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Abstract: The timeliness of order deliveries seriously impacts customers’ evaluation of logistics
services and, hence, has increasingly received attention. Due to the diverse and large quantities
of orders under the background of electronic commerce, how to pick orders efficiently while also
adapting these features has become one of the most challenging problems for distribution centers.
However, previous studies have not accounted for the differences in the stochastic characteristics of
order generation, which may lead to asymmetric optimization problems. With this in mind, a new
asymmetric polling-based model that assumes the varying stochastic characteristics to analyze such
order picking systems is put forward. In addition, two important indicators of the system, mean
queue length (MQL) and mean waiting time (MWT), are derived by using probability-generating
functions and the embedded Markov chain. Then, simulation experiments and a comparison of the
numerical and theoretical results are conducted, showing the usefulness and practicalities of the
proposed model. Finally, the paper discusses the characteristics of the novel order picking system
and the influence of the MQL and MWT on it.

Keywords: asymmetric polling theory; order picking system; gated service discipline; efficiency;
iterative algorithm

1. Introduction

Currently, as the development of electronic commerce drives the growth of consumer
demand, reducing the order-to-delivery time has become the primary challenge for distri-
bution centers under the conditions of smaller order sizes and more varieties of orders [1].
Due to the length of time and financial costs, order picking is considered an important
activity of storage and distribution centers. Some studies have shown that the cost of order
picking can account for more than 60% of the total warehouse operating costs [2].

Order picking has been an important research topic in logistics studies for the last
several decades, and scholars have used a variety of methods in their attempts to improve
order picking activities including order batching, order storage assignment strategies, or-
der picking sequencing, and stock-to-picker systems [3–6]. (i) Order batching: The goal
of order batching is to minimize the travel distance between the picker and orders to
obtain an optimal order batching strategy by picking the orders synchronously in one
tour [4,7–10]. For example, Lu et al. (2016) [6] used an interference algorithm to realize
dynamic picking path optimization, which is better than the static path algorithm and
heuristic dynamic order picking path algorithm. Hong and Kim (2017) [11] proposed a
batching model of path selection order based on the S-type path, which has better perfor-
mance in large-scale order processing environments. To reduce the running distance of
freight cars, Wu et al. (2022) [12] proposed an approach that used symmetry/asymmetry
traffic context data for multicriteria decision. (ii) Storage assignment strategies: Storage
assignment strategies can be divided into random storage, class-based storage, and closest
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open location storage [13–15]. Karasawa et al. (1980) [16] designed an automated ware-
house system-based on nonlinear mixed integer programming to minimize the storage
costs. Quader and Castillo-Villar (2018) [17] proposed a new algorithm based on norma-
tive order picking, which can reduce the cycle time and increase the throughput of the
system. Torre et al. (2022) [18] weighed storage risk and service level and determined the
best storage location of e-commerce products through the multicriteria decision-making
method. Boru et al. (2022) [19] used nondominated sorting genetic algorithm to solve
inventory routing problems under different demand patterns. (iii) Order picking sequenc-
ing: The study of order picking sequencing focuses on optimizing the distribution of
the order-picking areas. It has two main aspects: the sequence of order picking and the
layout of picking locations [20–22]. Boysen et al. (2017) [23] presented a type of accu-
rate heuristic algorithm to improve the space utilization of the warehouse with mobile
racks. Ning et al. (2022) [24] designed a hand–eye collaborative service system based on
depth vision for sorting robot. (iv) Stock-to-picker systems: According to the relative
motion state between orders and picking workers, these systems can be divided into
stock-to-picker and picker-to-stock [25,26]. In addition, the research on exact optimization
methods also contributed the field of logistics supply chain. For deep reviews of the meth-
ods, consider the works by Amjadian and Abolfazl (2022) [27], Gharaei et al. (2022) [28],
Gharaei et al. (2021) [29], and Rezaei et al. (2022) [30].

Motivated by the literature review, this paper focused on a significant order-picking
problem: how to improve the picking efficiency and reduce the order picking time at a
system level. In response, researchers began to use polling theory. A polling system is
usually described as a system that consists of a server and a plurality of queues and includes
three processes: queue arrival, serving queue, and switching service object [31]. Polling
systems generally have three types of service disciplines: gated, exhaustive, and k-limited.
Under gated service disciplines, the server only serves the orders that arrive at the service
point before the set time [32]. Under exhaustive service disciplines, the server will not
stop serving the order until the current order queue is exhausted. Under k-limited service
disciplines, the server serves up to k queues at a service time. Now, polling theory has
been widely used in the field of network and communication such as in wireless network
random accessing applications [33] and in the antijamming ability of wireless networks to
power grid systems [34]. However, we have found few studies based on limited polling
theory in the field of order picking. References [35–37] first used polling theory to study the
dynamic picking systems of online retailers under e-commerce considering the stochastic
variables of the orders and obtained the approximate explicit expressions of the order
line waiting time in the systems. Reference [4] showed that compared with traditional
batch-picking methods, the proposed polling-based dynamic order-picking system can
improve the order-picking efficiency.

