric functions theory. Details about
this technique can be seen in [7,8].
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Denote by S∗ and C, respectively the important subclasses ofA consisting of univalent
starlike and convex functions. Geometrically, f ∈ S∗ if the linear segment tw, 0 ≤ t ≤ 1,
lies completely in f (D) whenever w ∈ f (D), while f ∈ C if f (D) is a convex domain.
Related to these subclasses is the Cárathèodory class P consisting of analytic functions p
satisfying p(0) = 1 and Re p(z) > 0 in D. Analytically, f ∈ S∗ if z f ′(z)/ f (z) ∈ P , while
f ∈ C if 1 + z f ′′(z)/ f ′(z) ∈ P . It is well-known that the function z(1− z)−2 is starlike and
z(1− z)−1 is convex in the unit disk D.

A function f ∈ A is lemniscate convex if 1 + z f ′′(z)/ f ′(z) lies in the region bounded
by right half of lemniscate of Bernoulli given by {w : |w2 − 1| = 1}, which is equivalent to
the subordination 1+ z f ′′(z)/ f ′(z) ≺ PL(z). Similarly, the function f is lemniscate starlike
if z f ′(z)/ f (z) ≺ PL(z). On the other hand, the function f ∈ A is lemniscate Carathéodory
if f ′(z)) ≺ PL(z). Clearly, a lemniscate Carathéodory function is a Carathéodory function
and hence is univalent.

The sufficient conditions of starlikeness associated with lemniscate of Bernoulli are
obtained in [9]. A similar study associated with the exponential domain is conducted
in [10]. One of the motivations of this work is the nephroid curve(

(u− 1)2 + v2 − 4
9

)3
− 4

3
v2 = 0.

Recently, the nephroid curve received attention of researchers in geometric functions
theory thanks to the work by Wani and Swaminathan [11–13]. This two-cusped kidney-
shaped curve was first studied by Huygens and Tschirnhausen in 1697. However, the
word nephroid was first used by Richard A. Proctor in 1878 in his book The Geometry of
Cycloids. For further details related to the nephroid curve, we refer to [11,14]. The radius of
starlikeness and convexity for functions associated with the nephroid domain is discussed
in [13]. In [12], the authors discuss the starlike and convex functions associated with the
nephroid domain. The Fekete–Szegö kind of inequalities for certain subclasses of analytic
functions in association with the nephroid domain is studied in [15].

Significant findings from the articles [9,10] are summarized, respectively, in Lemma 1
and Lemma 2, while Lemma 3 and Lemma 4 highlights the results from the reference [11].
The special functions, such as Bessel, Struve, Confluent hypergeometric and hypergeomet-
ric, are closely associated with the geometric functions theory. The geometric nature of
these special functions associated with the leminisciate, the exponential and the nephroid
domain are studied in [9,10,13]. The lemniscate convexity of generalized Bessel functions is
studied in [9], while [10] deals with the exponential starlikeness and convexity of confluent
hypergeometric, Lommel and Struve functions.

In this paper, motivated by the aforementioned works, we investigated the inclusion
properties of the normalized function Fα,n involving ALP that maps the unit disc D into the
lemniscate and the exponential domain, respectively, in Sections 2 and 3 . Section 4 deals
with the results concerning the shifted disc 1 + Az, for A ∈ [0, 1]. In Section 5, we derive
the conditions under which integration associated with Fα,n maps D into the nephroid
domain. All the results are interpreted graphically. Several options for the improvement
are highlighted .

2. Mapping in the Lemniscate Domain

In this section, we derive the relation between α and n for which Fα,n maps D into
PL(D). To prove the main results related with the lemniscate, the following Lemma 1
is used.

Lemma 1 ([16]). Let p ∈ H[1, n] with p(z) 6≡ 1 and n ≥ 1. Let Ω ⊂ C, and Ψ : C3 ×D→ C
satisfy

Ψ(r, s, t; z) 6∈ Ω
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whenever z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
and Re

(
(t + s)e−3iθ

)
≥ 3m2

8
√

2 cos(2θ)
. (5)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ PL(z) in D.

In the case of two dimensions, if Ψ : C2 × D → C satisfy Ψ(r, s; z) 6∈ Ω whenever
z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
.

If Ψ(p(z), zp′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ PL(z) in D.
Now we state and prove the main result for this section.

Theorem 1. For 4 Re(α) > 16n + 1, Fα,n(z) ≺ PL(z).

Proof. Let p(z) = Fα,n(z). Suppose that Ω = {0}. Define

Ψ(p, zp′, z2 p′′; z) = z2 p′′(z) + (α + 1− z)zp′(z) + nzp(z).

