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Abstract: In this paper, nonlinear differential equations with a generalized proportional Caputo
fractional derivative and finite delay are studied in this paper. The eventual presence of impulses
in the equations is considered, and the statement of initial value problems in three cases is defined:
namely non-instantaneous impulses, instantaneous impulses and no impulses. The relations between
these three cases are discussed. Additionally, some stability properties are investigated. We apply
the Mittag–Leffler function which plays a vital role and which gives well-known bounds on the
norm of the solutions. The symmetry of this function about a line and the bounds is a property that
plays an important role in stability. Several sufficient conditions are presented via appropriate new
comparison results and the modified Razumikhin method. The results generalize several known
results in the literature.

Keywords: generalized proportional fractional derivatives; delays; non-instantaneous impulses;
instantaneous impulses; Mittag–Leffler stability; Razumikhin method; Lyapunov functions
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1. Introduction

Fractional calculus in real world phenomena is very applicable because of some typical
properties such as memory. Various types of kernels in fractional integrals and fractional
derivatives are applied (for example, in [1,2] the fourth-order time-fractional integro-
differential equation with various types of kernels are studied numerically). A very general
type of kernel was studied in [3] and called a general fractional integral/derivative. These
general fractional integrals and derivatives were systematically studied by Y. Luchko [4,5]
in appropriate function spaces in the framework of fractional calculus. Luchko also studied
some qualitative properties of solutions of various types of differential equations with
general fractional derivatives (see, [5]). In this paper, we focus on stability for a particular
kernel (to be described in Section 3). Stability properties for fractional differential equations
were studied by many authors (see, for example, [6,7]). As mentioned in [8], the generalized
energy of a system does not have to decay exponentially for the system to be stable in the
sense of Lyapunov, and recently the Mittag–Leffler stability and the fractional Lyapunov
direct method were introduced for various types of fractional differential equations (see,
for example, [9–12]) and applied in fractional models ([13–17]).

Many real processes are characterized by rapid changes in their state, and they are
adequately modeled by differential equations with impulses. The acting time of these
changes could be short relative to the duration of the whole process and they could
be modeled as instantaneous impulses (see, for example, the classical book for ordinary
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differential equations [18] and the cited references therein). In some processes, the duration
of changes might not be negligible, i.e., they start at arbitrary fixed points and remain active
on finite time intervals. These types of changes could be modeled by non-instantaneous
impulses (see, the overview given in the book [19]).

Even though fractional derivatives have memory, often various types of delays are
involved in the fractional differential equations to represent some dynamics of the corre-
sponding processes. When one studies fractional differential equations with delays and
any type of impulse, there are a number of technical and theoretical difficulties.

In this paper, we study nonlinear differential equations with finite delay and with a
generalized proportional Caputo fractional derivative. We consider three main cases: the
case when there are non-instantaneous impulses in the equation, the case when there are
instantaneous impulses in the equation and the case without any impulses. In all of these
cases, we set up the initial value problem and we discuss the relation between them. The
appropriate Mittag–Leffler type stability is defined, and several sufficient conditions are
obtained. Our study is based on the Razumikhin method and its appropriate modifications.
Some of the obtained results are generalizations of results known in the literature for the
case of Caputo fractional differential equations.

Our contributions in this paper include:

1. The statement of the initial value problem for nonlinear systems of generalized pro-
portional Caputo fractional differential equations with finite delays, and we consider
three cases:

- With non-instantaneous impulses;
- With instantaneous impulses;
- Without impulses.

2. An appropriate interpretation and connection between the three cases are provided.
3. Generalized proportional Mittag–Leffler stability of the three types of systems is defined.
4. The appropriate modifications of the Razumikhin method are applied in the three cases.
5. Some extensions of the comparison principle are provided.
6. Sufficient conditions for the Mittag–Leffler-type stability are obtained.

The paper is organized as follows. In Section 2, we recall some basic definitions about
generalized proportional fractional integrals and Caputo-type derivatives, and some basic
results are presented. In Section 3, we discuss the statements of fractional order delay
systems in our three cases, and the relationships between them is provided. In Section 4,
in the three cases, the generalized proportional Mittag–Leffler stability is defined, some
comparison results are proved and several sufficient conditions are obtained with the help
of appropriate modifications of the Razumikhin method.

2. Preliminary Notes and Results

We will give some basic notations used in this paper.
Let u : [0, b] → Rn, b > 0, b ≤ ∞ and τ ∈ (0, b). Then, we will use the following

notations u(τ) = u(τ − 0) = limt↑τ u(t) and u(τ + 0) = limt↓τ u(t).
Let r > 0 be a given number and consider the set E = {φ : [−r, 0]→ Rn is continuous

everywhere except at a finite number of points τj ∈ (−r, 0) : φ(τj − 0) = φ(τj), φ(τj + 0) <
∞} with a norm ||φ||0 = sups∈[−r,0] ||φ(s)||, where ||.|| is a norm in Rn.

Let two sequences of points {ti}∞
i=1 and {si}∞

i=0 be given such that 0 < si−1 ≤ ti <
si < ti+1 , i = 1, 2, . . . , and limk→∞ sk = ∞. Denote t0 = 0.

Let J ⊂ [0, ∞) be a given interval. Consider the following classes of functions:

NPC(J,Rn) = {u : J → Rn : u ∈ C[J ∩
(⋃
∪∞

k=0(tk, sk]
)
,Rn] :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) < ∞,

u(sk + 0) = lim
t↓sk

u(t) < ∞, k : sk ∈ J},
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and

PC(J,Rn) = {v : J → Rn : v ∈ C[J ∩
(
[0, ∞)/{tk}∞

k=1),R
n] :

v(tk) = v(tk − 0) = lim
t↑tk

v(t) < ∞,

v(tk + 0) = lim
t↓tk

v(t) < ∞, k : tk ∈ J},

We will give a brief overview of the literature on fractional integrals and derivatives
with general kernels. In [4], Luchko described what was known in the literature on general
fractional integrals (GFI) and general fractional derivatives (GFD) and studied GFI and
GFD with the Sonine kernel. In [5], Luchko studied some analytical properties of initial-
value problems for single and multi-term fractional differential equations with GFD with
a Sonine kernel that possess integrable singularities of power function-type at the point
zero. Luchko introduced the set of Sonine kernels S−1 and he considered GFI with a kernel
κ ∈ S−1 (Definition 3.2 [5]):

