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Abstract: The performance of a computer vision system depends on the accuracy of visual informa-
tion extracted by the sensors and the system’s visual-processing capabilities. To derive optimum
information from the sensed data, the system must be capable of identifying objects of interest (OOIs)
and activities in the scene. Active vision systems intend to capture OOIs with the highest possible
resolution to extract the optimum visual information by calibrating the configuration spaces of the
cameras. As the data processing and reconfiguration of cameras are interdependent, it becomes very
challenging for advanced active vision systems to perform in real time. Due to limited computational
resources, model-based asymmetric active vision systems only work in known conditions and fail
miserably in unforeseen conditions. Symmetric/asymmetric systems employing artificial intelligence,
while they manage to tackle unforeseen environments, require iterative training and thus are not
reliable for real-time applications. Thus, the contemporary symmetric/asymmetric reconfiguration
systems proposed to obtain optimum configuration spaces of sensors for accurate activity tracking
and scene understanding may not be adequate to tackle unforeseen conditions in real time. To address
this problem, this article presents an adaptive self-reconfiguration (ASR) framework for active vision
systems operating co-operatively in a distributed blockchain network. The ASR framework enables
active vision systems to share their derived learning about an activity or an unforeseen environment,
which learning can be utilized by other active vision systems in the network, thus lowering the time
needed for learning and adaptation to new conditions. Further, as the learning duration is reduced,
the duration of the reconfiguration of the cameras is also reduced, yielding better performance in
terms of understanding of a scene. The ASR framework enables resource and data sharing in a
distributed network of active vision systems and outperforms state-of-the-art active vision systems
in terms of accuracy and latency, making it ideal for real-time applications.

Keywords: active vision; self-adaptation; self-reconfiguration; smart camera network

1. Introduction

A smart camera network (SCN), defined by Reisslein et al. [1], is a real-time distributed
embedded system that is configured to perform computer-vision tasks by processing sensor
data obtained from a plurality of cameras via cooperative sensing. The smart camera
network is generally deployed to perform complex computer-vision tasks that require
more than one camera to extract visual information. Visual surveillance of large areas [2],
complex sports analytics [3], situation cognizance [4], tele-immersion, automated driver-
less vehicles [5], ambient assisted living [6], computer-vision-based disaster management,
robotic vision, and other applications rely on SCNs to achieve desired functionalities. The
smart camera network aims to co-operatively fuse sensor data to develop scene under-
standing and further associates scene understanding with a control system configured to
achieve the overall functionality of a computer vision system.

The advancement in computer-vision applications has taken a tremendous leap in
the last decade. According to a survey reported in [2], the growth of computer-vision
applications is estimated at a compound annual growth rate (CAGR) of 7.6% from 2020
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to 2027. Computer vision systems [7] aim to leverage human efforts by developing an
understanding of events through the processing of data obtained from a number of sensors
(hereinafter interchangeably referred to as “cameras” or “camera sensors”). Further, based
on understanding, most of the smart computer vision systems aim to enable the operation
of control systems to deliver a desired functionality automatically without any human
interaction. An ideal computer vison system should extract data from the activities detected
by the sensors, generate an understanding based on processing of the data, and provide
optimal functionality through an appropriate control system.

Computer vision systems [7] rely on the processing of digital images or videos ob-
tained from one or more cameras to obtain an understanding of an activity or an event.
Understanding of the activity or event highly depends on the quality of data in terms
of information about objects of interest. To obtain optimum information about an OOI
from captured data, the cameras must be configured to capture OOIs with the highest
possible resolution. In some respects, it can be concluded that the objects of interest must
be captured as close to the center of the camera’s field of view as possible.

A computer vision system [7] needs to process the data to identify an OOI and critical
activities in the scene to derive scene understanding, based on which the cameras can be
reconfigured to capture the OOI in the center of the FOV. Thus, data processing and camera
calibration are interdependent. A system capable of reconfiguring the parameters of the
cameras to manipulate the viewpoints of the cameras in order to investigate the environment
and obtain better information from it is known as an active vision system. As reconfiguration
of the cameras and the processing performance of the active vision system are interdependent,
designing advanced active vision systems employing a network of cameras co-operatively
working towards a desired functionality in real time is very challenging.

Traditional model-based active vision systems have limited computational resources,
due to which they can only identify activities in known environments for which they are
designed and fail badly to identify and understand new activities in unforeseen conditions.
Active vision systems employing artificial intelligence (AI) manage to tackle unforeseen
conditions; however, due to iterative training processes, they are not reliable for real-time
applications. The impacts of unforeseen conditions and uncertainties in computer vision
systems are presented in [2].

To address the abovementioned problem, this article showcases an adaptive self-
reconfiguration (ASR) framework for active vision systems operating co-operatively in a
distributed blockchain network. The ASR framework facilitates active vision systems to
share information about their learning towards new activities and unforeseen environments
with other systems in the distributed network. The information shared can be utilized
by any system in the distributed blockchain network to tackle an identical condition and
thus saves a lot of time which would otherwise have been taken up with iterative model
training. Further, as the learning duration is reduced, the duration of the reconfiguration of the
cameras is also reduced, thus yielding better performance in terms of understanding a scene.

To develop a good understanding of the abovementioned reconfiguration problem
and its impact on the performance of an active vision system, this article primarily provides
a detailed discussion of the challenges in developing an active vision system at different
operational levels. We further provide an extended survey of various systems and methods
proposed for addressing the challenges. Additionally, this article highlights a trend in the
state-of-the-art systems and methods proposed to address the active vision challenges and
showcases a common threat for most of the contemporary solutions. This article further
provides definitions of the concepts of self-reconfiguration and self-adaptation and presents
a role for self-reconfiguration and self-adaptation in the enhancement of the performance
of active vision systems. Finally, this article provides an adaptive self-reconfiguration (ASR)
framework to enhance the performance of active vision systems and their applications.

A computer vision system generally includes one or more camera sensors, software or
circuitry for data processing, and a control system. The camera sensors are configured for
co-operative sensing in the operating environment and gathering raw sensor data. The raw
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sensor data are fused to obtain pre-processed visual information that is utilized for visual
processing. The visual processing includes several steps to process and furnish the sensor
data and obtain a visual understanding. A control signal is generated based on the visual
understanding and is transmitted to the control system. Based on the control signal received,
the control system actuates one or more components of the system such that the desired
functionality of the system is achieved. The abovementioned process is depicted in Figure 1.
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Figure 1. A general process flow of a computer vision system employing a smart camera network.

A multi-camera active vision system [8] (hereinafter interchangeably referred to as an
“active vision system”) is basically a computer vision system that employs an SCN with
the capability of altering the viewpoints of the sensor nodes, thereby yielding better data
for processing. The operation of active vision systems can be differentiated into two levels:
a deployment level (i.e., for data extraction) and a processing level (i.e., where the visual
processing takes place to obtain an understanding). The challenges associated with the
deployment of an active vision system employing one or more SCNs can also be classified
into two categories. Challenges of the first type [9] are associated with reconfiguration
of the sensor nodes to obtain sensor data bearing optimal information, relative to each
camera’s resource limitations. Challenges of the second type [2] are associated with the
data-processing level of operation, occurring at the time of processing the data to develop
an understanding of a scene while keeping the computational complexity as low as possible.
Thus, an efficient active vision system demands efforts at both hardware and software
levels of deployment. Detailed reviews of the challenges at the data-processing level and
the sensor-calibration level of active vision systems are presented in [2] and [9], respectively.
A multi-tier taxonomy of challenges for active vision systems employing camera networks
on the basis of operational classification is shown in Figure 2.
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2. Challenges

A smart camera network (SCN) enhances the availability of raw data and thus the chances
of deriving better information; however, it also increases the computational complexity of the
active vision system of which it is a part. The configuration space of each sensor depends on
the intrinsic parameters (such as optical center, focal length, etc.) and the extrinsic parameters
of the sensor (such as rotation and translation, etc.), which require calibration [8].

Apparently, an active vision system utilizing a single fixed camera has much lower
computational complexity and thus faces fewer challenges at the deployment level than
an active vision system employing a network of mobile pan–tilt–zoom (PTZ) cameras.
However, an active vision system employing multiple camera sensors can have an occlusion-
avoidance capability that may be lacking in an active vision system employing a single
camera for sensing.

2.1. Deployment-Level Challenges

Due to limited resources with respect to most of the sensor nodes and the high
computational complexity of active vision systems, it becomes challenging to allocate
tasks to the nodes. Additionally, optimization of the resources by each sensor node is
equally important. Further, designing a sensor architecture and accurate sensor placement
according to the overall objective of the system is another challenge at the deployment
level. Furthermore, calibration of the sensors of the SCN and occlusion handling by the
system also add to the challenges at the deployment level.