From (4), it follows Ψ(p, zp′, z2 p′′; z) ∈ Ω. To prove the result by using Lemma 1, it is
enough to show Ψ(r, s, t; z) /∈ Ω for r, s and t as stated in (5). Now

|Ψ(r, s, t; z)| = |t + (α + 1− z)s + nzr|
> |(t + s) + (α− z)s| − n|r|

≥
∣∣∣∣∣(t + s)e−3iθ + (α− z)

m
2
√

2 cos(2θ)

∣∣∣∣∣− n
√

2 cos(2θ)

≥ 3m2

8
√

2 cos(2θ)
+

Re(α− z)m
2
√

2 cos(2θ)
− n
√

2

≥ 4 Re(α)− 1
8
√

2
− n
√

2 > 0,

provided 4 Re(α) > 16n + 1.

A natural question arises for a fixed n ∈ N: are the values α0 = (16n + 1)/4 the
best possible in Theorem 1? To investigate it, we try to experiment through graphical
representation of Fα,n(D) and PL(D). It is worth noting here that Fα,n(D) ⊂ PL(D) when
Fα,n(z) ≺ PL(z). We present our cases for n = 2, 3, 4.

n = 2 By Theorem 1, Fα,n(D) ⊂ PL(D) holds for Re(α) > 8.25. However, Figure 2 indicates
that for real α, the subordination property for which Fα,n(D) ⊂ PL(D) follows for
α > α0 where the possible value α0 is any number in the interval (4.1, 4.3).
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(a) α0 = 4
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(b) α0 = 4.2
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(c) α0 = 4.3
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0.4

(d) α0 = 4.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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(e) α0 = 4.5
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(f) α0 = 5

Figure 2. Graph of Fα,n(D) for fixed n = 2.

n = 3 As per Theorem 1, in this case α0 is 12.25. Figure 3 indicates that for real α, the
inclusion Fα,n(D) ⊂ PL(D) holds for α > α0 where the possible value of α0 is any
number in the interval (7.1, 7.2).
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(a) α0 = 6.8
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0.2

0.4

(b) α0 = 7

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) α0 = 7.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(d) α0 = 7.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(e) α0 = 7.3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(f) α0 = 7.4

Figure 3. Graph of Fα,n(D) for fixed n = 3.

n = 4 The expected value of α0 is 16.25, but as per Figure 4, the value of α0 can be lower
down to a number in (10, 10.2).
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(a) α0 = 9.5
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(b) α0 = 10

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) α0 = 10.3
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(d) α0 = 10.5
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(e) α0 = 10.6
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(f) α0 = 11

Figure 4. Graph of Fα,n(D) for fixed n = 4.

3. Mapping in the Exponential Domain

Lemma 2 ([17]). Let Ω ⊂ C, and Ψ : C3 ×D → C satisfy Ψ(r, s, t; z) 6∈ Ω whenever z ∈ D,
and for m ≥ 1, θ ∈ (0, 2π),

r = eeiθ
, s = meiθeeiθ

and Re
(

1 +
t
s

)
≥ m

(
1 + cos(θ)

)
. (6)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ ez in D.

Now, we state and prove our main result to have the mapping properties in the
exponential domain.

Theorem 2. For Re(α) > n + 1, Fα,n(z) ≺ ez.

Proof. Let p(z) = Fα,n(z). Suppose that Ω = {0}. Then,

Ψ(p, zp′, z2 p′′; z) = z2 p′′(z) + (α + 1− z)zp′(z) + nzp(z) = 0

Now

|Ψ(r, s, t; z)| = |t + (α + 1− z)s + nzr|
> |(t + s) + (α− z)s| − n|r|

≥ |s|
∣∣(1 + t

s
)
+ (α− z)

∣∣− necos(θ)

= ecos(θ)(m Re
(
1 + t

s
)
+ m Re(α− z)− n

)
≥ e−1

(
m2(1 + cos(θ)) + m(Re(α)− 1)− n

)
≥ e−1(Re(α)− 1− n) ≥ 0

provided Re(α) ≥ n + 1.