(I(κ) f )(t) =
∫ t

0
κ(t− τ) f (τ)dτ, t > 0, (1)

GFD of Riemann–Liouville type (Definition 3.3 [5]):

(D(κ) f )(t) =
d
dt

∫ t

0
κ(t− τ) f (τ)dτ, t > 0, (2)

and GFD of Caputo-type (Definition 3.3 [5]):

(∗D(κ) f )(t) = (D(κ) f )(t)− f (0)κ(t), t > 0. (3)

In [5], the first fundamental theorem of fractional calculus for the GFD (Theorem 3.1 [5])
and the second fundamental theorem of FC for the GFD (Theorem 3.2 [5]) are proved. Ad-
ditionally, an explicit form of the solution of the initial value problem (IVP) for the linear
fractional differential equation with Caputo type GFD is obtained. This formula signif-
icantly depends on the kernel κ ∈ S−1. Since the main goal of this paper is the study
of fractional generalization of exponential stability, i.e., so-called Mittag–Leffler-type of
stability, we will use a spacial type of the kernel κ ∈ S−1:

κ(t; α, ρ) =
ρα−1 t−α

Γ(1− α)
e

ρ−1
ρ t ∈ S−1, α ∈ (0, 1), ρ ∈ (0, 1], t ≥ 0. (4)

Then, the definitions of GFI and GFD given by (1)–(3) are reduced:

(I1−α,ρ f )(t) = (I(κ(t,1−α,ρ)) f )(t) =
∫ t

0

ρ−α (t− s)α−1

Γ(α)
e

ρ−1
ρ (t−s) f (s)ds,

α > 0, ρ ∈ (0, 1],

(RLDα,ρ f )(t) = (D(κ(t;α,ρ)) f )(t)

=
1

ρ1−αΓ(1− α)

d
dt

∫ t

0
(t− s)−αe

ρ−1
ρ (t−s) f (s)ds, α ∈ (0, 1), ρ ∈ (0, 1],

(CDα,ρ f )(t) = (∗D(κ(t;α,ρ)) f )(t)

=
ρα−1

Γ(1− α)

d
dt

∫ t

0
(t− s)−αe

ρ−1
ρ (t−s) f (s)ds− f (0)

ρα−1 t−α

Γ(1− α)
e

ρ−1
ρ t,

for t > 0, α ∈ (0, 1), ρ ∈ (0, 1].

(5)

Remark 1. The fractional integral (I1−α,ρ f )(t), the fractional derivatives (RLDα,ρ f )(t) and
(CDα,ρ f )(t) are called generalized proportional fractional integral, generalized proportional Rieman–
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Liouville fractional integral and generalized proportional Caputo fractional derive, respectively, and
they are studied in [20,21].

Remark 2. (see Remark 3.2 [20]) If α ∈ (0, 1) and ρ ∈ (0, 1] then the relation (C
aDα,ρe

ρ−1
ρ (.)

)(t) =
0 for t > a holds. At the same time (C

aDα,ρK)(t) 6= 0 for K ∈ R, K 6= 0.

We recall some results about generalized proportional Caputo fractional derivatives
and their applications in differential equations, which will be applied in the main result in
the paper.

Lemma 1. (Proposition 5.2 [20]) For ρ ∈ (0, 1] and α ∈ (0, 1) we have

(C
aDα,ρ(e

ρ−1
ρ t

(t− a)β−1)(t) =
ραΓ(β)

Γ(β− α)
e

ρ−1
ρ t

(t− a)β−1−α, β > 0.

Lemma 2. (Lemma 3.2 [22]) Let u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b = ∞ then the
interval is half open), and q ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(C
aDα,ρu2)(t) ≤ 2u(t)(C

aDα,ρu)(t), t ∈ (a, b].

Lemma 3. (Lemma 5 [23]) Let u ∈ C([t0, T,R), T > t0, and there exists a point t∗ ∈ (t0, T]
such that u(t∗) = 0, and u(t) < 0, for t0 ≤ t < t∗. Then, if the generalized proportional Caputo
fractional derivative of u exists for t = t∗, then the inequality ( c

t0
Dα,ρu)(t)|t=t∗ > 0 holds.

Lemma 4. (Example 5.7 [20]) The scalar linear generalized proportional Caputo fractional initial
value problem

(C
aDα,ρu)(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1]

has a solution
u(t) = u0e

ρ−1
ρ (t−a)Eα(λ(

t− a
ρ

)α), t > a,

where λ ∈ R, Eα(z) = ∑∞
i=0

zi

Γ(iα+1) is the Mittag–Leffler function of one parameter.

Lemma 5. Let α ∈ (0, 1) and ρ ∈ (0, 1]. Then

(C
aDα,ρ

(
e

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α))
= λe

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α)
.

Proof. From Lemma 1 and the definition of Mittag–Leffler function with one parameter,
we obtain

(C
aDα,ρ(Eα(λ(

t− a
ρ

α

)))e
ρ−1

ρ (t−a)
) =

∞

∑
i=0

(C
aDα,ρ(e

ρ−1
ρ (t−a)

)(λ( t−a
ρ )α)i

Γ(iα + 1)

=
∞

∑
i=1

λiραΓ(αi + 1)e
=ρ−1

ρ (t−a)
)(t− a)αi−α

ραiΓ(αi + 1− α)Γ(iα + 1)

= λe
ρ−1

ρ (t−a)
∞

∑
i=1

λi−1(t− a)α(i−1)

ρα(i−1)Γ(α(i− 1) + 1)
= λe

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α)
.

3. Statement of the Problems

In this paper, we will consider three cases: non-instantaneous impulses, instantaneous
impulses and without impulse,s and we give the relations between them.
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3.1. Non-Instantaneous Impulses

Let two sequences of points {ti}∞
i=1 and {si}∞

i=0 be given such that 0 < si−1 ≤ ti <
si < ti+1 , i = 1, 2, . . . , and limk→∞ sk = ∞. Let t0 ≥ 0 be the given fixed initial time.
Without loss of generality, we will assume 0 ≤ t0 < s0 < t1.