However, the feature of the e-commerce businesses that generates an order with vari-
able stochastic characteristics suggests that it is essentially an asymmetric optimizations
problem. The diversity of order demands will lead to variations in the stochastic char-
acteristics of the orders, which may lower the efficiency of the order picking and bring
potential errors, and traditional picking systems have failed to address this issue. Most of
the literature has focused on the traditional way of organizing the picking process through
pick batches and releasing orders to the shop floor so that items can be picked and sorted
by workers or robots. As a result, they failed to address this gap. The studies in [35–37]
attempted to construct a dynamic order picking model based on asymmetric queue assump-
tions; however, they failed to solve the average queue length of orders. To our knowledge,
the existing studies still cannot fully examine the performance of an asymmetric polling
order picking system to adapt the multi-stochastic characteristics of orders.

To reveal the difference between symmetric and asymmetric polling-based order
picking systems, there is a specific example. Consider that polling systems usually include
three processes, queue arrival, serving queue, and switching service object [31], which are
determined by three stochastic properties, the queue arrival rate (λ), queue service time
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(β), and queue service switch time (γ). In the case of N queues, symmetric polling theory
assumes that λ1 = λ2 = . . . = λn, β1 = β2 = . . . = βn, and γ1 = γ2 = . . . = γn. For example,
due to the different sizes and sales, retailers choose different order intervals to maintain
their inventory levels, and the order interval directly affects the order queue arrival rate,
λ. Therefore, the assumption that λ1 = λ2 = . . . = λn is invalid, and in a real situation,
the stochastic characteristics of all order queues are variable. At the very least, not every
order queue is the same, which is the assumption of asymmetric polling theory [38,39]. The
difference between symmetric and asymmetric polling systems is the stochastic properties
constraint of order queues. The asymmetric polling system loosens the constraints on the
stochastic properties compared to the symmetric polling system, which is closer to the
practical production requirements.

Therefore, to resolve the research gap, this paper designed a novel asymmetric polling-
based dynamic order picking system that allows orders with diversiform stochastic char-
acteristics to exist in different picking lines. Under gated service discipline, we combined
the probability generating function and the embedded Markov chain to gain the explicit
solutions of mean queue length (MQL) and mean waiting time (MWT) in the model. Finally,
we verified its performance by numerical examples. The rest of the paper is structured as
follows. Section 2 introduces the proposed new model. Section 3 presents our numerical
example. The conclusions and discussion are presented in Section 4.

2. Model
2.1. Problem Statement

Currently, most Chinese cigarette logistics distribution centers are automating their
business processes; therefore, the model in this paper was put forward based on a highly
automated picking system. Taking the Qujing tobacco distribution center of the Hongyun-
honghe Group in Yunnan Province, China, as an example, the cigarette brands of the
distribution center are diverse, and the packaging of each type of cigarette is standardized
such that the goods picked are cartons of cigarettes. If cigarette retailers send order requests
to the distribution center through a unified ordering system, the distribution center can
pick and deliver the order within 24 h of receiving the request.

The order-picking system considered here is similar to that of Gong and De Koster
(2008) [35], which they describe as a “dynamic picking system”. To help understand and
implement such a complex system, the picking problem can be described as follows. The
system consists of a sorter and N order queues and includes three processes: queue arrival,
serving queue (picking order), and switching service object. (i) The arrival of an order starts
from generation to the picking operation after a customer orders in the system. The arrival
order line stream at position i is a Poisson process with expectation arrival rate λi. (ii) The
performance of the picking service depends on the speed and efficiency of the picking
machine. This process is measured by the expectation βi of the picking time. (iii) Switching
the service objects is where the picking machine switches to pick order queue i + 1 after
serving order queue i. This process is measured by the expectation γi of switching times
in the picking service. The length of switching time reflects the flexibility of the picking
machine and the interval between different orders.

To help understand and implement such a complex system to gain explicit solutions
of mean queue length and mean waiting time, the picking problem can be described as
shown in Figure 1. The model divides N queues into sub-queue i (containing only queue i)
and parent queue set î (containing N − 1 queues except queue i). Queue i + 1 is the first
queue of parent queue set î. At time tn, when the sorter machine starts picking the queue
in sub-queue. ξi(n) is the number of orders that accept the picking service in sub-queue
i. Only the orders of parent queue set î that arrive before tn+1, except queue i + 1, can
obtain the picking service at time tn. ξi(n + 1) is the number of orders that accept the
picking service in the parent queue set î at the time tn+1. Due to the fact that i + 1 ∈ î,

N
∑

j=1,j 6=i
ξ j(n+1) = ξ î(n+1). Once ξi(n + 1) orders finish the picking services, the next round
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of polling starts. In addition, as a reference, we provide an example with the MATLAB
program of the asymmetric polling-based dynamic order picking system in Appendix A.
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Figure 1. A model of the dynamic order picking system.

