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Abstract: In this study, we examine the existence and Hyers–Ulam stability of a coupled system of
generalized Liouville–Caputo fractional order differential equations with integral boundary condi-
tions and a connection to Katugampola integrals. In the first and third theorems, the Leray–Schauder
alternative and Krasnoselskii’s fixed point theorem are used to demonstrate the existence of a solution.
The Banach fixed point theorem’s concept of contraction mapping is used in the second theorem to
emphasise the analysis of uniqueness, and the results for Hyers–Ulam stability are established in
the next theorem. We establish the stability of Ulam–Hyers using conventional functional analysis.
Finally, examples are used to support the results. When a generalized Liouville–Caputo (ρ) parameter
is modified, asymmetric results are obtained. This study presents novel results that significantly
contribute to the literature on this topic.

Keywords: generalized fractional derivatives; generalized fractional integrals; coupled system;
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MSC: 34A08; 34B10; 34D10

1. Introduction

We consider the nonlinear coupled fractional differential equations with generalized
Liouville–Caputo derivatives{

ρ
CD

ξ
0+ p(τ) = f (τ, p(τ), q(τ)), τ ∈ G := [0, T ],

ρ
CD

ζ
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ G := [0, T ],

(1)

enhanced with boundary conditions which are defined by:

p(0) = 0, q(0) = 0,

p(T ) = ερIς
0+q(v) = ερ1−ς

Γ(ς)

∫ v
0

θρ−1

(vρ−θρ)1−ς q(θ)dθ,

q(T ) = πρI$
0+p(σ) = πρ1−$

Γ($)

∫ σ
0

θρ−1

(σρ−θρ)1−$ p(θ)dθ,

0 < σ < v < T ,

(2)

where ρ
CD

ξ
0+ , ρ

CD
ζ
0+ are the Liouville–Caputo-type generalized fractional derivative of order

1 < ξ, ζ ≤ 2, ρ
CI

ς
0+ , ρ

CI
$
0+ are the generalized fractional integral of order (Katugampola

type) $, ς > 0, ρ > 0, f , g : G ×R×R → R are continuous functions, ε, π ∈ R. The strip
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conditions states that the value of the unknown function at the right end point τ = T of the
given interval is proportional to the values of the unknown function on the strips of varying
lengths. When ρ = 1, the generalized Liouville–Caputo equation is changed to the Caputo
sense, which leads to asymmetric results. In a similar way, when ρ = 1, the Katugampola
integrals are changed to Riemann-Liouville integrals, which leads to cases that are not
symmetric. To the best of our knowledge, the stability analysis of boundary value problems
(BVPs) is still in its early stages. This paper’s primary contribution is to study existence and
Ulam-Hyers stability analysis. In addition, we demonstrate the problem (1)–(2) employed
by Leray–Schauder, Banach and Krasnoselskii’s fixed point theorems to prove the existence
and uniqueness of solutions. The system (1) is the well-known fractional-order coupled
logistic system [1]:{

Dαu(τ) = r1u(τ)− r1
k1

u(τ)(u(τ) + v(τ)), τ ∈ I,

Dβv(τ) = r2v(τ)− r2
k2

v(τ)(v(τ) + u(τ)),

and the Lotka–Volterra prey-predator system [1]:{
Dαu(τ) = u(τ)(a− u(τ)E− γv(τ)), τ ∈ I,
Dβv(τ) = v(τ)(−b + γEv(τ)− βE).

We now provide some recent results related to our problem (1)–(2). In [2], the authors
discussed the existence results for coupled system of fractional differential equations
Riemann–Liouville derivatives{

Dα1
0+(D

β1
0+x(t)) + f (t, x(t), y(t)), t ∈ [0, 1],

Dα2
0+(D

β2
0+y(t)) + f (t, x(t), y(t)), t ∈ [0, 1],

(3)

with the Riemann–Stieltjes integral boundary conditions:
Dβ1

0+x(0) = 0, x(0) = 0, Dβ2
0+y(0) = 0, y(0) = 0,

x(1) = γ1Iδ1
0+y(ξ) + ∑

p
i=1

∫ 1
0 y(τ)dHi(τ),

y(1) = γ2Iδ2
0+x(η) + ∑

q
j=1

∫ 1
0 x(τ)dKi(τ),

(4)

where α1 is in the interval (0, 1), β1 is in the interval (1, 2), α2 is in the interval (0, 1], β2
is in the interval (1, 2], p, q ∈ N, and γ1, γ2, δ1, δ2 > 0, 0 < ξ, η < 1 Kj(t), j = 1, . . . , q,
Hi(t), i = 1, . . . , p are bounded variation functions. Both function f and g are nonlinear.
They used several theorems from fixed point index theory to prove the main results. In [3],
the authors investigated existence of solutions for coupled system of fractional differential
equations with Hilfer derivatives{