Remark 3. The intervals (sk, tk+1], k = 0, 1, 2, . . . are called intervals of non-instantaneous
impulses.

Let J ⊂ R be a given interval. Consider the following class of functions:

NPCα,ρ(J,Rn) = {u : J → Rn : u ∈ NPC(J,Rn) : for any k = 0, 1, 2, · · · : tk ∈ J,

(C
tk
Dα,ρu)(t) exists for t ∈ (tk, sk] ∩ J},

Consider the system of non-instantaneous impulsive delay differential equations (NIDDE)
with the generalized proportional Caputo fractional derivative

(C
tk
Dα,ρx)(t) = f (t, xt) for t ∈ (tk, sk], k = 0, 1, 2, . . .

x(t) = Φk(t, x(sk − 0)) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,
(6)

with initial condition
x(t + t0) = φ(t) for t ∈ [−r, 0], (7)

where f : [t0, s0]
⋃∪∞

k=1[tk, sk] × Rn → Rn, Φi : [si, ti+1] × Rn → Rn, (i = 0, 1, 2, 3, . . . ),
r > 0 is a given number, φ : [−r, 0]→ Rn and xt = x(t + s), s ∈ [−r, 0].

Remark 4. The functions Φk(t, x), k = 1, 2, . . . , are called non-instantaneous impulsive functions.

Remark 5. For some detailed explanations about non-instantaneous impulses in generalized pro-
portional Caputo fractional differential equations without delays, see [24].

We will introduce the following conditions:
(A 1.1.) The function f ∈ C(∪∞

k=0[tk, sk]×Rn,Rn).
(A 1.2.) For any natural number k the functions Φk ∈ C([sk, tk]×Rn,Rn), k = 1, 2, . . ..

Remark 6. We will assume that for any initial function φ ∈ E the IVP for the system of
NIDDE (6) and (7) has a solution x(t; t0, φ) ∈ NPCα,ρ([t0, ∞),Rn).

We now give a brief description of the solution of IVP for NIDDE (6) and (7). The
solution x(t; t0, φ) of (6) and (7) is given by

x(t; t0, φ) =

{
Xk(t), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,
Φk(t, Xk(sk − 0)), for t ∈ (sk, tk+1] k = 1, 2, . . .

(8)

where

- On the interval [t0 − r, t0], the solution satisfies the initial condition (7);
- On the interval [t0, s0], the solution coincides with X0(t) which is the solution of

(C
t0
Dα,ρx)(t) = f (t, xt), t ∈ (t0, s0] with initial condition (7);

- On the interval (s0, t1], the solution x(t; t0, φ) satisfies the equation

x(t; t0, φ) = Φ0(t, X0(s0 − 0));
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- On the interval (t1, s1], the solution coincides with X1(t) which is the solution of
(C

t1
Dα,ρx)(t) = f (t, xt), t ∈ (t1, s1] and initial condition x(t + t1) = φ̃(t), t ∈ [−r, 0]

with

φ̃(t) =
{

Φ0(t1, X0(s0 − 0)) t = 0
x(t− t1; t0, φ) t ∈ [−r, 0);

- On the interval (s1, t2], the solution x(t; t0, φ) satisfies the equation

x(t; t0, x0) = Φ1(t, X1(s1 − 0));

and so on.
In connection with the study of the stability properties of zero solutions, we introduce

the following assumption:
(A 1.3.) The equalities f (t, 0) = 0 and Φk(t, 0) ≡ 0, k = 0, 1, 2, . . . , hold.

3.2. Instantaneous Impulses

Let the sequence of points {ti}∞
i=1 be given such that 0 < ti ≤ ti+1 , i = 1, 2, . . . , and

limk→∞ tk = ∞. Let t0 ≥ 0 be the given fixed initial time. Without loss of generality we will
assume 0 ≤ t0 < t1.

Remark 7. The points tk, k = 0, 1, 2, . . . are called points of impulses.

Let J ⊂ R be a given interval. Consider the following class of functions

PCα,ρ(J,Rn) = {v : J → Rn : v ∈ PC(J,Rn) : for any tk ∈ J, k = 0, 1, 2, · · · :

(C
tk
Dα,ρv)(t) exists for t ∈ (tk, tk+1] ∩ J}.

Consider the system of instantaneous impulsive delay differential equations (IDDE) with
the generalized proportional Caputo fractional derivative

(C
tk
Dα,ρx)(t) = f (t, xt) for t ∈ (tk, tk+1], k = 0, 1, 2, . . .

x(tk + 0) = Ψk(x(tk − 0)) for k = 1, 2, . . . ,
(9)

with initial condition (7), where f : [t0, ∞)×Rn → Rn, Ψi : Rn → Rn, (i = 1, 2, 3, . . . ).

Remark 8. The functions Ψk(y), k = 1, 2, . . . , are called impulsive functions.

Remark 9. In the case in Section 3.1 that both sequences coincide, i.e., si = ti+1, i = 0, 1, 2, . . . ,
the system (6) is reduced to the system (9) with Φk(t, u) = Ψk(u), k = 0, 1, 2, . . . , i.e., the case
of non-instantaneous impulses could be considered as a generalization of the case of instantaneous
impulses.

We will introduce the following conditions:
(A 2.1.) The function f ∈ C([t0, t1]

⋃∞
k=1(tk, tk+1]×Rn,Rn).

(A 2.2.) The functions Φk ∈ C(Rn,Rn), k = 1, 2, . . . .
(A 2.3.) The function f (t, 0) = 0, t ≥ t0 and the functions Ψk(0) = 0, k = 1, 2, . . . .
If condition (A 2.3) is satisfied, then for the zero initial function, the IVP for IDDE (7) and (9)

has a zero solution.

Remark 10. We will assume that for any initial function φ ∈ E the IVP for the system of
IDDE (7) and (9) has a solution x(t; t0, φ) ∈ PCα,ρ([t0, ∞),Rn)



Symmetry 2022, 14, 2290 7 of 19

3.3. No Impulses

Consider the system of delay differential equations (DDE) with the generalized propor-
tional fractional derivative

(C
t0
Dα,ρx)(t) = f (t, xt) for t > t0 (10)

with initial condition (7), where f : [t0, ∞)×Rn → Rn.