In addition, there are several basic conditions for the polling model-based picking
system:

(1) The picking machines combine the unit materials into different orders according
to the priority and requirements of the orders. The arrival rate, picking time, and service
switching time of the orders on the same order queue have certain distributions, and the
service switching time determines the distance between the adjacent orders. Each order has
only one layer, and we thus only consider its area. The area is determined by the number
of standardized smallest unit materials, which can be seen as the order requirements, as
shown in Figure 2.
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(2) The time of the model is divided into N unit time slots, which is a discrete time
system model. (a) The arrival process of the orders was that orders form and reach the
picking operation point after they are generated by the system. This process is measured by
the probability distribution expectation, λ. (b) The picking service process determines the
speed and efficiency of the picking machine. This process is measured by the probability
distribution expectation, β. (c) The process of switching the service objects involves the
picking machine switching to pick order queue i + 1 after serving order queue i. This
process is measured by the probability distribution expectation, λ. The switching time
reflects the flexibility of the picking machine and the interval between different orders.

(3) Every queue buffer (i.e., the area where an order waits to be picked) is sufficiently
large, and no order will be lost. It is easy to understand that this assumption guarantees
that orders can be generated continuously, i.e., the case of unlimited orders.

(4) The order queue accepts the picking service according to (a) first-come, first-served
(FCFS) rules and (b) the gated service discipline, as shown in Figure 3: the discipline
requires that the picking machine only sort the orders that enter the queue before starting
the service; therefore, the other orders are delayed until the next processing.
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2.2. Notation and Definitions

(1) Ai(zi): The probability distribution function of a queue’s arrival rate. Ai
′(zi) is its

first derivative, and Ai”(zi) is its second derivative;
(2) The arrival rates are independent of each other. The expectation λi and variance

σ2
λi of the probability distribution all satisfy the following conditions: λi = A′i(1) and

σ2
λi
= A′′i (1) + λi − λ2

i ;
(3) Bi(zi): The probability distribution function of a queue’s picking time. Bi

′(zi) is its
first derivative, and Bii”((zi) is its second derivative;

(4) The times of accepting the picking service are independent of each other. The
expectation βi and variance σ2

βi of the probability distribution all satisfy the following
conditions: βi = B′i(1) and σ2

βi
= B′′i (1) + βi − β2

i ;
(5) Ri(zi): The probability distribution function of the adjacent queue’s picking service

switching time. Ri
′(zi) is its first derivative, and Ri”(zi) is its second derivative;

(6) The switching times of the picking service are independent of each other. The
expectation γi and variance σ2

γi of the probability distribution all satisfy the follow-
ing conditions: γi = R′i(1) and σ2

γi
= R′′i (1) + γi − γ2

i . After processing, we obtain

γî =
N
∑

j =1
j 6= i

γj =
N
∑

j =1
j 6= i

R′j(1) and σ2
γî
=

N
∑

j =1
j 6= i

[
R′′j (1) + γj − γ2

j

]
;

(7) ξi(n): The number of orders that arrived before moment tn in the order queue
i; [ξ1(n), ξ2(n), . . . , ξi(n), . . . , ξN(n)] is the state of the whole picking system at moment
tn; πi(x1, x2, . . . , xi, . . . , xN) is the probability distribution of the picking system state at
moment tn; Gi(z1, z2, . . . , zi, . . . , zN) is the generating function of πi(x1, x2, . . . , xi, . . . , xN);
gi (k) is the first order characteristic of Gi(z1, z2, . . . , zi, . . . , zN), and it indicates the number
of orders that are waiting to be picked in queue k when queue i starts to obtain the picking
service; gi (j, k) and gî(j, k) are its second characteristic quantity;
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(8) ui(n): The time of the picking service switching from sub-queue i to order parent
queue set î; uî(n) represents the time of picking service switching from parent queue set î
to sub-queue i; vi(n) is the time when order queue i has picking service; µj(ui) is the number
of orders that arrive at order queue j within ui(n), j∈î; µj

(
uî
)

is the number of orders that
arrive at order queue j within uî(n); ηj(vi) is the number of orders that arrive at order queue
j within vi(n);

2.3. System Generating Function

The model starts to pick the parent queue set î at moment tn+1, and the gated control
polling system theory requires that the stability of the system must meet the condition
N
∑

i=1
λiβi < 1 [40]. When the polling system is stable, it has the following relationships:

µj
(
uî
)
+ ηj


N
∑

j =1
j 6= i

vj

 = ξ j(n), j 6= i

ξi(n + 1) + µi
(
uî
)
+ ηi


N
∑

j =1
j 6= i

vj

 = ξi(n)



at tn time; (1)

ξi(n+1) + µj(ui) + ηj(vi) = ξ j(n+1), j 6= i
µi(ui) + ηi(vi) = ξi(n+1)

}
at tn+1 time. (2)

According to Equations (1) and (2), the state generating function of the parent queue
set and sub-queue will be obtained:

Gî(z1, · · · , zN)= Ri

(
N

∏
j=1

Aj
(
zj
))

Gi

(
z1, z2, · · · , Bi

(
N

∏
j=1

Aj
(
zj
))