2.1.1. Sensor Placement

Generally, cameras in SCNs are placed with overlapping FOVs to reproduce the
entire operating environment. However, in some cases, with limited resources and larger
operational areas, it becomes very difficult to place cameras with overlapping FOVs. The
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placement of cameras has a direct impact on the quality and quantity of data available for
processing. For example, if an object is captured in the center of a camera’s FOV, the quality
of the data, and thus the visual information available from the data, is much higher than
if the object is captured at the edges of the camera’s FOV. In addition, camera placement
must ensure maximum coverage of events and thus camera placement becomes a critical
part of the deployment of SCNs. For the above reasons, sensor placement is critical to the
deployment of an SCN.

2.1.2. Calibration

The configuration space of an SCN includes the internal and external camera parame-
ters of the sensor nodes or cameras of the SCN. It is critical to change the configuration space
of each camera, considering the available and used resources. When the target changes
its position in the field of view (FOV) of a sensor or moves from the FOV of one sensor to
another, the configuration of the sensor must be changed by modifying its parameters so
that data can be acquired to yield optimal information (i.e., by keeping the object as close
to the center of the FOV as possible).

Some SCN designs also emphasize minimizing resource utilization by inactivating
sensors if no activity is detected over a specified period of time, which alters the dynamic
topology of the network. Thus, dealing with such dynamically changing situations is very
challenging. At the operational level, calibration challenges are further classified as follows.

• Sensor modelling

The parameters of the configuration space of each sensor depend on the type of sensors
used in the SCN. The sensor model provides information about the configuration space
as well as the available resources, such as power, bandwidth, and the overall quality of
service (QoS), possessed by the sensors. Therefore, sensor modelling plays a crucial role in
active vision systems.

• Localization

When an object moves away from the FOV of a sensor, it is important to hand over
the object to another sensor in the SCN. Since the topology of the SCN is dynamic, the
network must be configured to receive information about the active nodes and their relative
positions at all times. This information is obtained through the active localization of sensor
nodes in the SCN. Localization plays an important role in the system’s deployment, as it
aids in determining the dynamic relative positions of active sensor nodes in the SCN.

• Parameter estimation and correction

Real-time calibration of the active sensors participating in the SCN is required to
capture the objects of interest (OOIs) with maximum information. Therefore, parameter
estimation and correction play important roles in active vision systems employing SCNs.

2.1.3. Resource Optimization and Task-Load Balancing

Most of the present-day active vision systems require sensor mobility and thus rely
on batteries and wireless communication. Due to limited resources, optimum resource
utilization becomes critical. Resource optimization can be achieved in two ways, either
by using low-power-consuming components at the nodes or by using the sensor nodes
smartly. Low-power-consuming components are generally expensive and thus add to
the overall expense of deploying an SCN. In a pre-established network, employing new
low-power-consuming components may lead to having to discard the entire system and
build a new one from the scratch. On the other hand, using the sensors smartly (only when
required) does not necessarily require changing the existing hardware or components in
the SCN. However, getting a machine to learn when to activate while responding in real
time can be challenging for a system. An outcome of a dynamically changing state of the
nodes in the SCN is dynamic task-load allocation to the active nodes in the SCN.

The network topology changes dynamically as the sensors switch from active to in-
active states. Additionally, in order to avoid deviating from the SCN’s main goal (i.e.,
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obtaining sensor data with high-quality visual information), the system’s overall function-
ality is dynamically distributed amongst the nodes in the form of task loads. As a result, the
SCN must compute the dynamic topology in real time, determine the nodes’ localizations,
and simultaneously distribute the task load among the active nodes in the SCN.

2.1.4. Handling Occlusions

The OOI can occasionally become obscured while being observed by a sensor, resulting
in low-quality data due to the occlusion blocking the OOI. One way to deal with this
situation is to hand over the OOI to the subsequent nearest sensor node. However, finding
a next-best node for the OOI in real-time also creates challenges. Moreover, it becomes
difficult if any nearby nodes are unavailable or if the OOI is outside the field of view (FOV)
of any nearby nodes. There are a few prediction-based approaches that rely on computation;
however, these approaches lack accuracy and may result in missing critical data, making
them unreliable.

2.2. Challenges in Data Processing

Processing sensor data to obtain understanding is the most critical part of any active
vision system. Active vision systems utilize data from multiple sources (i.e., multiple
sensor nodes) and therefore require highly complex computational capabilities. The visual
processing becomes more challenging when an application has to deliver results in real
time. The data-processing challenges of an active vision system are discussed below.

2.2.1. Selection of a Processing Platform

The choice of processing platform is as important as the algorithms used to process
the sensor data. The processing requirements of active vision are selected based on the
system’s overall functionality, which is typically determined by two factors: processing
time and functional complexity. For instance, the architecture of a system that requires
complex computations in real time might be more complex and therefore more expensive
than one with a relaxed processing window for applications with simpler computations.

2.2.2. Scene Reconstruction

The data obtained by a number of active sensors need to be synchronized to obtain
useful information. An individual sensor’s data need to be stitched together in such a way
that they result in the determination of an action performed by the OOI. The dynamically
changing network topology makes this even more challenging.

2.2.3. Data-Processing Challenges

The active vision system relies on visual-processing algorithms to achieve the overall
functionality of the system. Data-processing challenges include detecting an event or activity
by the OOI and further deriving an understanding about the detected event or activity. Various
visual-processing challenges in an active vision system are discussed below.

• Object detection

While detecting an OOI, an active vision system divides the acquired sensor data into
a foreground and a background. It should be noted that in an active vision system, object
detection and data extraction by sensors are interdependent, making it difficult for any
active vision system to accurately detect the OOI. In addition, one or more objects in the
observed scene may be performing multiple tasks, increasing the likelihood of problems.
Variations in viewpoints, shifts in lighting conditions, occlusions, and similar factors often
lead to issues with object detection.

• Object classification and tracking

Detected objects undergo classification to distinguish one object from another. Object
classification requires the selection of appropriate methods for pattern recognition, cluster-
ing, and data segmentation. There are several methods for pattern recognition, clustering,
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and segmentation and there are associated advantages and challenges. Therefore, the selec-
tion of an appropriate method for object classification is very critical. Further, information
about the activity performed by the object(s) participating in an event under observation is
extracted by tracking the OOI(s) in consecutive frames. Deciding tracking features based
on the activity of an OOI can be challenging because the OOI perceived by the sensor in
successive frames is likely to have different viewpoints (i.e., the shape of the OOI perceived
by the sensors may appear variable).

• Object Re-identification

Many active-vision applications rely on relating activities of an OOI observed in
non-consecutive frames. For instance, an understanding of an event can be obtained by
comparing the actions of an OOI seen in various camera FOVs and at various times. For
the system to reach a conclusion, it must re-identify an already identified OOI and correlate
different activities of the OOI performed at different times.

• Pose and behavior estimation

Consecutive frames are subjected to spatio-temporal evaluations of consecutive frames
to obtain pattern and pose information from the OOI tracked in the scene. An accurate
relationship between the activities and the changes in the pose of the OOI is required to
relate the visual information to the corresponding understanding of the activity. Further,
the active vision system must be configured to estimate variation in the pose of the OOI
and thus derive the behavior of the OOI based on the pattern of the poses.

2.2.4. Activity Recognition and Understanding

Activity detection and recognition follows two paradigms: static and dynamic. An
activity can be detected by analyzing a single frame, known as static recognition, and
requires only spatial evaluation of the frame. Dynamic approaches require the evaluation
of multiple consecutive frames, utilizing scene reconstruction (also known as dynamic
recognition), and thus require spatio-temporal computational capabilities. Static recognition
processes do not require pose estimation. Dynamic recognition, on the other hand, is
generally used to solve complex problems where the information is obtained by pose
estimation, such that the pose information is subsequently processed.

It is worth noting that the process flow of an active vision system utilizing an SCN
includes two basic components: one derived from the functionality of the SCN (i.e., for the
dynamic calibration of parameters) and the other derived from the computer vision system
(i.e., for visual processing). In addition, it must also be noted that both the abovementioned
components are inter-related co-operatively.

2.3. System-Level Challenges

In an active vision system employing an SCN to extract sensor data, the calibration
of parameters of the sensor nodes participating in the SCN is highly dependent on the
detection and interpretation of the sensor data by the active vision system. Further, the
effectiveness and performance of the active vision system (i.e., the data processing) depend
on the quality of data extracted by the SCN nodes. Thus, it can be inferred that the
functionality of the SCN and the data processing system are interdependent. Moreover,
real-time decision making is even more challenging for such an interdependent system.