Remark 11. The system (10) could be considered as a partial case of (9) in the case when there are
no impulses, i.e., in Section 3.2 ti = t0, i = 1, 2, . . . , i.e., the case of instantaneous impulses could
be considered as a generalization of the case of without impulses.

Let J ⊂ R be a given interval. Consider the following classes of functions

Cα,ρ(J,Rn) = {u : J → Rn : u ∈ C(J ∩ [a, ∞),Rn) :

(C
aDα,ρu)(t) exists for t ∈ [a, ∞) ∩ J}.

We will introduce the following conditions:
(A 3.1.) The function f ∈ C([t0, ∞)×Rn,Rn).
(A 3.2.) The function f (t, 0) = 0, t ≥ t0.

Remark 12. We will assume that for any initial function φ ∈ E, the IVP for the system of
DDE (7) and (10) has a solution x(t; t0, φ) ∈ Cα,ρ([t0, ∞),Rn)

4. Mittag–Leffer-Type Stability Properties

We will study the Mittag–Leffler-type stability for NIDDE (6), IDDE (9) and DDE (10)
by Lyapunov functions and an appropriate modification of the Razumikhin method.

4.1. Non-Instantaneous Impulses

Definition 1. The zero solution of the system NIDDE (6) and (7) is said to be generalized
proportional Mittag–Leffler stable if there exist constants β, γ, C, λ > 0 such that the inequality

||x(t; t0, φ)||

≤



C||φ||β0
((

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−λ( t−tk

ρ )α)

)γ

,

t ∈ (tk, sk], k = 0, 1, . . . ,

C||φ||β0
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)γ

,

t ∈ (sk, tk+1], k = 0, 1, 2, . . .

(11)

holds, where x(t; t0, φ) is a solution of the IVP for NIDDE (6) and (7) (with an arbitrary initial
function φ ∈ E).

Remark 13. The definition for generalized proportional Mittag–Leffler stability for NIDDE
(6) and (7) depends significantly on the type of intervals—the intervals of differential equations and
the intervals of non-instantaneous impulses (see, the first and the second line, respectively, in (11)).

We will use the following class of Lyapunov-like functions (for more details, see the
book [19]):

Definition 2. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω→ [0, ∞) is from the class NΛ([a− r, b], Ω) if:

- V ∈ C([a, b]/{sk} ×Ω, [0, ∞)) and it is Lipschitz with respect to the second argument;
- For any sk ∈ (a, b), x ∈ Ω, there exist finite limits V(sk − 0, x) = limt↑sk

V(t, x) and
V(sk + 0, x) = limt↓sk

V(t, x).
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We will consider the following scalar non-instantaneous impulsive differential equa-
tion (NIDE) as a comparison equation

(C
tk
Dα,ρu)(t) = −λu(t), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

u(t) = Ξk(t, u(sk − 0)) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

u(t0) = u0.

(12)

According to Lemma 4, the solution of the IVP for NIDE (12) is given by

u(t) =


u0e

ρ−1
ρ (t−t0)Eα(−λ( t−t0

ρ )α), t ∈ [t0, s0]

Ξk(t, u(sk − 0)), t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

Ξk−1(tk, u(sk−1 − 0))e
ρ−1

ρ (t−tk)Eα(−λ( t−tk
ρ )α), t ∈ (tk, sk], k = 1, 2, . . . .

Applying the scalar NIDE (12) as a comparison equation, we will obtain the following
comparison result for NIDDE (6).

Lemma 6. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ NPCα,ρ([t0, ∞), ∆) is a solution of the NIDDE (6) and (7),
where ∆ ⊂ Rn.

2. The functions Ξk ∈ C([sk, tk+1] × R,R) and Ξk(t, u) ≤ u for t ∈ [sk, tk+1], u ≥ 0,
k = 0, 1, 2, . . . .

3. The function V ∈ NΛ([t0 − r, ∞), ∆) and

(i) for any t ∈ (tk, sk] with k = 0, 1, . . . such that

V(t, x∗(t))
e

1−ρ
ρ (t−tk)

Eα

(
−λ
(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ
(
(s−tk)

ρ

)α)V(s, x∗(s))

(13)

the inequality
C
tk
Dα,ρV(t, x∗(t)) ≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.
(ii) For any k = 0, 1, . . . the inequalities

V(t, Φk(t, x∗(sk − 0))) ≤ Ξk(t, V(sk − 0, x∗(sk − 0))) for t ∈ (sk, tk+1].

hold.

Then, the inequality

V(t, x∗(t))

≤


M
(

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−λ( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

M
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
, t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

(14)

holds where M = maxs∈[−r,0] V(t0 + s, φ(s)).
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Proof. Case 1. Let t ∈ [t0, s0]. Define the function m(t) = V(t, x∗(t)) for t ∈ [t0 − r, s0].
Then, the function m(t) ∈ Cα,ρ([t0, s0],R+) and the inequality m(t0) = V(t0, φ(0)) ≤
sups∈[−r,0] V(t0 + s, φ(s)) = M hold. We will prove that

m(t) < Me
ρ−1

ρ (t−t0)Eα

(
−λ

(
t− t0

ρ

)α)
+ εe

ρ−1
ρ (t−t0), t ∈ [t0, s0], (15)

where ε > 0 is a small enough number. Note for t = t0 inequality (15) holds. Assume (15)
is not true on (t0, s0]. Therefore, there exists t∗ ∈ (t0, s0] such that

m(t) < Me
ρ−1

ρ (t−t0)Eα

(
−λ

(
t− t0

ρ

)α)
+ εe

ρ−1
ρ (t−t0), t ∈ [t0, t∗),

m(t∗) = e
ρ−1

ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
+ εe

ρ−1
ρ (t∗−t0).

(16)

Consider the function ξ(t) = m(t)−Me
ρ−1

ρ (t−t0)Eα

(
−λ
(

t−t0
ρ

)α)
− εe

ρ−1
ρ (t−t0) for t ∈

[t0, s0]. According to Lemma 3 with u(t) ≡ ξ(t) the inequality ( c
t0
Dα,ρξ)(t)|t=t∗ > 0 holds.