, · · · , zN

)
,i = 1, 2, · · · , N; j = 1, 2, · · · , N; (3)

Gi(z1, · · · , zN)= Rî

(
N
∏
j=1

Aj
(
zj
))

Gî

(
B1

(
N
∏
j=1

Aj
(
zj
))

, · · · , Bi−1

(
N
∏
j=1

Aj
(
zj
))

,

zi, Bi+1

(
N
∏
j=1

Aj
(
zj
))

, · · · , BN

(
N
∏
j=1

Aj
(
zj
)))

,
i = 1, 2, · · · , N; j = 1, 2, · · · , N. (4)

2.4. The Characteristic Parameters of the System Generating Function
2.4.1. Mean Queue Length

When the queue i starts to accept the picking service, the number of orders that wait
for picking in queue j is gi(j). Supposing i = j, gi(i) represents the number of orders that wait
for the next picking in queue i buffer; it can also be called the mean queue length of the
picking system. gi(j) is obtained by seeking the partial derivative of Gi(z1, z2, . . . , zi, . . . ,
zN) as follows:

gi(j) = lim
z1,z2,··· ,zN→1

∂Gi
(
z1, · · · , zj, · · · , zN

)
∂zj

, j = 1, 2, · · · , N. (5)

Equations (3) and (4) can be substituted into Equation (5) to obtain Equations (6) and (7):
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R′

î
(1)A′i(1)+gî(i) + A′i(1)

N
∑

n =1
n 6= i

gî(n)B′n(1) = γλi+gî(i) + λi
N
∑

n =1
n 6= i

gî(n)βn= gi(i);

R′i(1)A′i(1)+gi(i)B′i(1)A′i(1) = γiλi+gi(i)βiλi= gî(i);

(6)


R′

î
(1)A′j(1)+A′j(1)

N
∑

n =1
n 6= i

gî(n)B′n(1) = γβ̂λj + λj
N
∑

n =1
n 6= i

gî(n)βn= gi(j);

R′i(1)A′j(1)+gi(i)B′i(1)A′j(1)+gi(j) = γiλj+gi(i)βiλj+gi(j)= gî(j).

(7)

According to Equations (5)–(7), the mean queue length of the sub-queue and the parent
queue set can be obtained as follows (the relevant proofs will be given in the Appendix B):

gî(j) =
λj

N
∑

n=1
γn

1−
N
∑

n=1
βnλn

, j = 1, 2, · · · , N; î = 1, · · · , i−1, i+1, · · · , N;

gi(i) =
λi

N
∑

n=1
γn

1−
N
∑

n=1
βnλn

, i = 1, 2, · · · , N.

(8)

2.4.2. Mean Waiting Time

Another characteristic parameter to measure the performance of the asymmetric
polling system is the mean waiting time of the system. It refers to the time from the order
entering the buffer of the order queue to finishing the picking service and leaving the
picking machine. The mean waiting time of the symmetric polling system considers the
waiting time of the order on the arrival time slot. The mean waiting time can be expressed
as follows (the relevant proofs are given in the Appendix C):

E[Wi]G= −
A′′i (1)
2λ2

i
+

(1 + βiλi)gi(i, i)
2λigi(i)

. (9)

According to the properties of the probability-generating functions in random process
gî(j, k) and gi(j, k) are obtained by seeking the second partial derivative of Gi(z1, z 2, . . . , zi,
. . . , zN) as follows:

gî(j, k) = lim
z1,z2,··· ,zN→1

∂G2
î
(z1,··· ,zN)

∂zj∂zk
, j = 1, 2, · · · , N; k = 1, 2, · · · , N;

gi(j, k) = lim
z1,z2,··· ,zN→1

∂G2
i (z1,··· ,zN)

∂zj∂zk
, j = 1, 2, · · · , N; k = 1, 2, · · · , N.

(10)

By combining Equations (3), (4) and (10), Equation (11) is obtained, and the relevant
proofs are given in the Appendix D.
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gi(i, i) =




1 + 2

N
∑

n =1

n 6= i

βnλn − βiλi
N
∑

n =1

n 6= i

βnλn − 2βiλi


N
∑

n =1

n 6= i

βnλn



2

− 2


N
∑

n =1

n 6= i

βiλi



3
[

R′′i (1) + γi(1 + 2βi gi(i))+gi(i)
(

βi + B′′i (1)
)]

λ2
i

+2


1−


N
∑

n =1

n 6= i

βnλn



2

− βiλi


N
∑

n =1

n 6= i

βnλn



2
λiγî gî(i) + 2γiλ

2
i

N
∑

j =1

j 6= i

β j gi(j)


1−


N
∑

n =1

n 6= i

βnλn



2

+


N
∑

n =1

n 6= i

βnλn




+ λ2

i


βiλi

N
∑

n =1

n 6= i

βnλn + 1




γî + R′′
î
(1) +

N
∑

n =1

n 6= i

gî(n)
[

B′′n (1) +
(

2γî + 1
)

βn
]



/




1− 2βiλi

N
∑

n =1

n 6= i

βnλn


βiλi +

N
∑

n =1

n 6= i

βnλn


− (βiλi)

2 −


N
∑

n =1

n 6= i

βnλn



2


1− βiλi

N
∑

n =1

n 6= i

βnλn




.