In some respects, an active vision system can be considered a type of computer vision
system wherein the system is configured to make alterations in the configuration space of
the sensor(s) employed by the system in real time in a manner pre-defined by way of design
protocols. However, an active vision system is not capable of handling most unforeseen
challenges because it is protocol-driven and therefore cannot make independent decisions.
Thus, the system-level challenges mentioned above are very critical and hard to overcome. If
the system is configured with self-reconfigurable properties, it can overcome the abovemen-
tioned challenges. If such a system is configured with adaptive capabilities, this may further
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facilitate an enhancement in performance through active learning. The self-reconfiguration
and adaptive properties of an active vision system are discussed later in Section 5.

3. Existing Solutions

To understand the development and progress at each operational level of active vision
systems, we have performed an extended search survey for the last two decades. The
results were generated with the keywords “active vision”, “computer vision”, “smart
camera network”, AND “the name of challenge”, as discussed in Section 2, using the
Google Scholar search tool.

3.1. Sensor Placement

The two major challenges to be addressed while deploying an SCN in reference
to sensor placement are the maximization of the surveillance area and the handling of
non-overlapping FOVs (i.e., managing handover). Indu et al. [10] and Zhang et al. [11]
proposed methods for sensor placement in networks aiming to maximize the surveillance
areas covered by the sensors. Silva et al. [12] proposed a system for coordination among
the sensor nodes of an unmanned aerial vehicle (UAV) network for efficient surveillance.
The systems and methods proposed in [10–12] present camera-placement solutions for
optimized functionality; however, they lack flexibility in architecture and prioritization of
surveillance space. An activity-based prioritization of the surveillance area is proposed
in [13] by Jamshed et al., addressing the abovementioned concern. Vejdanparast [14]
addressed the camera-placement problem for maximizing the area of surveillance by
enhancing the fidelity of each camera in the network. Wang et al. [15] proposed Latin-
Hypercube-based Resampling Particle Swarm Optimization (LH-RPSO) based on a camera
placement algorithm for IoT devices and networks.

Redding et al. [16] proposed object handover based on multiple features, such as Zernike
moments, scale-invariant feature transformation, gray-level co-occurrence matrices, color
models, etc., using cross-matching for non-overlapping FOVs. In [17], Esterele et al. presented
a method for the generation of an online real-time vision graph for the handover of information
in a decentralized network with non-overlapping FOVs. The method proposed in [17]
demonstrated that no prior knowledge of nodes is required and that it is easy to add or
remove nodes from the network. Lin et al. [18] proposed an active handover control for
real-time handover of single objects using multiple PTZ cameras, using the shortest distance
rule and spatial relations. The method proposed in [18] proposed the readiness of a receiving
camera before handover. A year-wise representation of the abovementioned sensor placement
techniques along with their advantages is shown in Table 1.

Table 1. Evolution of sensor-placement techniques.

Ref. Year Methodology Advantages

[16] 2008
Online system for tracking multiple people

in an SCN with overlapping and
non-overlapping views

Development of a larger, more capable, and fully automatic
system without prior localization information

[10] 2009 Genetic
algorithm

Maximum coverage of users;
Defined priority areas with optimum values of parameters;

The proposed algorithm works offline
and does not require camera calibration;

Minimizes the probability of occlusion due to randomly
moving objects

[17] 2011 Ant-colony-inspired mechanism used to
grow the vision graph during runtime

Generates a vision graph online;
Increased autonomy, robustness, and flexibility in smart

camera networks
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Table 1. Cont.

Ref. Year Methodology Advantages

[18] 2012
Approach to construct the automatic

co-operative handover of multiple cameras
for real-time tracking

Tracking a moving target quickly
and keeping the target within
the viewing scope at all times

[11] 2015 Novel model with non-uniformly distributed
detection capability (DC)

Orientation of each visual sensor can be optimized through a
least-squares problem;

More efficient with an averaged relative error of about 3.4%

[13] 2015 Node-level optimal real-time priority-based
dynamic scheduling algorithm Portable system with ease of access in hard-to-access areas

[12] 2017
Coordination of embedded agents using

spatial coordination on strategical
positioning and role exchange

Persistent surveillance with dynamic priorities

[14] 2020 Novel decomposition method with an
intermediate point of representation

Low computational expense;
Higher fidelity of the outcomes

[15] 2020 Latin-Hypercube-based Resampling Particle
Swarm Optimization (LH-RPSO)

LH-RPSO has higher performance than the PSO and the RPSO;
LH-RPSO is more stable and has a higher

probability of obtaining the optimal solution

3.2. Calibration

The major challenges in the calibration of nodes participating in an SCN concern sensor
(camera) modelling, localization, and parameter estimation and correction. Some of the
proposed solutions addressing various calibration challenges are discussed hereinbelow.

3.2.1. Camera Modelling

Some basic models for camera calibration are the thin-lens camera model, the pinhole
camera model (linear-perspective projection model), the orthographic projection model,
the scaled orthographic projection model, and the para-perspective projection model.

The thin-lens model is a linear calibration model that accounts for the effects of
translation and rotation relative to a view plane. The pinhole model later introduced the
effect of linear perspective projection; however, it has high computational complexity.

To overcome the high computational complexity of the pinhole model, Hall et al. [19]
proposed a much simpler and computationally efficient linear model based on 3D affine
transformation with linear perspective projection. The abovementioned linear models did not
perform well, as they were unable to account for non-linear distortion, which was addressed
by improving 3D affine transformation with non-linear perspective projection models by Tsai
et al. in [20], Toscani’s non-linear calibration model in [21], and by Wang et al. in [22].

3.2.2. Localization

Camera localization helps estimate the relative positions, orientations, and poses of
active nodes in a network. Identifiers or markers in the form of lines, points, features, cones,
circles, spheres, etc., are commonly used for the localization of nodes in a camera network.

Such identifiers are commonly used in unknown network environments but can
also be used in known environment for improved accuracy and better scene mapping.
Utilizing perspective points as markers, the Perspective-n-Point (PnP) algorithm can be
used in a known network environment. Simultaneous localization and mapping (SLAM),
as presented in [23,24], and structure from motion (SFM), as presented in [25], can be used
for dynamically changing network environments. The SFM technique in [25] is based on
human vision perseverance to estimate a 3D scene using 2D image data by combining
image motion information with frame data. The Monte Carlo method in [26] uses a particle
filter for localization and recursive Bayesian estimation for sorting and sampling.

Montzel et al. [27] proposed a distributed energy-efficient camera network localization
method using sparse overlapping in 2004. In [28], Brachmann and Rother proposed 6D
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pose estimation using an end-to-end localization pipeline. The geometric localization
obtained via the head-to-foot location (poles) of pedestrians using an estimated distribution
algorithm (EDA) in [29] can be utilized for self-calibration of the nodes in a network. A
year-wise representation of the abovementioned localization techniques along with their
advantages is shown in Table 2.

Table 2. Evolution of localization techniques.

Ref. Year Methodology Advantages

[26] 1999
Online system for tracking multiple people

in an SCN with overlapping and
non-overlapping views

Development of a larger, more capable, and fully automatic
system without prior localization information

[27] 2004 Sparse overlapping Better energy efficiency and able to cope with networking
dynamics

[23] 2006 SLAM Locally optimal maps with computational complexity
independent of the size of the map

[24] 2006 SLAM Locally optimal maps with computational complexity
independent of the size of the map

[29] 2016 Estimated distribution algorithm (EDA) Accurate estimation of the features of moving objects (person)

[25] 2017 SFM Better ambiguity handling in 3D environments

[28] 2018 6D pose estimation using an end-to-end
localization pipeline

Efficient, highly accurate, robust in training, and exhibits
outstanding generalization capabilities

3.2.3. Parameter Estimation and Correction

Zheng et al. [30] proposed a focal-length estimation method using parallel particle
swarm optimization (PSO) with low time complexity and efficient performance. Führ and
Jung [31] proposed a self-calibration method for the surveillance of pedestrians in a static
camera network using a projection matrix obtained from non-linear optimization of an
initial projection matrix obtained after pole extraction. The information in the projection
matrix was used for the localization of cameras in the network. In [32], Yao et al. proposed
a self-calibration model for dynamic multi-view cameras using golf and soccer datasets
based on a field model.

Li et al. [33] proposed a greedy-descent-optimization-based parameter-estimation
and scene-reconstruction framework for camera–projector pairs for self-calibration. A
network of such systems can be used for efficient tele-immersion applications. Janne
and Heikkilä [34] proposed a self-reconfiguration solution for a camera network with
focal-length estimation using homography from unknown planar scenes. In [35], Tang
et al. proposed a simultaneous distortion-correction self-configuration method using
an evolutionary optimization scheme on an estimated distribution algorithm (EDA) for
tracking and segmentation. A year-wise representation of the abovementioned parameter
estimation techniques along with their advantages is shown in Table 3.