Therefore, according to Lemma 5 and Remark 2, we obtain

( c
t0
Dα,ρm)(t)|t=t∗ > −λMe

ρ−1
ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
. (17)

Case 1.1. Let r < t∗ − t0. Then, t∗ − r > t0 and [t∗ − r, t∗] ⊂ (t0, t∗], i.e., [t∗ − r, t∗] ∩
[t0, t∗] = [t∗ − r, t∗]. Therefore, since the function Eα(−λt) is decreasing for t ∈ (t0, t∗], i.e.,

1

Eα

(
−λ
(
(t−t0)

ρ

)α
) ≤ 1

Eα

(
−λ
(
(t∗−t0)

ρ

)α
) for t ∈ [t∗ − r, t∗] by (16), we obtain

m(t)
e

1−ρ
ρ (t−t0)

Eα

(
−λ
(

t−t0
ρ

)α) < M + ε
1

Eα

(
−λ
(

t−t0
ρ

)α)
≤ M + ε

1

Eα

(
−λ
(

t∗−t0
ρ

)α)
= m(t∗)

e
1−ρ

ρ (t∗−t0)

Eα

(
−λ
(

t∗−t0
ρ

)α) , t ∈ [t∗ − r, t∗],

(18)

i.e., inequality (13) is satisfied for t = t∗.
According to condition 3(i) the inequality( c

t0
Dα,ρm

)
(t)|t=t∗ =

( c
t0
Dα,ρV(t, x∗(t))

)
|t=t∗ ≤ −λV(t∗, x∗(t∗))

= −λm(t∗) = −λMe
ρ−1

ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
− λεe

ρ−1
ρ (t∗−t0)

(19)

holds.
From inequalities (17) and (19), it follows that −λεe

ρ−1
ρ (t∗−t0) > 0. The obtained

contradiction proves the inequality (15) on [t0, s0].
Case 1.2. Let r ≥ t∗ − t0. Then, t∗ − r ≤ t0 and [t∗ − r, t∗] ∩ [t0, t∗] = [t0, t∗] =

{t0} ∪ (t0, t∗]. Similar to the proof in Case 1.1, we obtain the inequality

m(t)
e

1−ρ
ρ (t−t0)

Eα

(
−λ
(

t−t0
ρ

)α) ≤ m(t∗)
e

1−ρ
ρ (t∗−t0)

Eα

(
−λ
(

t∗−t0
ρ

)α) , t ∈ (t0, t∗].
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For t = t0, apply (16), Eα(0) = 1 and obtain m(t∗) e
1−ρ

ρ (t∗−t0)

Eα

(
−λ
(

t∗−t0
ρ

)α
) > M ≥ m(t0).

Therefore, inequality (13) holds for t = t∗.
Thus, condition 3(i) is applicable and as in Case 1.1 we obtain a contradiction.
The contradiction proves inequality (15). From inequality (15) as ε → 0 follows the

validity of (14) on [t0, s0].
Case 2. Let t ∈ (s0, t1]. Then, x∗(t) = Φ1(t, x∗(s0 − 0)). From conditions 2, 3(ii) for

k = 0 and Case 1, we obtain

V(t, x∗(t)) = V(t, Φ0(t, x∗(s0 − 0))) ≤ Ξ0(t, V(s0 − 0, x∗(s0 − 0)))

≤ V(s0 − 0, x∗(s0 − 0))

≤ Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
, t ∈ (s0, t1].

Therefore, inequality (14) holds on (s0, t1].
Case 3. Let t ∈ (t1, s2]. Define the function

m1(t) =

{
V(t1, x∗(t1)) for t ∈ [t1 − r, t1],
V(t, x∗(t)) for t ∈ (t1, s1].

Then, the function m1(t) ∈ Cα,ρ([t1, s1],R+). Denote M1 = V(t1, x∗(t1)). Then,(
max

s∈[−r,0]
m1(t1 + s)

)
= M1

and according to Case 2, the inequality

M1 < Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
holds.

Similar to the proof of inequality (15) in Case 1, we have the validity of the inequality

m1(t) < M1e
ρ−1

ρ (t−t1)Eα

(
−λ

(
t− t1

ρ

)α)
+ εe

ρ−1
ρ (t−t1). t ∈ [t1, s1].

Thus,

m1(t) < Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
e

ρ−1
ρ (t−t1)Eα

(
−λ

(
t− t1

ρ

)α)
+ εe

ρ−1
ρ (t−t1), t ∈ (t1, s1].

(20)

Taking the limit in (20) as ε→ 0 we obtain the claim of Lemma 6 on (t1, s1].
Continue this process and an induction argument proves the claim in Lemma 6.

Remark 14. The condition (13) is a modified Razumikhin condition applied in connection with
generalized proportional fractional derivatives.

Remark 15. The inequality (13) in condition 3(i) of Lemma 6 could be replaced by

V(t, x∗(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ
(
(s−tk)

ρ

)α)V(s, x∗(s)) (21)

Note that if (21) holds, then inequality (13) is also satisfied.
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Remark 16. If the condition (21) is satisfied, then the classical Razumikhin condition V(t, x∗(t)) ≥
sups∈[t−r,t]∩[tk ,t] V(s, x∗(s)) holds.

Remark 17. The condition 3(i) is satisfied only at some particular points of t from the studied interval.

We study the generalized Mittag–Leffler stability properties of the zero solution of
NIDDE (6).

Theorem 1. Suppose :

1. Conditions (A 1.1)–(A 1.3) are satisfied.
2. There exists a function V ∈ NΛ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that the inequalities A||x||a ≤ V(t, x) ≤
B||x||ab, t ≥ t0, x ∈ Rn hold.

(ii) For any point t ∈ (tk, sk] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t −
r, t],Rn) such that

(
C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s))

(22)

the inequality (
C
tk
Dα,ρV(t, ψ(t))

)
≤ −DV(t, ψ(t)) (23)

holds where D > 0 is a given number.
(iii) For any k = 0, 1, . . . and u ∈ Rn, the inequalities

V(t, Φk(t, u)) ≤ C||u||a for t ∈ (sk, tk+1].

hold where C ∈ (0, A].

Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional

Mittag–Leffler stable with C = a
√

B
A , β = b, λ = D, γ = 1

a .