(11)

The mean waiting time of the asymmetric gated polling control system can be obtained
by bringing Equations (8) and (11) into Equation (9).

3. Numerical Example and Discussion

In this section, we use several numerical examples to validate the performance of the
new model using the MATLAB (R2012b version) software platform. First, we examined
the impact of variable stochastic characteristics (i.e., λiβi and γi) on the proposed model,
and then, we compared the performance of the new picking system in the cases of different
amounts of the picking station. The results of the MQL and MWT illustrate the major
results of the paper.

3.1. Numerical Example

To facilitate numerical analysis, we assumed that the picked goods are all the same
kind and that the number of materials contained in each order is the same. The distribution
center is responsible for the picking operation of the variety order. We suppose the outer
package of the unit material width was 100 mm, the order conveyor speed was 60 m/min,
the picking speed per of unit material was 2 s, and the order switch time was 1 min. Each
group of the parameters was analyzed 5000 times, and the theoretical calculations used
normalized parameters. Each order consisted of a combination of unit materials, and the
speed of the conveyor was uniform. Furthermore, the system met the stable conditions of
N
∑

i=1
λiβi < 1 and i = 1, 2, . . . , N.

Figures 4 and 5, respectively, show how λβ impacted the order picking system’s
two important performance indexes, mean queue length (MQL) and mean waiting time
(MWT), with a different number of picking station (P.S.n, n = 1, 2, 3, 4, and 5, meaning
there were n picking stations), and we assumed that λ1:λ2:λ3:λ4:λ5 = 1:2:4:6:8 and γi = 10

(i = 1, 2, . . . , 5). λβ =
N
∑

i=1
λiβi represents the overall load level of the picking system.

The larger λβ means the higher system load. With the increasing system load λβ, MQL
and MWT also grow nonlinearly. When λβ is small (λβ < 0.1), the difference in the MWT
was not obvious and far less than that of the MQL. As the system’s load increased, the
divergence of the MWT became apparent. If the other parameters were the same, the size
of λ was positively related to the increase in the MQL and MWT.
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Figures 6 and 7, respectively, show how γ impacted the order picking system’s mean
queue length (MQL) and mean waiting time (MWT) under a low system load, and we

assumed that λ1λ2:λ3:λ4:λ5 = 1:2:4:6:8, βi = 0.6 (i = 1, 2, . . . , 5), and λβ =
N
∑

i=1
λiβi = 0.126.

Figures 8 and 9, respectively, show how γ impacted the mean queue length (MQL) and
the mean waiting time (MWT) under a high system load, we assume that λ1:λ2:λ3:λ4:λ5

= 1:2:4:6:8, βi = 3.6 (i = 1, 2, . . . , 5) and λβ =
N
∑

i=1
λiβi = 0.756. P.S.n (n = 1, 2, 3, 4, and 5)

means there are n picking stations. Figures 6–9 show the theoretical values of the MQL and
MWT at different system load levels. At any system load level, the MQL and MWT will
grow with the increasing in γ. When γ is determined, the higher system load expands the
MQL and MWT. As shown in Figure 7, the differences in the picking stations’ MWT were
very small under a low system load.
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Table 1 show that the numerical results of the system’s performance under different
amounts of the picking station. The second set of data had more than one picking station
in the first set of data, and they had the same stochastic characteristic parameters as the
three picking stations. The third set of data had five picking stations, but its system load
(λβ = 0.078) was close to the second set of data (λβ = 0.0777).

Table 1. The numerical results of the different picking stations.

[
λ
β
γ

] Picking Station MQL MWT

N.V. T.V. N.V. T.V.0.01 0.02 0.04
0.6 0.6 0.6
10 10 10

 1 0.3132 0.3180 15.2819 16.7355
2 0.6263 0.6320 15.3760 15.8800
3 1.2526 1.1940 15.5643 16.10840.01 0.02 0.04 0.06

0.6 0.6 0.6 0.6
10 10 10 10

 1 0.4338 0.4400 21.3802 21.4732
2 0.8677 0.8500 21.5107 22.7066
3 1.7354 1.7940 21.7717 22.0332
4 2.6030 2.5820 22.0327 22.6792

0.01 0.02 0.04 0.06 0.08
0.37 0.37 0.37 0.37 0.37
10 10 10 10 10


1 0.5422 0.5720 26.7805 27.1823
2 1.0845 1.0880 26.8814 26.6361
3 2.1690 2.0760 27.0830 27.2311
4 3.2535 3.2200 27.2847 27.1912
5 4.3380 4.3400 27.4864 27.7259

N.V. = numerical value; T.V. = theoretical value.

3.2. Discussion

(1) The numerical values were very close to the theoretical values; this means that the
proposed model of an asymmetric polling-based dynamic order picking system is valid.