3.3. Resource Optimization: Topology Estimation and Task-Load Balancing

As the network topology changes, the task load needs to be altered to ensure that
the overall functionality of the system is achieved. Marinakis and Dudek [36] proposed
a system to estimate the topology of a visual network in the form of a weighted directed
graph using statistical Monte Carlo expectation and sampling models. Hangel et al. in [37]
addressed the problem of topology estimation for a large camera network and proposed
a window-occupancy-based method as a solution. The method in [37] required a lot of
assumptions and could not handle large numbers of data. Detmold et al. [38] proposed
a topology-estimation method capable of handling data from a large number of nodes
in the network by scalable collective stream processing using an exclusion algorithm in
distributed clusters of nodes. The method proposed by Detmold et al. [38] is similar to the
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decentralized processing scheme. Clarot et al. [39] proposed an activity-matching-based
network topology for distributed networks. Zhou et al. [40] proposed topology estimation
by means of a statistical approach in a distributed network environment, utilizing identity
and appearance similarity.

Table 3. Parameter-estimation techniques.

Ref. Year Methodology Advantages

[31] 2015 Projection matrix obtained from non-linear
optimization Better accuracy

[32] 2016 Field model Automatic estimation of camera parameters with high accuracy

[33] 2017 Greedy descent
optimization

Stable and robust automatic geometric projector camera
calibration with high accuracy;

Efficient in tele-immersion applications

[34] 2017 Homography from
unknown planar scenes Highly stable

[30] 2018 Parallel particle swarm optimization (PSO) Low time complexity and efficient
performance

[35] 2019 Evolutionary optimization scheme on an EDA Capability of reliably converting 2D
object tracking into 3D space

In [41], Farrel and Davis proposed network topology estimation for decentralized data
processing. Zhu et al. [42] proposed a centralized processing approach for topology discov-
ery using pipeline processing of lightning variations. In [43], Goutam and Misra proposed a
trust-based topology management system for a distributed camera network. Tan et al. [44]
proposed a method for topology estimation using blind distance as a parameter. In [45], Li
et al. proposed topology estimation using Gaussian and mean cross-correlation functions
for a distributed camera network. A year-wise representation of the abovementioned
topology-estimation techniques along with their advantages is shown in Table 4.

Table 4. Topology-estimation techniques.

Ref. Year Methodology Advantages

[36] 2005 Monte Carlo expectation maximization
and sampling Minimum effects of noise and delay

[37] 2006 Window-occupancy-based method Efficient and effective way to learn an activity topology for a large
network of cameras with a limited number of data

[38] 2007 Exclusion algorithm in distributed clusters High scalability

[40] 2007 Statistical approach in distributed
network environment

Robustness with respect to appearance changes and better
estimation in a time varying network

[41] 2008 Decentralized data processing Robustness with respect to variable appearance and
better scalability

[39] 2009Activity-based multi-camera matching procedure Flexible and scalable

[42] 2015 Pipeline processing of lightning variations Automated tracking and re-identification across large
camera networks

[43] 2015 Trust-based topology management system Higher average coverage ratio and average packet delivery ratio

[44] 2018 Blind-area distance estimation Finer granularity and high accuracy

[45] 2018 Gaussian and mean cross-correlations Better target tracking under a single region and better
interference in multi-view regions

An efficient computer vision system differentiates the overall functionality into a
number of small tasks to optimize the system’s functionality. The task load for each active
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node depends on its local state, orientation, and available resources. In some respects,
resource utilization is related to task-load balancing at each active node in the SCN. Kansal
et al. [46] presented a distributed approach for adaptive task-load assignment on the basis of
available energy from the network environment, which significantly improved the lifetime
of the system. Rinner et al. [47] proposed a heterogeneous multiple mobile-agent-based
task-allocation framework utilizing a distributed multi-view camera network. Later, Rinner
et al. [48] presented an updated approach to allocate tasks for traffic surveillance, proposing
clustered surveillance areas. In [49], Karuppiah et al. proposed a hierarchy-based automatic
resource allotment and task-load balancing algorithm using fault tolerance based on activity
density for a distributed network. Dieber et al. [50] proposed expectation-maximization-
based task-load assignment to optimize monitoring performance, with efficient resource
utilization. Dieber et al. [51] extended their work on task-load balancing with market-based
handover for real-time tracking with optimized resource utilization. In [52], Christos et al.
proposed a market-based bidding framework for multi-task allocation for a distributed cam-
era configuration. A year-wise representation of the abovementioned task-load balancing
techniques along with their advantages is shown in Table 5.

Table 5. Task-load balancing techniques.

Ref. Year Methodology Advantages

[46] 2003 Method for distributed adaptive task-load assignment Better resource efficiency

[47] 2005 Multiple-mobile-agent-based task-allocation framework Selective operation of the tracking algorithm to reduce
the resource utilization

[48] 2005 Multiple-mobile-agent-based task-allocation framework Selective operation of the tracking algorithm to reduce
the resource utilization

[49] 2010 Hierarchy-based automatic resource allotment Robust tracking

[50] 2011 Expectation-maximization-based approximation Efficient approximation method for optimizing the
coverage and resource allocation

[51] 2012 Market-based handover Improved quality of surveillance with optimized
resources

[52] 2016 Market-based handover Improved quality of surveillance with optimized
resources

3.4. Occlusion Handling

Occlusion-handling approaches either aim at handing over the OOI to the next-best
sensor node or predicting the occluded part of the OOI and reproducing it virtually to
obtain the missing visual information. Occluded objects in the camera field can result in
loss of activity information and thus compromise the functionality of the control system
utilizing the understanding provided by the computer vision. Wang et al. [53] proposed
occlusion estimation at each point of a scene flow field with patch-match optimization
utilizing feature consistency and smoothness regularization as performance parameters
in space with an improved red–green–blue dense model. In [54], Quyang et al. proposed
a framework based on a part-based deep model for pedestrian detection. The proposed
model is capable of estimating information loss due to occlusion in the form of errors in
detector scores, using visibility of parts as a parameter.

Shahzad et al. [55] proposed multi-object tracking with effective occlusion handling
by modelling the foreground using a K-means algorithm, where the object information
is associated after occlusion using a statistical approach. Rehman et al. [56] proposed
clustering based on a variational Bayesian method and multi-object tracking based on
concepts of attractive and repulsive forces depending upon Euclidean distances between
objects, utilizing a social force model to avoid the effects of occlusion. In [57], Chang
et al. proposed a convolutional-neural-network (CNN)-based tracking system with sparse
coding for the pre-training of a network with the capability of handling occlusion effectively
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for the surveillance and classification of vehicles. Zhao et al. [58] proposed an adaptive
background formulation based on a Gaussian model for occlusion handling and object
tracking in a coarse-to-fine-manner without-affecting-appearance model present in the
system. In [59], Liu et al. proposed a distraction-aware tracking system based on a 3D
mean-shift algorithm, capable of altering its appearance model and occlusion handling by
utilizing depth information of the OOI. A year-wise representation of the abovementioned
occlusion handling techniques along with their advantages is shown in Table 6.

Table 6. Occlusion-handling techniques.

Ref. Year Methodology Advantages

[53] 2015 Patch-match optimization Reduced computational complexity by large displacement motion

[54] 2015 Part-based deep model Handles illumination changes, appearance change, abnormal
deformation, and occlusions effectively

[56] 2015 Social force model Improved tracking performance in the presence of complex
occlusions

[55] 2016 K-means algorithm and statistical approach Cost-effective in terms of resources (memory and computation)

[58] 2017 Gaussian model for occlusion handling Handles appearance changes and is capable of dealing with
complex occlusions

[57] 2018 CNN High performance with a limited labelled training dataset

[59] 2018 Distraction-aware tracking system Effective and computationally efficient occlusion handling

3.5. Selection of a Processing Platform

Selection of a platform to develop a computer vision system is as critical as designing or
selecting algorithms specific to the functionality. Most commonly, the processing platforms
may either be software-based, as with a central processing unit (CPU) or a graphical
processing unit (GPU), or hardware-based, as with a field-programmable gate array (FPGA)
and application-specific integrated circuits (ASICs). The selection of the platform depends
on the requirements of processing capabilities, result accuracy, flexibility, timeliness, and
resource utilization. A comparative evaluation of the selection of processing platforms for
computer vision systems is presented by Feng et al. [60].

Systems that require flexible functionality usually prefer CPU- or GPU-based process-
ing platforms; however, the efficiency of such systems is low. On the other hand, ASICs and
FPGA are used for systems that require high efficiency and better and faster computations;
however, these systems lack operational flexibility.