It is evident from Figures 5–9 of Fα,n(D) and φe(D) that for real α, the inclusion
properties Fα,n(D) ⊂ φe(D) not only holds for α ≥ n + 1 (as stated in the theorem), but also
holds for α ≥ n. This indicates that there is a possibility for the improvement of Theorem 2.
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(b) α = 3 = n + 1

Figure 5. Graph of Fα,n(D).
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(a) α = 4 = n
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(b) α = 5 = n + 1

Figure 6. Graph of Fα,n(D).
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Figure 7. Graph of Fα,n(D).
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(a) α = 200 = n
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(b) α = 201 = n + 1

Figure 8. Graph of Fα,n(D).
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(a) α = 500 = n

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.0

0.5

1.0

(b) α = 501 = n + 1

Figure 9. Graph of Fα,n(D).

4. Mapping in Disc Center at (0, 1) and Radius A ∈ (0, 1]

The function fA(z) = 1 + Az for A ∈ (0, 1] maps the unit disc to a disc center at (0, 1)
and radius A. In this section, we will derive conditions by which

Theorem 3. For A ∈ C, n ≥ 1 and A ∈ (0, 1], suppose that

Re(α) ≥ n(A + 1)
A

. (7)

Then, fα,n(z) ≺ 1 + Az.

Proof. Consider

q(z) =
√

1
A (fα,n(z) + A− 1). (8)

A simplification gives

fα,n(z) = Aq2(z)− A + 1, f′α,n(z) = 2Aq′(z)q(z) f′′α,n(z) = 2Aq′′(z)q(z) + 2A(q′(z))2.

From (4) it follows that

2Az2q′′(z)q(z) + 2A(zq′(z))2 + 2A(α + 1− z)zq′(z)q(z) + nAzq2(z)− nAz + nz = 0.

Let Ω = {0} ⊂ C and define ψC3 ×D→ C as

ψ(r, s, t; z) = 2Atr + 2As2 + 2A(α + 1− z)sr + nz(Ar2 − A + 1). (9)

It is clear from (9) that ψ(q(z), zq′(z), zq′′(z); z) ∈ Ω. We shall apply Lemma 1 to show
ψ(r, s, t; z) /∈ Ω, which implies q(z) ≺

√
1 + z.

Now, for −π/4 ≤ θ ≤ π/4, let

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
.

Applying elementary trigonometric identities, we have

r2 − 1 = 2 cos(2θ)e2iθ − 1 = (2 cos2(2θ)− 1) + i2 cos(2θ) sin(2θ) = e4iθ .

Substitute r, s and t in (5), and a simplification leads to
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|ψ(r, s, t; z)| = |2Atr + 2As2 + 2A(α + 1− z)sr + nz(Ar2 − A + 1)|
= |2Ar(t + s) + 2As2 + 2A(α− z)sr + Anz(r2 − 1) + nz|

> |e4iθ |
(

2A
√

2 cos(2θ)Re(t + s)e−3iθ + 2A
m2 Re(e2iθ)

8 cos(2θ)
+ A Re(α− 1)m

)
− nA|e4iθ | − n

> 2A
3m2

8
+

Am2

4
+ A Re(α− 1)− n(A + 1)

> A + A Re(α)− A− n(A + 1) ≥ 0

when Re(α) ≥ n(A + 1)/A. By Lemma 1, it is proved that q(z) ≺
√

1 + z which is
equivalent to √

1
A (fα,n(z) + A− 1) =

√
1 + w(z), (10)

for some analytic function w(z) such that |w(z)| < 1. A simplification of (10) gives

1
A (fα,n(z) + A− 1) = 1 + w(z) =⇒ fα,n(z) = 1 + Aw(z) =⇒ fα,n(z) ≺ 1 + Az.

This completes the proof.

Graphical representation indicates that there is a provision of improvement for a
minimum value of Re(α) for fixed n and A. For example, set n = 1 and A = 1/2, and
suppose that α is real. Then, by Theorem 3, fα,1(z) ≺ 1 + z/2 if α ≥ 3. However, Figure 10
clearly indicates that the result can hold for α ≥ 1. This claim can also be valid theoretically.
The subordination fα,1(z) ≺ 1 + Az is equivalent to

|fα,1(z)− 1| < A =⇒
∣∣∣∣ z
α + 1

∣∣∣∣ < A

which holds for z ∈ D if A|α + 1| > 1. In particular, if α is a positive real number, and
A = 1/2, then fα,1(z) ≺ 1 + (z/2) holds for |α + 1| > 2 =⇒ α > 1.

0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(a) Fα,1(D) for α = 1

0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(b) Fα,1(D) for α = 2

0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

(c) Fα,1(D) for α = 3

Figure 10. Fα,1(z) ≺ 1 + (z/2).

Similarly for n = 2, as per Theorem 3, the subordination Fα,2(z) ≺ 1 + Az holds for
Re(α) ≥ 2(1 + A)/A. In particular, for real α and A = 1, the subordination is true when
α ≥ 4. However, a direct proof indicates that the subordination holds when

A|1 + α||2 + α| > 1 + 2|2 + α|.