(2) With the increase in the λβ and γ, the MQL and MWT also grew correspondingly.
This shows that these stochastic characteristics (λiβi and γi) have an important impact on
the performance of the picking system. The higher system load and longer switching times
of a picking service can increase the queue length and waiting time of a picking system. In
addition, the differences in the picking stations’ MQL were larger than that of the picking
stations’ MWT with the increase in the system load, which could be due to the order arrival
rate’s greater impact on the length of the order queue.
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(3) Under a low system load, the differences in the picking stations’ MWT were too
small and not obvious. This means that the arrival rate hardly affected the waiting time
of the picking system in the case of a low system load. However, with the growth in the
system load, the differences in the picking stations’ MWT also increased and the effect of
the differences in the picking stations’ arrival rates on the MWT gradually became apparent.
This indicates that the picking system could better identify the stochastic characteristics of
the order queues under a high load and is more flexible in actual situations.

(4) An increasing number of picking stations will enlarge the MQL and MWT, even if
the system load remains the same. This means that the number of picking stations is also an
important factor affecting the system’s performance as well as the stochastic characteristic
parameters. The diversity of the order queue characteristics complicates the picking system,
and a longer queue length and waiting time of the order picking are unavoidable.

4. Conclusions

In this paper, we established a new model for an asymmetric polling-based dynamic
order picking system. First, the arrival rate, service time, and service switching time of
each order queue were assumed to have different probability distributions, and the picking
machine was required to serve different queues according to the gated service discipline for
polling. Furthermore, we used the probability generating function and embedded Markov
chain to accurately solve the model and to obtain the MQL and MWT of the model.

This paper extended the theory and application of asymmetric polling in automated
order picking systems and contributed to existing research. Considering the existing re-
search [35,36,38,39,41,42], which did not take into account the influence of the diversity of
the order demand on the probability distribution of the different order queues, we estab-
lished an asymmetric polling-based order picking system under gated service disciplines,
and our model assumed that different queues have different arrival rates, service times, and
service switching times. The proposed model can more closely reflect the actual changes
in the orders in e-commerce and make the order picking system more efficient and stable.
The numerical examples results indicate the usefulness and practicality of the new model.
It is conducive for logistics enterprises to complete efficient order assignments and provide
timely and satisfactory logistics services.

Finally, our study has some limitations. For example, it has lots of necessary conditions
for the new model, such as the conditions of the system stability, the order queue arrival, the
picking process, and the picking service switch process. The condition change of random
characteristics will directly affect the probability generating function. This may make the
problem-solving methods more complex, and they may not even obtain accurate solutions.
Therefore, future research should focus on reducing these constraints and making the
model more flexible to adapt to the actual situations of distribution centers.
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Appendix A. Example Program

Algorithm A1: An example program of the asymmetric polling-based dynamic order picking system with n = 5 picking stations

for i = 1:N
seg = [exprnd(1/a(1,1),1,M1);exprnd(1/a(1,2),1,M1);exprnd(1/a(1,3),1,M1);exprnd(1/a(1,4),1,M1);exprnd(1/a(1,5),1,M1)];

T(i,:) = seg(i,:);
end
for i = 1:M
start_time = t;
for j = 1:N
while temp(1,j) < t
if temp(1,j) + T(j,m(1,j)) < = t
temp(1,j) = temp(1,j) + T(j,m(1,j));
n(1,j) = n(1,j) + 1;
m(1,j) = m(1,j) + 1;
each_time1(1,j) = each_time1(1,j) + (t-temp(1,j));
else
break;
end
end
res(j) = n(1,j)-stemp(1,j);%
if res(j) = = 0;
t = t+r(1,j);
else
t = t + res(j)*b(1,j) + r(1,j);
end
stemp(1,j) = stemp(1,j) + res(j);
que_length(j) = que_length(j) + res(j);
if res(j) > 0
for q = 1:res(j)
each_time2(1,j) = each_time2(1,j) + ((res(j)-q)*b(1,j));
end
end
end
time1(i) = t-start_time;
end
time_sum = sum(sum(time1));
for k = 1:N
g1(1,k) = que_length(k)/M;
w1(1,k) = (each_time1(1,k) + each_time2(1,k))./stemp(1,k);

end

Appendix B. Proof of Equation (8)

According to Equation (7), Equation (A1) can be obtained:

gî(j) = γiλj + γîλj+gi(i)βiλj + λj

N

∑
k =1
k 6= i

gî(k)βk. (A1)

Both sides of Equation (A1) are multiplied by
N
∑

j =1
j 6= i

β j:
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1−
N
∑

k =1
k 6= i

βkλk


N
∑

k =1
k 6= i

gî(k)βk =
N
∑

k =1
k 6= i

βkλk
[
γi + γî+gi(i)βi

]

N
∑

k =1
k 6= i

gî(k)βk =

N
∑

k =1
k 6= i

βkλk

[
N
∑

k=1
γk+gi(i)βi

]

1−
N
∑

k =1
k 6= i

βkλk

.