Hørup et al. [61] presented a comparative analysis of general-purpose computations
performed by CPUs and GPUs in computer vision systems. Guo et al. [62] proposed a fast
and flexible CPU-based computation system for human pose estimation. Tan et al. [63]
proposed a fast yet flexible deep-learning-based computer vision system utilizing a GPU.
Irmak et al. [64], Costa et al. [65], and Carbajal et al. [66] proposed FPGA-based computer
vision systems, whereas Xiong et al. [67] presented an ASIC-based computer vision system
with enhanced operational flexibility. To obtain the advantages of the two kinds of platform,
a hybrid model, i.e., a platform with a hardware–software combination such as the one
presented in [68], can also be utilized for computation.

The state-of-the-art research on the selection of processing platforms aims to serve the
ends of efficiency and flexibility of computation. CPU- and GPU-based systems aim to
improve efficiency and computational speed, whereas systems based on FPGA and ASICs
are intended to enhance operational flexibility.

3.6. Scene Reconstruction

The sensors in the SCN obtain raw sensor data from their respective FOVs. The raw
data are then fused together, utilizing spatio-temporal information (obtained through the
frame count and relative localization of sensors) associated with the data. The integration
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of sensor data into a virtual environment or a scene is called scene reconstruction. R.
Szeliski [69] proposed a novel volumetric scene-reconstruction method using a layered
structure and multiple depth maps. Martinec et al. [70] proposed 3D reconstruction using
an uncalibrated image dataset and a pipelining approach to detect regions of interest (ROIs)
and match them using random sample consensus (RANSAC). Peng et al. [71] addressed
the network geometry-estimation problem utilized for scene reconstruction and proposed
two-view geometry estimation using a local-structure-constraint-based L2-estimation–local-
structure-constraint (L2E-LSC) algorithm.

For efficient scene reconstruction, effective point matching is imperative. Brito et al. [72]
compared different state-of-the-art point correspondence methods, such as Scale Invariant
Feature Transform (SIFT), Fast Retina Keypoints (FREAK), Oriented Fast and Rotated Brief
(ORB), Binary Robust Invariant Scalable Keypoints (BRISK), and Speeded-Up Robust Fea-
tures (SURF). Milani [73] introduced localization-based reconstruction for a heterogeneous
network. Aliakbarpour et al. [74] reviewed different scene-reconstruction methodologies
and presented a reconstruction method using parametric homography. Wang and Guo [75]
presented a reconstruction method using plane primitives of an RGB-D frame. Ma et al. [76]
proposed a mesh-reconstruction system using an adaptive octree division algorithm for
point-cloud segmentation and mesh relabeling and reconstruction for scene reconstruction.
Ichimru et al. [77] presented 3D scene reconstruction using a CNN under water, utilizing
transfer learning with a bubble dataset to avoid distortions.

3.7. Data Processing

The overall objective of a computer vision system is to detect an activity or event of
interest, perform processing on the data containing information about the event, develop an
understanding of the event, and generate an action by way of a control unit based on the
understanding. The visual processing includes a number of stages. Recent advancements in the
most common stages of visual processing in computer vision systems are discussed hereinbelow.

3.7.1. Object Detection

The first step towards the visual processing of data in a computer vision system is detec-
tion of the OOI (also referred to as the foreground). Some traditional object-detection methods
are the Viola and Jones technique [78], scale-invariant feature transformation (SIFT) [79],
HOG-based detection [80], optical flow [81,82], and background subtraction [83]. Most of the
recent computer vision systems involve machine-learning-based object detection, including
neural-network-based object detection [84], “you only look once” (YOLO) [85], region propos-
als (R-CNN) [86], single-shot refinement neural networks (RefineDet) [87], Retina-Net [88],
and single-shot multi-box detectors (SSDs) [89]. The recent neural-network-based object-
detection methods provide much better accuracy as compared to the traditional detection
methods, but they are highly dependent on the training data. A survey of the evolution of
detection techniques in computer vision from probabilistic-prediction approaches to advanced
machine-learning approaches is presented in [2].

Some challenges in object detection arise due to dynamic illumination changes, the
movement of objects, and occlusions. Roy and Ghosh [90] proposed an adaptive back-
ground model (a histogram min–max bucket) using a single sliding window to add adapt-
ability to the background detection. The adaptive background model used a median-finding
algorithm incorporated to handle dynamic illumination changes. Bharti et al. [5] proposed
an adaptive real-time occlusion-handling kernelized correlation framework for UAVs capa-
ble of updating location and boundary information based on the confidence values of the
tracker. Min et al. [91] proposed a multiple-object-detection approach using pixel lifespan
to blend ghost shadows to the background and a classifier based on a state vector machine
(SVM) and a convolutional neural network (CNN) to avoid occlusions.

Detecting an object in a moving FOV is a tedious task and requires substantial ap-
proximations. Wu et al. [92] proposed an effective computational model to solve this
problem. They evaluated a coarse foreground using singular-value decomposition and
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reconstructed the background using the foreground information obtained through a fast
in-painting technique. Mean-shift segmentation was used for further refinement of the
foreground. Hu et al. [93] presented a tensor-based approach to detect mobile objects
without changing the scene dynamics. For initial foreground detection, saliently fused
sparse regularization was used and tensor nuclear norms were utilized to handle back-
ground redundancy. The foreground was further improved using a 3D locally adaptive
regression kernel, which was used to compute spatio-temporal variations. A year-wise
representation of the abovementioned object detection techniques and their advantages is
shown in Table 7.

Table 7. Object-detection techniques.

Ref. Year Methodology Advantages

[83] 1989 Background subtraction Low computational complexity

[78] 2001 Viola and Jones technique Low processing latency with high detection rate

[80] 2005 HOG-based detection Precise object detection and classification

[79] 2012 Scale-invariant feature transformation Efficient detection and localization of duplicate objects under
extreme occlusion

[81] 2013 Optical flow Accurate detection of moving objects

[86] 2014 Region proposals (R-CNNs) High accuracy and precision for object detection

[92] 2015 Background subtraction and mean shift Refined and precise foreground detection

[85] 2016 “You only look once” Low latency multi-object detection

[89] 2016 Deep-neural-network-based SSD Prediction-based detection for variable shapes of objects

[93] 2016 Tensor flow Detection of mobile objects in FOVs

[84] 2017 Neural network Multi-object detection with variable shapes

[90] 2017 Adaptive background subtraction model Better accuracy as compared to traditional background subtraction

[91] 2017 State-vector machine and
CNN-based classifier

Multiple-object-detection approach to detect ghost shadows and
avoid occlusions

[82] 2018 Optical flow Accurate detection of moving objects

[87] 2018 Single-shot refinement neural network High detection accuracy

[5] 2018 Kernelized correlation framework Real-time occlusion handling

[88] 2019 Retina-Net Balanced detection performance in terms of latency, accuracy, and
precision of detection

3.7.2. Object Classification and Tracking

The OOI can be classified after detection on the basis of one or more appearance
parameters [94] called features that classify the object based on color, texture, shape, pixel
motion, etc. Some basic features for object representation presented in [95] are points,
shapes, and silhouettes or contours. Conventionally, object-classification methods [96] can
be categorized as decision-based, statistical-probability-based, and soft-computing-based
techniques. Some common decision-based classification methods are decision trees [97,98]
and random forests [99]. Bayesian classification [100–102], discriminant analysis [103],
logical regression [104], and nearest-neighbor [105] approaches use statistical probability
for classification. State vector machines [106], multi-layered perceptrons [107], and neural
networks [108,109] use soft computing for classification.

One of the major challenges in object tracking is distortion of the OOI. Villiers
et al. [110] proposed real-time inverse distortion for distortion correction. A lot of methods
for distortion correction and calibration use properties of vanishing points, as was first
proposed in [111]. A distributed algorithm proposed by Caprile et al. [35] illustrated the uti-
lization of tracking waking humans as poles to derive vanishing points for radial distortion
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correction and self-calibration. Radial distortion correction was addressed in [112,113] by
estimating the center of distortion. Huang et al. [114] proposed linear-transformation-based
radial distortion correction, whereas Zhao et al. [115] used a pipelined process for radial dis-
tortion correction. Methods for the correction of radial as well as tangential distortion were
proposed in [116–118]. Yang et al. [119] proposed estimation and correction of perspective
distortion utilizing depth information. Color-calibration theory, discussed by Finlayson
et al. in [120], has been used to address the challenge of optical distortion. In [121], Wong
et al. presented a color-calibration approach using a multi-spectral camera model.