Proof. Let φ ∈ E be an arbitrary initial function and now let x(t) = x(t; t0, φ) ∈ NPCα,ρ

([t0, ∞),Rn) be the solution of the IVP for NIDDE (6) and (7). Let t∗ ∈ (tk, sk] with k a
non-negative integer, be such that the inequality (22) holds with ψ(t) = x(t). Note that
x ∈ Cα,ρ(tk, [t∗ − r, t∗],Rn) and

(
C
tk
Dα,ρx

)
(t)|t=t∗ = f (t∗, xt∗). Then, according to condition

2(ii) of Theorem 1, the inequality (23) holds, i.e., we have(
C
tk
Dα,ρV(t, x(t))

)
|t=t∗ ≤ −DV(t∗, x(t∗)),

i.e., the condition 3(i) of Lemma 6 is satisfied with λ = D.
Let k = 0, 1, . . . be an arbitrary number. Then, from conditions 2(i) and 2(iii) of

Theorem 1, we obtain V(t, Φk(t, x(sk − 0))) ≤ C||x(sk − 0)||a ≤ C
A V(sk − 0, x(sk − 0)), i.e.,

condition 3(ii) of Lemma 6 is satisfied with Ξk(t, u) = C
A u ≤ u according to the choice of

the constants A, C.
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According to Lemma 6, the inequality

V(t, x(t))

≤


M
(

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−D( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−D( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

M
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−D( si−ti

ρ )α)

)
, t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

(24)

holds where M ≤ B||φ||ab
0 .

Thus, from condition 2(i) of Theorem 1, we obtain

||x(t)||

≤



a
√

B
A ||φ||b0

((
∏k−1

i=0 e
ρ−1

ρ (si−ti)Eα(−D( si−ti
ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−D( t−tk

ρ )α)

) 1
a
,

t ∈ (tk, sk], k = 0, 1, . . . ,

a
√

B
A ||φ||b0

(
∏k

i=0 e
ρ−1

ρ (si−ti)Eα(−D( si−ti
ρ )α)

) 1
a
,

t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

(25)

Thus, the zero solution of (6) is generalized Mittag-Leffler stable with C = a
√

B
A , β =

b, λ = D, γ = 1
a .

Corollary 1. Let the conditions of Theorem 1 be satisfied where the inequality (22) is replaced by

V(t, ψ(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s)) (26)

Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional
Mittag–Leffler stable.

Proof. If the inequality (26) is satisfied for the point t, then we obtain

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α) ≥ V(t, ψ(t)),

i.e., inequality (22) is satisfied.

Corollary 2. Let the conditions of Theorem1 be satisfied where the condition 2(ii) is replaced by
2(ii)* for any point t ∈ (tk, sk] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t− r, t],Rn)

such that
(

C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s)) (27)

the inequality (
C
tk
Dα,ρV(t, ψ(t))

)
≤ −D sup

s∈[t−r,t]∩[tk ,t]
||ψ(s)||ab (28)

holds where D > 0 is a given number.
Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional

Mittag–Leffler stable.
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Proof. From condition 2(iii) of Theorem 1 and inequality (27), we have that ||ψ(s)||ab ≥
V(s, ψ(s)), s ∈ [t− r, t] ∩ [tk, t], i.e.,

−D

(
sup

s∈[t−r,t]∩[tk ,t]
||ψ(s)||ab

)
≤ −D

(
sup

s∈[t−r,t]∩[tk ,t]
V(s, ψ(s))

)
= −DV(t, ψ(t)).

Thus, from inequality (28) we have inequality (23).

Corollary 3. Let the conditions of Theorem1 be satisfied where the inequality (23) is replaced by

C
tk
Dα,ρV(t, ψ(t)) ≤ 0, (29)

and condition 2(i) is changed by
2(i)* There exist positive constants A, B such that the inequalities A||x|| ≤ V(t, x) ≤

B||x||, t ≥ t0, x ∈ Rn hold.
Then, the zero solution of NIDDE (6) with the zero initial function is stable.

Proof. Inequality (29) is a partial case of (23) with D = 0, then use Eα(0) = 1 and in-
equality (25) and we obtain ||x(t)|| ≤ B

A ||φ||0 for t ≥ t0, which proves the stability of the
solution.

Example 1. . Consider the scalar IVP for NIDDE(
C
tk
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5x(k)t ), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

x(t) = 0.5(sin t)x(sk − 0) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0],

(30)

where for any t ∈ (tk, sk] we denote x(k)t (s) = x(t + s), s ∈ [max{−r, tk − t}, 0].
The scalar IVP for NIDDE (30) with φ(s) ≡ 0 has a zero solution.
Consider the Lyapunov function V(t, x) = x2. Then, condition 2(i) of Theorem 1 is satisfied

with A = 0.25, B = 1, a = 2, b = 1. Let k be a whole number and the point t ∈ (tk, sk] and the
function ψ ∈ Cα,ρ(tk, [t− r, t],R) be such that

(
C
tk
Dα,ρψ

)
(t) = − 2+t

t+1 (ψ(t)− 0.5ψ
(k)
t ) and

ψ2(t) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α)ψ2(s). (31)

Then applying sups∈[t−r,t]∩[tk ,t]
e

1−ρ
ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α
)ψ2(s) ≥ sups∈[t−r,t]∩[tk ,t] ψ2(s) we obtain

(
C
tk
Dα,ρψ2

)
(t) ≤ 2ψ(t)

(
C
tk
Dα,ρψ

)
(t)

= −2
2 + t
t + 1

(ψ2(t)− 0.5ψ(t)ψ(k)
t )

≤ 2 + t
t + 1

(−2ψ2(t) + 0.5ψ2(t) + 0.5(ψ(k)
t )2)

≤ 2 + t
t + 1

(−2ψ2(t) + 0.5ψ2(t) + 0.5 sup
s∈[t−r,t]∩[tk ,t]

ψ2(s))

≤ 2 + t
t + 1

(−1.5ψ2(t) + 0.5ψ2(t)) = −2 + t
t + 1

ψ2(t)

< −V(t, ψ(t)).

(32)

Let t ∈ (sk, tk+1] where k = 0, 1, 2, . . . . Then, (0.5 sin t u)2 ≤ 0.25u2 = 0.25|u|2.
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Therefore, the conditions of Corollary 1 are satisfied with D = 1, C = A = 0.25, B = 1, a =
2, b = 1. According to Corollary 1 the zero solution of the scalar NIDDE (30) is generalized
proportional Mittag–Leffler stable with C =

√
4 = 2, β = 1, λ = 1, γ = 0.5, i.e., the inequality

||x(t)||

≤



2||φ||0

√(
∏k−1

i=0 e
ρ−1

ρ (si−ti)Eα(−( si−ti
ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

2||φ||0

√
∏k

i=0 e
ρ−1

ρ (si−ti)Eα(−( si−ti
ρ )α),

t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

holds.