Clearly, the second condition is better than the first condition (derived from Theorem 3). For
example, if α is real and A = 1, then Fα,2(z) ≺ 1 + z holds for α > 1.3078. The comparison
can be seen in Figure 11.
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(a) Fα,1(D) for α = 1.30278
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(b) Fα,1(D) for α = 2

Figure 11. Fα,2(z) ≺ 1 + z.

Based on the above facts, we can conclude that for certain special cases, Theorem 3 has
a chance for improvement. Now, we state and prove an improved version of Theorem 3.

Theorem 4. For real α > −1 and fixed n ∈ N and A ∈ (0, 1], suppose that α0 is the largest root of

1F1(−n, 1 + α,−1) = 1 + A.

Then, the subordination Fα,n(z) ≺ 1 + Az holds for all α > α0. The result is sharp as α0 is the best
lowest value.

Proof. The subordination Fα,n(z) ≺ 1 + Az is equivalent to

|Fα,n(z)− 1| < A =

∣∣∣∣∣ n

∑
k=1

(−n)k
(1 + α)kk!

zk

∣∣∣∣∣ < A. (11)

Now, for |z| < 1, it follows∣∣∣∣∣ n

∑
k=1

(−n)k
(1 + α)kk!

zk

∣∣∣∣∣ < n

∑
k=1

|(−n)k|
(1 + α)kk!

= 1F1(−n, 1 + α,−1)− 1.

It can be easily verified that for a fixed n, the function α→ 1F1(−n, 1 + α,−1) is decreasing;
hence, the inequality (11) holds for α > α0. Here, α0 > −1 is the largest root of the equation

1F1(−n, 1 + α,−1) = 1 + A.

This completes the proof.

In the following Table 1 we have listed value of α0 for fixed n and A.

Table 1. The value of α0 for fixed A and n.

n/A 1 2 3 5 10 15

A = 1 0 1.30278 2.67882 5.49886 12.6531 19.8441

A = 1/2 1 3.37228 5.79852 10.6945 22.9951 35.3155

A = 1/3 2 5.40512 8.85262 15.7795 33.1391 50.5122

A = 1/4 3 7.42443 11.8837 20.8273 43.219 65.6208

5. Connection with the Nephroid Domain

In this section, we observe that f ≺
√

1 + z or f ≺ ez do not always imply f 6≺ φNe .
For example, consider the case when n = 100 and α = 101, the polynomial

100!
(102)100

L101
100(z) ≺

√
1 + z but

100!
(102)100

L101
100(z) 6≺ φNe
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as shown in Figure 12a. Now define the function

Xn,α(z) = 1 +
1
2

∫ z

0

n!
(1+α)n

Lα
n(t)− 1

t
dt. (12)

In Figure 12b, we can see that

X100,101(z) = 1− 50z
101 3F3(1, 1,−99; 2, 2, 103, z) = 1 +

1
2

∫ z

0

100!
(102)100

L101
100(t)− 1

t
dt ≺ φNe .

To state the next result, let us generalize (12) as follows

Xn,α,β(z) = 1 +
1
β

∫ z

0

Fn,α(t)− 1
t

dt. (13)

We also consider the function

Yn,α,β(z) =
z
− 1

β

β

∫ z

0
Fn,α(t)t

1
β−1

dt. (14)

We need the following results in sequence.

0.0 0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.0

0.5

1.0

(a) Fn,α(z) ≺ ez but Fn,α(z) 6≺ φNe .

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

(b) Fn,α(z) 6≺ φNe but xn,α(z) ≺ φNe .

Figure 12. Comparison of Fn,α and Xn,α.

Lemma 3 ([11]). Let p : D→ C be analytic such that p(0) = 1. Then, the following subordination
implies p(z) ≺ φNε(z)

(i) p(z) + βzp′(z) ≺
√

1 + z for β ≥ 0.158379,
(ii) p(z) + βzp′(z) ≺ ez for β ≥ 1.14016.