Another challenge in object tracking is to obtain the best possible information for
each object of interest in the scene while dealing with multiple OOIs in the scene. One
of the factors affecting the performance of this task is the motion of the camera nodes to
capture the objects precisely. The motion blur sometimes increases to such an extent that
the effect of moving the camera in the environment is nullified. Han et al. [122] proposed a
motion-aware tracker to address the abovementioned problem by filling in the tracking
fragments caused by occlusion or blur. Meinhardit et al. [123] proposed a former tracking
system to address the challenges of multi-object tracking.

3.7.3. Object Re-Identification

Object re-identification encounters multiple challenges through occlusions, false ob-
ject detection due to ghost shadows [124], illumination changes, and change in view-
points. Zhang et al. [125] proposed an adaptive re-identification framework for spatio-
temporal alignment utilizing Fisher vector learning to address illumination changes in
the re-identification of OOIs. Yang et al. [126] used logical determinant metric learning to
tackle re-identification through different camera views to overcome occlusions in the re-
identification of objects. Multiple features, when fused together, improve re-identification
capabilities; however, the role of each feature and the weights are critical. Geng et al. [127]
proposed a feature-fusion method based on weighted-center graph theory to obtain the
role of each feature in re-identification. Yang et al. [128] presented re-identification using
partial information which can be utilized with occluded data.

3.7.4. Pose and Behavior Estimation

Pose-estimation methods utilize models to associate the patterns of postures, poses, or
shapes of OOIs detected and track them to obtain meaningful information, thus yielding
understanding. The major challenges in pose and behavior estimation are: the selection of a
pose-estimation model and the association of information with a sequence of poses obtained
through tracking an OOI. Pose-estimation methods can either be model-based and may use
kinematic modelling, planar modelling, or volumetric modelling, or they can be model-free.
Kinematic models rely on tracking the movements of points on the OOI, planar models
rely on contours, whereas volumetric models rely on changes in the volume distributions
of OOIs tracked over time. Kinematic models are easy to process but are not reliable.
Planar and volumetric models are more reliable but have more computational complexity.
Addressing the challenge of low computational complexity and high accuracy in pose and
behavior estimation, Chen et al. [129] proposed an anatomically aware 3D pose-estimation
model for human behavior analysis. Staraka et al. [130] proposed a kinematic skeletal-
model-based pose-estimation method with real-time and accurate behavior estimation.

3.8. Visual Understanding

Systems achieve visual understanding by relating one or more pose behaviors and
performing spatio-temporal analyses of the patterns of poses corresponding to events in
a scene. Campbell et al. [131] utilized phase-space constraints to depict human motion.
Oren et al. [132] used single-frame wavelet templates for pedestrian detection. Image
captioning [133], manuscript reviewing in the medical field [134] and academia [135] are
some applications of static activity recognition. Nguyen et al. [136] used multi-objective
optimization for real-time activity monitoring. In [3,137], dynamic recognition was utilized
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for sports analysis. Xiang et al. [138] proposed a system capable of making decisions for
multiple-object tracking, whereas Wu et al. [4] proposed a dynamic activity recognition
system for smart homes. In [139], Laptev et al. proposed a state-vector-machine-based
abnormal human activity recognition system.

4. Contemporary Solutions

From the above, it can be observed that there has been a shift from model-based
approaches to artificial-intelligence (AI)-based methods. We have also considered some of
the earlier publications to understand the concepts of some of the recently proposed models.
Further, it has also been observed that the emerging research fields in active vision systems
are multi-object detection and tracking, occlusion handling, and sensor reconfiguration.

Artificial intelligence (AI) drives down the time taken to perform a task. It enables
multi-tasking and eases workloads for existing resources. AI further facilitates decision
making by making the process faster and smarter. For these reasons, most of the state-of-
the-art systems addressing the abovementioned challenges rely on one or more artificial-
intelligence (AI)-based approaches [140–156]. According to market research reported
in [157], AI in computer vision has a 45% compound annual growth rate, which is the
growth rate of research in the area. The main reason to switch from traditional model-
driven approaches to artificial-intelligence-based systems is the high level of accuracy
AI systems can provide as compared to the former. It has also been observed that most
of the AI-based approaches are dependent on machine-learning (ML)- or deep-learning
(DL)-based models.

Some of the recently proposed systems utilize the concepts of traditional model-based
methods along with modern AI-based approaches to generate highly accurate hybrid
systems [147,151], while some systems [153] capable of addressing the challenges through
AI-based models utilize the basic principles of traditional model-based methods. Some
of the state-of-the-art AI-based systems addressing the challenges of self-reconfiguration
faced by active vision systems are presented in Table 8.

ML-based systems highly rely on training datasets to develop operational models. To
make an ML-based system adaptive, AI models need to learn the unforeseen by deriving
information from experience. Such systems fail drastically in centralized networks, as the
nodes are trained on different datasets based on their specific experiences of distinct events
in their surroundings.

Thus, the biggest challenge for adaptive systems is the sharing of information about
events between the nodes in networks such that each event in the network of networks can
be handled with equal accuracy by each node.

ML systems further suffer from visual attacks [158], the most common of which are
adversarial attacks [159,160] which misguide the classifier and thus impact the accuracy of
the system. One study [161] showcases the effects of adversarial attacks on the performance
of machine-learning-based approaches. The systems are attacked by visual attacks which
make small alterations in the weights of the classifier, thus misleading the classifier and
reducing the accuracy of classification. Over a period of time, such attacks result in drastic
degradation in the performance of the system. Refs. [162,163] present detailed surveys on
the types of visual attacks and the methods proposed to detect and mitigate such attacks.
Visual attacks [158] can be targeted if the effect of the attacks is predicted correctly by the
model; however, in most scenarios, such attacks introduce random noise and thus are very
difficult to reverse, causing permanent degradation in the classifier’s performance over
time. To overcome the problems of data loss and degradation of system performance due
to such attacks, ML systems must be incorporated into a distributed network, such that the
data are distributed throughout the entire network. Such a network is capable of detecting
an attack in the initial stage itself and providing back-up for any kind of data loss to each
participating node in the network.
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Table 8. State-of-the-art AI-based approaches addressing reconfiguration and active-vision chal-
lenges.

Ref. Challenge Addressed AI-Based Approach Used

[140]
Camera calibration

Convolutional neural network (CNN)

[141] Neural network

[142]
Parameter estimation

Convolutional neural network (CNN)

[143] Deep neural network (DNN)

[144] Pose estimation Neural network

[145] Object detection Modified CNN

[146]

Object tracking

Residual neural network

[147] Deep CNN and Kalman filter

[148] Deep neural network (DNN)

[149] CNN and deep sort

[150] Deep-learning-based CNN

[6]
Activity detection

Slow–fast CNN

[151] Neural network and strider algorithm

[152]
Object re-identification

CNN

[153] Sparse graph-wavelet-based CNN

[154] Object re-identification and
occlusion handling Deep-neural-network-based transfer learning

[155]
Localization

CNN

[156] Neural network

5. Self-Adaptation and Self-Reconfiguration

The challenges discussed above have received solutions designed to tackle particular
problems in well-known settings. However, none of the aforementioned approaches ad-
dresses the challenge with unforeseen conditions optimally due to unexpected changes in
the environment. To overcome this limitation, an active vision system must be capable of
understanding the changes in its environment and reconfiguring the parameters of the active
sensors participating in the system on its own. Further, active vision systems must also enable
the sharing of information with each other to handle unforeseen changes in a better way.

An active vision system capable of self-adjusting its configuration space is called a
“self-reconfigurable” system. The ability of an SCN to adapt to such changes and reconfigure
its parameters for optimized performance in dynamic and unforeseen conditions is called
self-reconfiguration of the SCN [164]. Such a self-reconfigurable SCN for UAVs used for
surveillance was proposed by Leong et al. in [165]. A comparative survey presented by
Natarajan et al. [166] illustrates a number of self-reconfiguration models for computer vision
systems with multiple active nodes participating in data extraction. Martinel et al. [167] pro-
posed the distributed self-reconfiguration of an SCN to address the vehicle re-identification
problem utilizing deep-learning models.

The capability of a system to share information to learn and adapt can be achieved
through “self-adaptation”. Self-adaptation is the ability of a network (in this case, specifically
an SCN) to enhance its performance by enabling the network to update the configuration
space of nodes, active participants, protocols, and functional algorithms. Some systems
configured for self-adaptation require learning from past experience or the sharing of
performance statistics from different parts of the network and opt for the settings which
worked best for similar events.

Self-adaptation can be achieved through self-expression and self-awareness capabil-
ities in a system. A system having self-awareness (SA) possesses knowledge of its state;
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self-awareness gives the system the ability to share its state in the form of parameters
and overall quality of service (QoS). Additionally, each node in the self-adaptive system
possesses the ability to question its current state, investigate alternative configurations for
better QoS, and change its state using active learning.