(A2)

According to Equation (6), Equation (A3) can be obtained:

gi(i) = γîλi + γiλi+gi(i)βiλi + λi
N
∑

k =1
k 6= i

gî(k)βk

= λi
N
∑

k=1
γk+gi(i)βiλi + λi

N
∑

k =1
k 6= i

gî(k)βk.
(A3)

Then, Equation (A2) can be taken into Equation (A3):

gi(i) = λi

N

∑
k=1

γk+gi(i)βiλi + λi

N
∑

k =1
k 6= i

βkλk

[
N
∑

k=1
γk+gi(i)βi

]

1−
N
∑

k =1
k 6= i

βkλk

1−
N

∑
k =1
k 6= i

βkλk

gi(i)(1− βiλi) = λi


N

∑
k=1

γk

1−
N

∑
k =1
k 6= i

βkλk

+
N

∑
k =1
k 6= i

βkλk

[
N

∑
k=1

γk+gi(i)βi

]
gi(i)

(
1−

N

∑
k=1

βkλk

)
+ βiλigi(i)

N

∑
k =1
k 6= i

βkλk = λi

N

∑
k=1

γk + βiλigi(i)
N

∑
k =1
k 6= i

βkλk

gi(i) =
λi

N
∑

k=1
γk

1−
N
∑

k=1
βkλk

. (A4)

Bringing Equation (A4) into Equation (A2) provides the following:
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N

∑
k =1
k 6= i

gî(k)βk =

N
∑

k =1
k 6= i

βkλk

[
N
∑

k=1
γk

(
1−

N
∑

n=1
βnλn

)
+ λi βi

N
∑

n=1
γn

]

1−
N
∑

k =1
k 6= i

βkλk


(

1−
N
∑

n=1
βnλn

)
. (A5)

By combining Equations (7) and (A5), Equation (A6) can be obtained:

gi(j) = γîλj +

λj
N
∑

k =1
k 6= i

βkλk

[
N
∑

k=1
γk

(
1−

N
∑

n=1
βnλn

)
+λi βi

N
∑

n=1
γn

]


1−

N
∑

k =1
k 6= i

βkλk


(

1−
N
∑

n=1
βnλn

)

= γîλj +

λj
N
∑

k =1
k 6= i

βkλk
N
∑

k=1
γk

(
1−

N
∑

n=1
βnλn+λi βi

)


1−

N
∑

k =1
k 6= i

βkλk


(

1−
N
∑

n=1
βnλn

)

= γîλj +

λj
N
∑

k =1
k 6= i

βkλk
N
∑

k=1
γk

1−
N
∑

n=1
βnλn

.

(A6)

Taking Equations (A6) and (A4) into Equation (7) gives the following:

gî(j) = γiλj +
βiλjλi

N
∑

k=1
γk

1−
N
∑

k=1
βkλk

+ γîλj +

λj
N
∑

k =1
k 6= i

βkλk
N
∑

k=1
γk

1−
N
∑

n=1
βnλn

= λj
N
∑

k=1
γk +

βiλjλi
N
∑

k=1
γk+λj

N
∑

k =1
k 6= i

βkλk
N
∑

k=1
γk

1−
N
∑

k=1
βkλk

=

λj
N
∑

k=1
γk


1−

N
∑

k=1
βkλk+βiλi+

N
∑

k =1
k 6= i

βkλk


1−

N
∑

k=1
βkλk

=
λj

N
∑

k=1
γk

1−
N
∑

k=1
βkλk

.

(A7)
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Appendix C. Proof of Equation (9)

According to gated service discipline, the order queue i arrives at the service counter
during τm(τm = tm+1 − tm) and accepts the picking service at tn time. The order k in queue
i ends the picking service at t*

m(tm< tm+1 < tn < t*
m). We assume that θi(n) represents the

time interval of the picking machine serving the same order queue i and there are yi
a(n)

and yi
b(n) that satisfy the following conditions:

ya
i (n) = ξi(1)[θi(n)− 1]+ + ξi(2)[θi(n)− 2]+ + · · ·+ ξi(n)[θi(n)−n]+, i = 1, 2, · · · , N,
[θi(n)−k]+ = max[θi(n)−k, 0];

yb
i (n) = vi,1(n) + [vi,1(n) + vi,2(n)] + · · ·+

ξi(n)−1
∑

k=1
vi,k(n), i = 1, 2, · · · , N.

(A8)

From the gated service strategy, the waiting time Wi of the order can be represented
by the following formula:

Wi= Wa
i + Wb

i . (A9)

The expectations of Wi
a and Wi

b can be obtained as follows:

E
(
Wa

i
)
=

E[ya
i (n)]

E[ξi(n)]
= lim

T→∞

T
∑

n=1
ya

i (n)

T
∑

n=1
ξi(n)

= − A′′i (1)
2λ2

i
+ gi(i,i)

2λi gi(i)
;

E
(

Wb
i

)
=

E[yb
i (n)]

E[ξi(n)]
= lim

T→∞

T
∑

n=1
yb

i (n)

T
∑

n=1
ξi(n)

= βi gi(i,i)
2gi(i)

.