Lemma 4 ([11]). Let p : D→ C be analytic such that p(0) = 1. Then the following subordination
imply p(z) ≺ φNε(z)

(i) 1 + βzp′(z) ≺
√

1 + z for β ≥ 3(1− log(2) ≈ 0.920558,

(ii) 1 + β
zp′(z)
p(z) ≺

√
1 + z for β ≥ 2(

√
2+log(2)−1−log(1+

√
2)

log(5/3) ≈ 0.884792,

(iii) 1 + β
zp′(z)
(p(z))2 ≺

√
1 + z for β ≥ 5

(√
2 + log(2)− 1− log(1 +

√
2)
)
≈ 1.12994,

(iv) 1 + βzp′(z) ≺ ez for β ≥ 1.97685,

(v) 1 + β
zp′(z)
p(z) ≺ ez for β ≥ 2.57995,

(vi) 1 + β
zp′(z)
(p(z))2 ≺ ez for β ≥ 3.29476.

The following subordination holds true.
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Theorem 5. For β > 0 and Re α > n + 1, the following subordination holds

(i) Xn,α,β(z) ≺ φNe for β ≥ 1.97685,

(ii) eXn,α,β(z)−1 ≺ φNe for β ≥ 2.57995,
(iii) Yn,α,β(z) ≺ φNe for β ≥ 1.14016.

Proof. It is worth noting that for Re α > n + 1, Theorem 2 implies that

Fn,α(z) ≺ ez.

Now, it follows from (13) that

X ′n,α,β(z) =
1
β

(
Fn,α(z)− 1

z

)
=⇒ 1 + βzX ′n,α,β(z) = Fn,α(z).

Let us denote p(z) = eXn,α,β(z)−1; then, a logarithmic differentiation gives

p′(z)
p(z)

= X ′n,α,β(z) =⇒ 1 + β
zp′(z)
p(z)

= Fn,α(z).

Lastly, a derivative of Yn,α,β(z) in (14) leads to

Yn,α,β(z) + βzY ′n,α,β(z) = Fn,α(z).

The first three cases along with Lemma 4 (part (iv)–(vi)) helps to conclude the result,
while the fourth case together with Lemma 3 (part (ii)) implies the result.

As of a final result, we have the following that can be proved using Theorem 1 and
Lemma 4 (part (i)–(iii)) and Lemma 3 (part (i)). We omit the details of the proof.

Theorem 6. For β > 0 and 4 Re α > 16n + 1, the following subordination holds

(i) Xn,α,β(z) ≺ φNe for β ≥ 0.920558,

(ii) eXn,α,β(z)−1 ≺ φNe for β ≥ 0.884792,
(iii) Yn,α,β(z) ≺ φNe for β ≥ 0.158379.

Now, we are going to interpret the result obtained in Theorem 5 graphically. For this,
we consider the special case where α = n + 1. In the case Xn,n+1,β(z) ⊂ φNe(z), we set the
smallest value of β = 1.97685. Now, by judicious choice of n (we chose up to 5000), we can
see through Figure 13 that Xn,n+1,β(D) ⊂ φNe(D) holds. This indicates that in the case for
all n ≥ 1, the smallest value of β = 1.97685 is sharp. However, in case of a fixed n, there is
a possibility to lower the value of β as presented in Table 2.

Table 2. β0- possible lowest value of β for a fixed n.

n β0 n β0

1 0.5 5 1.26
2 0.79 10 1.47
3 0.98 50 1.8
4 1.2 100 1.89

Clearly β0 is approaching the value 1.97685 for increasing n.
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Figure 13. Graph of Xn,n+1,β(D).

Similar analysis of results can also be computed for part of Theorem 5 ((ii) & (iii))
and Theorem 6. We avoid such details. However, this fact leads to an open problem as
stated below

Problem 1 (Open). Find the exact value of β0 for all n, α such that Xn,α,β(z) ≺ φNe(z);
eXn,α,β(z)−1 ≺ φNe(z); and Yn,α,β(z) ≺ φNe(z) holds for β ≥ β0.

6. Conclusions

By using results from the articles [9,10], we find the conditions on the parameter α and
n such that

Fα,n(z) =
n!

(α + 1)n
Lα

n(z),

is starlike in the PL(D), φe(D), φA(D). We also consider two integrals involving Fn,α,
namely

Xn,α,β(z) = 1 +
1
β

∫ z

0

Fn,α(t)− 1
t

dt, and Yn,α,β(z) =
z
− 1

β

β

∫ z

0
Fn,α(t)t

1
β−1

dt.

Then, using results from [11], we derive conditions on α, β and n by which the functions
Xn,α,β(z) and Yn,α,β(z) are subordinated by φNe(z).

Different graphical presentations demonstrate that the findings in this study are
valid. However, there is potential for improvement in a few instances. We conclude by
emphasizing that the open cases regarding the function Fn,α which are highlighted in
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this study are required for some alternative methods in contrast to those found in the
references [9–11]. This could be an interesting topic for further study.
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