Rinner et al. [168] used a market-based approach for self-awareness and proposed
six major steps for self-adaptation, namely, resource monitoring, object tracking, topology
learning, object handover, strategy selection and objective formation. Lewis et al. [169]
classified events as explicit and implicit and discussed the privacy, extent, and quality of
self-adaptation. Lewis and Chandra [170] discussed formal models for self-adaptation
and the application of self-adaptation in systems with artificial intelligence, conceptual
systems, engineering, automotive systems, computing, etc. Wang et al. [171] discussed
methods of self-adaptation with capabilities of online learning. In [172], Ali et al. proposed
an auto-adaptive multi-stream architecture using multiple heterogeneous sensors with
pipelined switches between processing states and ideal states to reduce power, using an
FPGA implementation that demonstrated inter-frame adaptation capability with a relatively
low overhead. Guettalfi et al. [173] proposed an architecture utilizing quality of service
(QoS), resource estimation, a feedback mechanism, and state estimation for public and
private self-awareness using actuators. Zhu et al. [174] and Lin et al. [175] proposed a
self-adaptation-based person-re-identification system based on unsupervised learning. Wu
et al. [176] and Rudolph et al. [177] proposed an adaptive self-reconfiguration framework for
computer vision systems. Both frameworks proposed the sharing of information between
the sensors in a network for its utilization. However, both adaptive self-reconfiguration
frameworks were designed for centralized network configurations and thus possess limited
scopes of learning.

An adaptive self-reconfigurable framework presented hereinbelow, when utilized
for an SCN-enabled active vision system, can provide adaptive calibration of SCN sensor
parameters in near real time. Further, in the data-processing part of the system, the frame-
work can be utilized to adapt to the best specifications by learning from the experiences
obtained from other sources and thus result in the minimization of re-iterative training for
models that are specific to the development of scene understanding.

6. Adaptive Self-Reconfiguration Framework

Piciarelli et al. [8] proposed a dynamic reconfiguration framework for SCNs, as shown in
Figure 3. The framework used a local state (f), resources (r), and QoS information (q) from a
number of nodes to generate the overall state (F), overall resources (R), and overall quality
(Q) of the system, utilizing an SCN. The dynamic reconfiguration framework showcased the
functionality of a reconfigurator, which was configured to determine changes in parameters
based on a resource model and the objectives of the system. The dynamic reconfiguration
framework in [8] was designed for an independent SCN system working in a centralized
environment and thus lacks adaptiveness to deal with unforeseen events. The framework
needs to reconfigure itself from scratch if a new type of activity is discovered and thus is not
suitable for real-time active-vision applications. Further, almost all the symmetric/asymmetric
systems and frameworks discussed in Sections 3 and 4 lack adaptiveness and thus are likely
to fail miserably in unforeseen conditions. Recent reconfiguration systems [177–179] based
on the reconfigurator model of [8] have tried to improve the accuracy of detection; however,
due to centralized networks of operation, they have limited scopes for learning and are not
suitable to tackle unforeseen conditions in real time.

As discussed earlier, the reconfiguration of sensor nodes is highly reliant on the
scene understanding gained by the processing of sensor data and vice versa. Due to
this interdependency, it is very challenging for a system to reconfigure its configuration
space while dealing with unforeseen situations. With prior knowledge of an event, scene
understanding can be greatly improved and thus the reconfiguration of the sensor network.
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This article proposes an adaptive self-reconfiguration (ASR) framework to extend the
scope of the framework proposed by Piciarelli et al. [8] to a number of networks, such that
each network is configured to learn and reconfigure adaptively by utilizing the experiences
and models of others to obtain the best visual understanding possible and thus perform
optimal reconfiguration of the SCN. In spite of using a centralized reconfigurator, we
propose a distributed network of systems comprising a number of datacenters or cloud
servers to perform data computation and reconfiguration. For illustration, the architecture
is inspired by the NEAR blockchain network, comprising a number of datacenters, such
that each datacenter is capable of sharing datasets, performance parameters, and even
trained models. Due to the symmetrical architecture of the distributed blockchain network,
the proposed ASR system provides unbiased functionality for each smart camera network
utilizing the network. This allows the model, datasets, and parameters to be used by
any SCN to deal with an unforeseen situation if a similar condition has been encountered
and dealt with by another SCN in the distributed network. Further, the ASR framework
proposes the distribution of critical data throughout the blockchain network, providing
data security, such that if an SCN is attacked by adversarial attack, the critical data can be
retrieved. In some respects, the network of systems developed or deployed using the ASR
framework utilizing a distributed network (blockchain) can be considered a self-adaptive
system of active vision systems.

Model

An exemplary embodiment of the proposed ASR-framework-based architecture for
deployment of the adaptive self-reconfiguration of active vision systems utilizing SCNs is
shown in Figure 4. The framework consists of “m” number of active vision systems (AVSs)
connected together in a distributed network. The architecture comprises “m” number smart
camera networks coupled to each other by way of a distributed blockchain network “B”.
Sensed data and a local configuration space are associated with each sensor node of each
SCN, which results in input data from each sensor being processed for reconfiguration by
one or more datacenters in the blockchain network. Input data, local states, resources, and
quality of service information from each sensor “si” are cumulatively passed to a fusion
block of the SCN (represented by the set {Ci}) to obtain an overall system configuration space
for the SCN. Each SCN has an overall functionality, defined by a number of objectives. The
sensed data, the system’s configuration space, and the SCN objectives are communicated
as self-expression data of the SCN “Ei” to the blockchain network “B” for processing.
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The blockchain network comprises “M” number of datacenters (cloud servers) that
are configured to perform computations on the self-expression data (Ei) for each SCN. A
datacenter is selected as per the objectives of the SCN, based on the resources available
at the datacenter. The datacenter generates a model based on the objectives of the SCN
and derives an understanding by way of the sensor’s data using unsupervised artificial
intelligence. Each activity and/or event determined by a model (by the datacenter) is
assigned a pattern vector for identification, such that the pattern vector is generated based
on the objectives and the understanding of the event by the model. The model further
derives a best-possible configuration space corresponding to the event iteratively. Each
pattern vector along with the model specifications is distributed to every datacenter in the
blockchain network “B”. Each event detected by any datacenter generates a pattern vector
that is distributed throughout the entire blockchain “B”. Based on the understanding of the
detected activity, the selected datacenter generates self-awareness data (Ai) comprising a
revised configuration space set {Ci

′
} for the SCN. Based on the revised configuration space

set, each camera sensor (sij) is calibrated.
If an unforeseen condition is faced by another SCN in the network, the associated

datacenter generates a pattern vector and compares the pattern vector with a pre-existing
pattern vector in the blockchain network. Based on the comparison of the pattern vector
with the pre-existing pattern vectors, a suitable datacenter is allotted and thus the latency
of iterative processing is minimized. The improved configuration space is reverted back to
the SCN through self-awareness data that are utilized by the reconfigurator to calibrate the
parameters of each sensor of the SCN.
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Notation used:
Xi: ith smart camera network;
sij: jth camera sensor of the ith active vision system;
{Ci}: Set of input data for the ith SCN;
{Ci

’}: Set of output data for the ith SCN;
Ei: Self-expression data for the ith SCN;
Ai: Self-awareness data for the ith SCN;
ni: Number of camera sensors in the ith active vision system;
m: Number of active vision systems utilizing the ASR framework;



Symmetry 2022, 14, 2281 22 of 33

B: Distributed blockchain network comprising “M” number of datacenters;
Dk: kth datacenter in the distributed blockchain network.
To generate the pattern vector corresponding to each event, we propose an auto-

encoder-based unsupervised learning model, such that, for each event, the sensor data
received by a selected datacenter is converted to lower-dimensional data. The auto-encoder
model determines a reconstruction error to restore the sensor data back to their original
form. The reconstruction error is propagated to the auto-encoder to iteratively alter the
weights of the model for training in order to minimize the reconstruction error. The
data of weights of the trained model along with the objectives of the SCN are utilized
to generate the pattern vector, such that the pattern vector is distributed throughout the
blockchain. The datacenter further computes the reconfiguration parameters based on the
understanding of the event and sends the reconfiguration parameters to the SCN in the
form of self-expression data, which are utilized by the reconfigurator of the SCN to calibrate
the parameters. If an identical event occurs in any other SCN in the blockchain, the selected
datacenter generates a pattern vector for the event. The pattern vector is matched with the
pre-existing pattern vectors in the blockchain, and the reconfiguration model of the closest
pattern vector is shared with the SCN.