Remark 18. The Mittag–Leffler type stability for the Caputo fractional differential equations (with
ρ = 1) is studied in [25].

4.2. Instantaneous Impulses

As mentioned in Remark 9, the case of non-instantaneous impulses could be consid-
ered as a generalization of the case of instantaneous impulses. That is why we can translate
the results from the previous section to instantaneous impulses.

Definition 3. The zero solution of the system IDDE (7) and (9) (with φ ≡ 0) is said to be
generalized proportional Mittag–Leffler stable if there exist constants β, γ, C, λ > 0 such that
the inequality

||x(t; t0, φ)|| ≤ C||φ||β0
(

e
ρ−1

ρ (t−tk)Eα(−λ(
t− tk

ρ
)α)

)γ

,

t ∈ (tk, tk+1], k = 0, 1, . . . ,
(33)

holds, where x(t; t0, φ) is a solution on the IVP for IDDE (7) and (9) with an arbitrary initial
function φ ∈ E.

We will use some comparison results for IDDE (9) by applying piecewise continuous
Lyapunov functions and we introduce a class of Lyapunov-like functions:

Definition 4. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω→ [0, ∞) is from the class PΛ([a− r, b], Ω) if:

- V ∈ C([a, b]/{tk} ×Ω, [0, ∞)) and it is Lipschitz with respect to the second argument;
- For any tk ∈ (a, b), x ∈ Ω, there exist finite limits V(tk − 0, x) = limt↑tk

V(t, x) and
V(tk + 0, x) = limt↓tk

V(t, x).

The comparison scalar equation (IDE) is

(C
tk
Dα,ρu)(t) = −λu(t), for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

u(t) = Ξk(u(tk − 0)) for k = 1, 2, . . . ,

u(t0) = u0.

(34)

According to Lemma 4, the solution of the IVP for IDE (34) is given by

u(t) =

 u0e
ρ−1

ρ (t−t0)Eα(−λ( t−t0
ρ )α) t ∈ [t0, t1]

Ξk(u(tk − 0))e
ρ−1

ρ (t−tk)Eα(−λ( t−tk
ρ )α) t ∈ (tk, tk+1], k = 1, 2, . . . .
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The auxiliary Lemma, corresponding to Lemma 6, reduces to

Lemma 7. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ PCα,ρ([t0, ∞), ∆) is a solution of the IDDE (7) and (9)
where ∆ ⊂ Rn.

2. The functions Ξk ∈ C(R,R) and Ξk(u) ≤ u for u ≥ 0, k = 1, 2, . . ..
3. The function V ∈ PΛ([t0 − r, ∞), ∆) and

(i) For any t ∈ (tk, tk+1] with k = 0, 1, . . . , such that

V(t, x∗(t))
e

1−ρ
ρ (t−tk)

Eα

(
−λ
(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ
(
(s−tk)

ρ

)α)V(s, x∗(s))

(35)

the inequality
C
tk
Dα,ρV(t, x∗(t)) ≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.
(ii) For any k = 1, . . . , the inequalities

V(tk − 0, Ψk(x∗(tk − 0))) ≤ Ξk(V(tk − 0, x∗(tk − 0))),

hold.

Then, the inequality

V(t, x∗(t)) ≤
(

max
s∈[−r,0]

V(t0 + s, φ(s))
)

e
ρ−1

ρ (t−tk)Eα(−λ(
t− tk

ρ
)α),

t ∈ (tk, tk+1], k = 0, 1, . . . ,
(36)

holds.

Remark 19. The comparison scalar Equation (34) is chosen such that its explicit solution is known
and condition 3(i) will be satisfied for the Lyapunov function.

Theorem 2. Suppose:

1. Conditions (A 2.1)–(A 2.3) are satisfied.
2. There exists a function V ∈ PΛ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that the inequalities A||x||a ≤ V(t, x) ≤
B||x||ab, t ≥ t0, x ∈ Rn hold.

(ii) For any point t ∈ (tk, tk+1] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t−
r, t],Rn) such that

(
C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s))

(37)
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the inequality
C
tk
Dα,ρV(t, ψ(t)) ≤ −DV(t, ψ(t))r (38)

holds where D > 0 is a given number.
(iii) For any k = 1, 2, . . . and u ∈ Rn the inequalities

V(t, Ψk(u)) ≤ C||u||a for t ∈ (tk, tk+1].

hold where C ∈ (0, A].

Then, the zero solution of IDDE (9) with the zero initial function is generalized proportional

Mittag–Leffler stable with C = a
√

B
A , β = b, λ = D, γ = 1

a .

Now we will provide an example illustrating the application of the given above suf-
ficient conditions. To be able to compare both cases about non-instantaneous impulses
and instantaneous impulses we will consider the scalar IVP for NIDDE (30) with appropri-
ate changes.

Example 2. . Consider the scalar IVP for IDDE(
C
tk
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5x(k)t ) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

x(tk + 0) = 0.5(sin tk)x(tk − 0) for k = 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0].

(39)

The scalar IVP for IDDE (39) with φ(s) ≡ 0 has a zero solution.
Let V(t, x) = x2. Thus, the condition 2(i) of Theorem 2 is satisfied with A = 0.25, B = 1, a =

2, b = 1.
Let k be a given natural number and t ∈ (tk, tk + 1), and the function ψ ∈ Cα,ρ(tk, [t −

r, t],R) be such that (
C
tk
Dα,ρψ

)
(t) = −2 + t

t + 1
(ψ(t)− 0.5ψ

(k)
t )

and

ψ2(t) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α)ψ2(s).