(A10)

Therefore, the mean waiting time E[Wi]G can be obtained:

E[Wi]G= E(Wa
i ) + E

(
Wb

i

)
= −A′′ i(1)

2λ2
i

+
(1 + βiλi)gi(i, i)

2λigi(i)
(A11)

Appendix D. Proof of Equation (11)

Seeking the two-order partial derivative of Equations (10), (A12) and (A13) can
be obtained:

gi(i, i) = λ2
i R′′

î
(1) + γî A

′′
i (1) + 2λiγîgî(i) + 2λi

N
∑

n =1
n 6= i

βngî(i, n) + λ2
i

N
∑

n =1
n 6= i

N
∑

m =1
m 6= i

βmβngî(m, n)

+gî(i, i) +
N
∑

n =1
n 6= i

gî(n)
[
A′′i (1)βn + 2λ2

i γîβn + λ2
i B′′n (1)

]
;

gî(i, i) = λ2
i R′′i (1) + γi A

′′
i (1)+gi(i)

[
A′′i (1)βi + 2λ2

i γiβi + λ2
i B′′i (1)

]
+ λ2

i βi
2gi(i, i);

gî(i, j) = λiλj
[
R′′i (1) + γi

]
+ λiλjgi(i)

[
βi + 2γiβi + B′′i (1)

]
+ λi[γigi(j) + βigi(i, j)

+λjβi
2gi(i, i)

]
.

(A12)
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gî(j, j) = λ2
j R′′i (1) + γi A

′′
j (1) + gi(i)

[
A′′j (1)βi + 2λ2

j γiβi + λ2
j B′′i (1)

]
+ gi(j, j)

+λj
[
2γigi(j) + 2βigi(i, j) + λjβi

2gi(i, i)
]
;

gi(i, j) = λiλj

[
R′′

î
(1) + γî

]
+ λjγîgî(i) + λj

N
∑

n =1
n 6= i

βngî(i, n) + λiλj
N
∑

n =1
n 6= i

N
∑

m =1
m 6= i

βmβngî(m, n)

N
∑

n =1
n 6= i

gî(n)
[
λiλjβn + 2λiλjγîβn + λiλjB

′′
n (1)

]
;

gi(j, k) = λkλj

[
R′′

î
(1) + γî

]
+

N
∑

n =1
n 6= i

gî(n)
[
λkλjβn + 2λkλjγîβn + λkλjB

′′
n (1)

]
+

λkλj
N
∑

n =1
n 6= i

N
∑

m =1
m 6= i

βmβngî(m, n).

(A13)

Accordingly, Equations (A12) and (A14) can be obtained:

gi(i, i) =

λ2
i

βiλi
N
∑

n =1
n 6= i

βnλn + 1


γî + R′′

î
(1) +

N
∑

n =1
n 6= i

gî(n)
[
B′′n (1) +

(
2γî + 1

)
βn
]


+2λjγîgî(i) + λ2
i

1 + βiλi
N
∑

n =1
n 6= i

βnλn


N
∑

n =1
n 6= i

N
∑

m =1
m 6= i

βmβngî(m, n) + 2λ2
i γi

N
∑

j =1
j 6= i

β jgi(j)

+λ2
i
[
R′′i (1) + γi(1 + 2βigi(i))+gi(i)

(
βi + B′′i (1)

)]
1 + (2− βiλi)

N
∑

n =1
n 6= i

βnλn


/



1− βiλi
N
∑

n =1
n 6= i

βnλn

(1− βi
2λi

2)− 2βi
2λi

2
N
∑

n =1
n 6= i

βnλn



(A14)

Accordingly, Equations (A13) and (A15) can be obtained:
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N
∑

n =1
n 6= i

N
∑

m =1
m 6= i

βmβngî(m, n) =




N
∑

n =1
n 6= i

βnλn


2

[
R′′i (1) + γi(1 + 2βigi(i))+gi(i)

(
βi + B′′i (1)

)]
1 + βiλi

N
∑

n =1
n 6= i

βnλn

+ 2γi
N
∑

n =1
n 6= i

βnλn
N
∑

m =1
m 6= i

βmgi(m) +

1 + βiλi

2−
N
∑

n =1
n 6= i

βnλn




γî + R′′
î
(1) +

N
∑

n =1
n 6= i

gî(n)
[
B′′n (1) +

(
2γî + 1

)
βn
]
+ 2


N
∑

n =1
n 6= i

βnλn


2

βiγîgî(i)+


N
∑

n =1
n 6= i

βnλn


2

βi
2

1 + βiλi
N
∑

n =1
n 6= i

βnλn

gi(i, i)

/



1− βiλi
N
∑

n =1
n 6= i

βnλn


1−


N
∑

n =1
n 6= i

βnλn


2− 2βiλi


N
∑

n =1
n 6= i

βnλn


2

(A15)

By combining Equations (11), (A14) and (A15) can be obtained.
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