For an unbiased and seamless flow of operations, the distributed blockchain network
protocols were designed based on consensus mechanisms. The datacenters are categorized
as processor datacenter nodes and validator datacenter nodes. The categorization of the
datacenters is based on the proof-of-active-participation (POAP) consensus mechanism [180].
The processor datacenter nodes generate a model and a pattern vector based on the sensor data,
whereas the validator nodes validate the model and the pattern vectors. The processor nodes
further share details of their resource consumption (bandwidth and computational resources,
etc.) to obtain rewards. The validator nodes validate or authenticate the details about resource
consumption, models, and pattern vectors generated by the processor nodes. The validator
nodes further compare the pattern vector generated by the processor node with the pre-
existing pattern vectors to determine the best suitable reconfiguration configurations. To
ensure the unbiased functionality of the validator and the processor nodes, each participating
processor node and validator node is required to raise a stake based on a proof-of-stake
consensus mechanism [181]. Upon validation of the model and the reconfiguration, the
processor nodes and the validator nodes receive their stake as well as a reward from the
corresponding SCN network. A flow diagram of the process is shown in Figure 5.
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7. Results

For illustration of the functionality of the adaptive self-reconfiguration (ASR) frame-
work, we utilized multiple surveillance video datasets and simulated results, comparing the
centralized reconfiguration of [8] to our proposed distributed adaptive self-reconfiguration.
Each frame of each video dataset was standardized to a resolution of 640 × 360 pixels.
Activity maps were generated using the centralized approach presented in [8] and the
proposed ASR, respectively, such that the activity maps updated with each frame added to
an event. The performances of the systems were compared in terms of multi-object tracking
accuracy (MOTA) results obtained for both activity maps. Further, due to the unavailabil-
ity of resources necessary to develop a private blockchain network with datacenters, we
utilized lower processing capabilities and thus, in spite of accurate processing latency, the
results are represented with respect to training cycles (Ti) (each of 15 minutes duration);
however, the processing capabilities of a datacenter are much higher and can be utilized to
achieve results in near real time. We utilized standard regions with a convolutional neural
network (R-CNN) model for multi-object detection by the centralized system of [8] as well
as the distributed system based on the proposed ASR framework. All the results presented
hereinbelow were derived using the MatLab Image Processing Toolbox. The activity map
corresponding to the proposed ASR was further utilized to predict the upcoming event in
the next frame. The SAR framework was utilized for multi-object detection by the exem-
plary embodiment method described in Section 6; however, it can be utilized to enhance
any performance parameter, as illustrated in Section 2.

True-positive pixel count (TPC), false-positive pixel count (FPC), false-positive pixel-
detection rate (FPR), true-negative pixel count (TNC), true-negative pixel-detection rate
(TNR), and false-negative pixel count (FNC) were used as primary performance parameters
to obtain MOTA values using Equation (1).

MOTA (%) = (Total count of pixels − falsely detected pixels) × 100 (1)

7.1. Surveillance Dataset 1

A comparison of the performance of the system presented in [8] and the proposed
ASR system, tested on surveillance dataset 1 in terms of MOTA, is presented in Table 9 and
Figure 6. The predictions of the directions of vehicle movement in various random frames
from surveillance dataset 1 based on the generated activity map are presented in Figure 7.

Table 9. Comparison of the performance for the system in [8] and the proposed ASR for surveillance
dataset 1.

Pixels: 640 × 360 T1 T2 T3 T4 T5 T6 T7

[8]

TPC 30,541 41,556 52,956 56,871 60,279 74,638 76,267

TNC 18,719 20,268 28,514 33,400 39,277 35,098 41,905

FPC 80,271 74,352 69,183 66,418 63,116 60,947 59,104

FNC 1,00,869 94,024 79,747 73,711 67,728 59,717 53,124

MOTA (%) 21.38 26.92 35.36 39.18 43.21 47.63 51.29

TRAINING CYCLES TO OBTAIN ABOVE 80% MOTA: 18

ASR

TPC 63,018 69,217 72,141 76,238 78,908 79,519 86,211

TNC 33,128 37,320 41,169 46,473 48,042 52,793 51,775

FPC 47,982 43,755 40,073 36,117 36,431 31,824 29,273

FNC 86,272 80,108 77,017 71,512 67,019 66,264 63,141

MOTA (%) 41.73 46.24 49.18 53.26 55.10 57.34 59.89

TRAINING CYCLES TO OBTAIN ABOVE 80% MOTA: 12
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7.2. Surveillance Dataset 2

A comparison of the performances of the system in [8] and the proposed ASR, tested
on surveillance dataset 2 in terms of MOTA, is presented in Table 10 and Figure 8. The pre-
dictions of the directions of vehicle movement in various random frames from surveillance
dataset 2 based on the generated activity map are presented in Figure 9.

Table 10. Comparison of the performances of the system in [8] and the proposed ASR for surveillance dataset 2.

T1 T2 T3 T4 T5 T6 T7

[8]

TPC 23,211 27,324 29,841 33,266 36,421 39,972 41,101

TNC 50,080 58,477 66,581 69,515 76,451 77,601 83,591

FPC 89,233 85,161 82,686 79,957 75,277 72,098 69,035

FNC 67,876 59,438 51,292 47,662 42,251 40,729 36,673

MOTA (%) 31.81 37.24 41.85 44.61 48.99 51.03 54.12

TRAINING CYCLES TO OBTAIN ABOVE 80% MOTA: 15

ASR

TPC 38,211 40,128 41,007 42,091 43,108 43,236 43,901

TNC 70,860 77,652 83,017 84,952 90,317 92,884 96,666

FPC 77,102 71,928 69,982 67,041 66,101 65,384 63,687

FNC 44,227 40,692 36,394 36,316 30,874 28,896 26,146

MOTA (%) 47.34 51.12 53.83 55.14 57.91 59.08 61.01

TRAINING CYCLES TO OBTAIN ABOVE 80% MOTA: 11
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A comparison of the performances of the system presented in [8] and the proposed
ASR for multi-object tracking applications are represented in Figures 6 and 8. It must be
noted that, as the reconfiguration is dependent on tracking accuracy, the reconfiguration
presented by the distributed ASR model is better than that of the centralized reconfigurator
model of [8].

8. Conclusions and Scope

The performance of active vision systems and reconfiguration of the sensors provid-
ing data to active vision systems are interdependent. However, the reconfiguration of
the calibration space of an active vision system employing a network of sensors can be
challenging. Most of the state-of-the-art active vision systems fail miserably in dealing
with unforeseen conditions, as the reconfiguration model takes time to adapt to the new
conditions to develop an understanding of an unforeseen event. Thus, reconfiguring such
a system in real time is nearly impossible. Further, most active vision systems nowadays
rely on artificial-intelligence-based models for the processing of sensor data to develop an
understanding of an event. However, such models are prone to adversarial attacks and
are thus threatened with data loss. Therefore, such systems cannot be relied on for making
critical decisions in real time.

This article discusses the challenges at different operational levels in deploying an ac-
tive vision system employing a camera network. This article presents a detailed description
of the systems and methods proposed for addressing the challenges with respect to both
data processing and reconfiguration, along with the state-of-the-art solutions for the same,
proposing an adaptive self-reconfiguration (ASR) framework employing a blockchain-
based distributed network for data processing and reconfiguration of the sensor network’s
configuration space. To make the understanding of the framework easier, this article has
briefly defined the concepts of self-adaptation and self-reconfiguration in systems prior to
the ASR framework.

The blockchain network of the ASR-framework-based architecture acts as a system
of systems, connecting a number of smart camera networks together in a distributed
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architecture. The blockchain further includes a number of datacenters configured to
obtain data from the SCNs and perform data processing to obtain understanding about
the events and activities in the scene. The datacenters further generate pattern vectors
corresponding to the event or activity detected and distribute pattern vectors along with
corresponding reconfiguration models to each datacenter in the distributed blockchain
network, such that if a similar event is observed at any other SCN in the network, the
reconfiguration model associated with a pre-existing pattern can be utilized for a much
faster reconfiguration of the SCN. The blockchain network is founded on proof-of-stake and
proof-of-active-participation consensus mechanisms to maintain an unbiased and smooth
flow of operations between all the participating datacenters in the network. Further, due to
the distributed architecture, critical data float in the blockchain network and thus the effect
of adversarial attacks is minimized.

This article further compared the performance of a centralized active vision system
with a distributed system based on the proposed ASR framework for multi-object tracking
and showcased enhanced tracking performance in terms of multi-object tracking accuracy
and low latency. The proposed framework was tested on a homogeneous environment,
with some limitations and assumptions; however, the ASR framework aims to be developed
for heterogeneous systems to enhance the scope of its applications in future.
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