Then, we obtain
(

C
tk
Dα,ρψ2

)
(t) < −V(t, ψ(t)) (see (32)), i.e., condition 2(ii) of Theorem 2 is

satisfied with D = 1.
For any k = 1, 2, . . . we obtain (0.5 sin tk u)2 ≤ 0.25u2 = 0.25|u|2, i.e., the condition 2(iii)

of Theorem 2 is satisfied with C = 0.25.
According to Theorem 2, the zero solution of the scalar IDDE (39) is a generalized proportional

Mittag–Leffler stable with C = 2, β = 1, λ = 1, γ = 0.5, i.e., the inequality

||x(t; t0, φ)|| ≤ 2||φ||0

√
e

ρ−1
ρ (t−ti)Eα(−(

t− tk
ρ

)α), t ∈ (tk, tk+1], k = 0, 1, . . .

holds (compare with the special case tk+1 = sk, k = 0, 1, 2, . . . of Example 1) .

4.3. No Impulses

As mentioned in Remark 11 the case of instantaneous impulses could be considered
as a generalization of the case of no impulses, i.e., the system (10) could be considered as a
partial case of (9) with ti = t0, i = 1, 2, . . . . That is why we can translate the results from
the previous section to the case without impulses.
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Definition 5. The zero solution of the system DDE (10) (with φ ≡ 0) is said to be generalized
proportional Mittag-Leffler stable if there exist constants β, γ, C, λ > 0 such that the inequality

||x(t; t0, φ)|| ≤ C||φ||β0
(

e
ρ−1

ρ (t−t0)Eα(−λ(
t− t0

ρ
)α)

)γ

, t ≥ t0, (40)

holds, where x(t; t0, φ) is a solution on the IVP for DDE (7) and (10).

Remark 20. In the case ρ = 1, Definition 5 is the same as in [26].

We will use some comparison results for DDE (10) by applying Lyapunov functions:

Definition 6. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω → [0, ∞) is from the class Λ([a− r, b], Ω) if V ∈ C([a, b]/{tk} ×Ω, [0, ∞))
and it is Lipschitz with respect to the second argument.

The comparison scalar equation (DE) is

(C
t0
Dα,ρu)(t) = −λu(t), for t > t0,

u(t0) = u0.
(41)

According to Lemma 4, the solution of the IVP for DE (41) is given by u(t) =

u0e
ρ−1

ρ (t−t0)Eα(−λ( t−t0
ρ )α). t ≥ t0.

The auxiliary Lemma, corresponding to Lemma 6 reduces to

Lemma 8. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ Cα,ρ([t0, ∞), ∆) is a solution of the DDE (7) and (10),
where ∆ ⊂ Rn.

2. The function V ∈ CΛ([t0 − r, ∞), ∆) and for any point t > t0 such that

V(t, x∗(t))
e

1−ρ
ρ (t−t0)

Eα

(
−λ
(
(t−t0)

ρ

)α)
≥ sup

s∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−t0)

Eα

(
−λ
(
(s−t0)

ρ

)α)V(s, x∗(s))

(42)

the inequality (
C
t0
Dα,ρV(t, x∗(t))

)
≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.

Then, the inequality

V(t, x∗(t)) ≤ max
s∈[−r,0]

V(t0 + s, φ(s))e
ρ−1

ρ (t−t0)Eα(−λ(
t− t0

ρ
)α), t > t0

holds.

Theorem 3. Suppose:

1. Conditions (A 3.1), (A 3.2) are satisfied.
2. There exists a function V ∈ Λ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that C ≤ A and the inequalities A||x||a ≤
V(t, x) ≤ B||x||ab, t ≥ t0, x ∈ Rn hold.
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(ii) For any point t > t0 and any function ψ ∈ Cα,ρ(t0, [t− r, t],Rn) such that
(

C
t0
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−t0)

Eα

(
−λ
(
(t−t0)

ρ

)α)
≥ sup

s∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ
(
(s−t0)

ρ

)α)V(s, ψ(s))

(43)

the inequality
C
t0
Dα,ρV(t, ψ(t)) ≤ −DV(t, ψ(t)) (44)

holds where D > 0 is a given number.

Then, the zero solution of DDE (10) with the zero initial function is generalized proportional

Mittag–Leffler stable with constants C = a
√

B
A , β = b, λ = D, γ = 1

a .

Example 3. Consider the scalar IVP for DDE(
C
t0
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5 sup

s∈[−r,0]
x(t + s)), t > t0,

x(t0 + s) = φ(s), s ∈ [−r, 0].

(45)

The scalar IVP for DDE (45) with φ(s) ≡ 0 has a zero solution.
Let V(t, x) = x2. Thus, the condition 2(i) of Theorem 3 is satisfied with A = 0.25, B = 1, a =

2, b = 1.
Let t > t0 and the function ψ ∈ Cα,ρ(t0, [t − r, t],R) be such that

(
C
t0
Dα,ρψ

)
(t) =

− 2+t
t+1 (ψ(t)− 0.5 sups∈[−r,0] ψ(t + s) and ψ2(t) ≥ sups∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−t0)

Eα

(
−
(
(s−t0)

ρ

)α
)ψ2(s). Then,

we obtain (
C
t0
Dα,ρψ2

)
(t) < −V(t, ψ(t))

(see (32)), i.e., condition 2(ii) of Theorem 3 is satisfied with D = 1.
According to Theorem 3, the zero solution of the scalar DDE (45) is generalized proportional

Mittag–Leffler stable with C = 2, β = 1, λ = 1, γ = 0, i.e., the inequality

||x(t; t0, φ)|| ≤ 2||φ||0

√
e

ρ−1
ρ (t−t0)Eα(−(

t− t0

ρ
)α), t ≥ t0.

holds (compare with the special case of t0 = tk, k = 1, 2, . . . of Example 2).

5. Conclusions

In this paper, a system of nonlinear differential equations with finite delay and with
a generalized proportional Caputo fractional derivative is studied. The basic cases are
presented: the case when there are non-instantaneous impulses in the equations, the case
when there are instantaneous impulses in the equations, and the case without any impulses
in all equations. The appropriate initial value problem is set up in all these cases, and the
relation between them is discussed. It is shown that the case of non-instantaneous impulses
is a generalization of the case of instantaneous impulses, and the case of instantaneous
impulses could be considered as a generalization of the case without any impulses. These
statements could be applied to study various qualitative properties of the solutions. In this
paper, based on the application of Lyapunov functions and an appropriate modification of
the Razumikhin method, the Mittag–Leffler type stability is investigated.
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