(HDα1,β1
0+ x)(t) + λ1(

HDα1−1,β1
0+ x)(t) = f (t, x(t), R(δq ,...,δ1)x(t), y(t)), t ∈ [0, T],

(HDα2,β2
0+ y)(t) + λ2(

HDα2−1,β2
0+ y)(t) = f (t, x(t), y(t), R(ζq ,...,ζ1)y(t)), t ∈ [0, T],

(5)

with Riemann–Liouville and Hadamard-type iterated integral boundary conditions:
x(0) = 0, y(0) = 0,
x(T) = ∑m

i=1 εiR(µρ ,...,µ1)y(ηi) ηi ∈ (0, T),
y(T) = ∑n

j=1 θjR(νρ ,...,ν1)x(ξ j) ξi ∈ (0, T),
(6)

where HDαl ,βl is the Hilfer fractional derivative operator of order αl with parameters βl ,
l ∈ 1, 2, 1 < αl < 2, 0 ≤ βl ≤ 1, λ1, λ2, εi, θj ∈ R\{0}, i = 1, 2, . . . , m, j = 1, 2, . . . , n,
f , g : [0, T] × R × R × R → ×R are nonlinear continuous functions and R(φτ ,...,φ1),
φr ∈ {δ, ζ, µ, ν}, r ∈ {q, p, ρ|q, p, ρ ∈ N}, involves the iterated Riemann–Liouville and
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Hadamard fractional integral operators. They used several theorems from fixed point index
theory to prove the main results. Numerous scientific and engineering phenomena are
mathematically modelled using fractional order differential and integral operators. The
main benefit of adopting these operators is their nonlocality, which enables the description
of the materials and processes involved in the history of the phenomenon. As a result,
compared to their integer-order counterparts, fractional-order models are more precise
and informative. As a result of the extensive use of fractional calculus techniques in a
range of real-world occurrences, such as those described in the texts cited [4–8] numerous
researchers developed this significant branch of mathematical study. In recent years, a
lot of research has been done on fractional differential equations with different boundary
conditions. Nonlocal nonlinear fractional-order boundary value problems, in particular,
have attracted a lot of attention (BVPs). The idea of nonlocal circumstances, which help
to describe physical processes occurring inside the confines of a specific domain, was
originally introduced in the work of Bitsadze and Samarski [9]. It is challenging to defend
the assumption of a circular cross-section in computational fluid dynamics investigations
of blood flow problems because to the changing shape of a blood vessel throughout the
vessel. To solve that problem, integral boundary conditions have been developed. In
addition, the ill-posed parabolic backward problems are solved under integral boundary
conditions. Integral boundary conditions are also essential in mathematical models of bac-
terial self-regularization, as shown in [10]. Fractional order differential equations, as well as
inclusions including Riemann–Liouville, Liouville–Caputo (Caputo), and Hadamard-type
derivatives, among others, have all been included in the literature on the topic recently.
For some recent works on the topic, we point the reader to several papers [11–15] and
the references listed therein. The use of fractional differential systems in mathematical
representations of physical and engineering processes has drawn considerable interest.
See [16–22] for additional details on the theoretical evolution of such systems. The fol-
lowing is the remainder of the article: Section 2 introduces some fundamental definitions,
lemmas, and theorems that support our main results. For the existence and uniqueness
of solutions to the given system (1) and (2), we use various conditions and some standard
fixed-point theorems in Section 3. Section 4 discusses the Ulam–Hyers stability of the
given system (1) and (2) under certain conditions. In Section 6, examples are provided
to demonstrate the main results. Finally, the consequences of existence, uniqueness, and
stability for the problem (1) and (75) are provided.

2. Preliminaries

For our research, we recall some preliminary definitions of generalized Liouville–
Caputo fractional derivatives and Katugampola fractional integrals.

The space of all complex-valued Lebesgue measurable functions φ on (c, d) equipped
with the norm is denoted by Zq

b (c, d) :

||φ||Zq
b
=

(∫ d

c
|zbφ(z)|q dz

z

) 1
q

< ∞, b ∈ R, 1 ≤ q ≤ ∞.

Let L1(c, d) represent the space of all Lebesgue measurable functions ϕ on (c, d)
endowed with the norm:

‖ϕ‖L1 =
∫ d

c
|ϕ(z)|dz < ∞.

We further recall thatACn(E ,R) = {p : E → R : p, p
′
, . . . , p(n−1) ∈ C(E ,R) and p(n−1)

is absolutely continuous. For 0 ≤ ε < 1, we define Cε,ρ(E ,R) = { f : E → R : (τρ −
aρ)ε f (τ) ∈ C(E ,R) endowed with the norm ‖ f ‖Cε,ρ = ‖(τρ − aρ)ε f (τ)‖C . Moreover, we
define the class of functions f that have absolute continuous δn−1 derivative, denoted by
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ACn
γ(E ,R), as follows: ACn

γ(E ,R) = { f : E → R : γn−1 f ∈ AC(E ,R), γ = τ1−ρ d
dτ }, which

is equipped with the norm ‖ f ‖Cn
γ,ε = ∑n−1

k=0 ‖γ
k f ‖C + ‖γn f ‖Cε,ρ is defined by

Cn
γ,ε(E ,R) =

{
f : E → R : γn−1 f ∈ C(E ,R), γn f ∈ Cε,ρ(E ,R), γ = τ1−ρ d

dτ

}
.

Notice that Cn
γ,0 = Cn

γ . We define space P = {p(τ) : p(τ) ∈ C(E ,R)} equipped with
the norm ||p|| = sup{|p(τ)|, τ ∈ E}- this is a Banach space. Furthermore Q = {q(τ) :
q(τ) ∈ C(E ,R)} equipped with the norm is ||q|| = sup{|q(τ)|, τ ∈ E} is a Banach space.
Then the product space (P ×Q, ||(p, q)||) is also a Banach space with norm ||(p, q)|| =
||p||+ ||q||.

Definition 1 ([23]). The left and right-sided generalized fractional integrals (GFIs) of f ∈ Zq
b (c, d)

of order ξ > 0 and ρ > 0 for −∞ < c < τ < d < ∞, are defined as follows:

(ρIξ
c+ f )(τ) =

ρ1−ξ

Γ(ξ)

∫ τ

c

θρ−1

(τρ − θρ)1−ξ
f (θ)dθ, (7)

(ρIζ
d− f )(τ) =

ρ1−ξ

Γ(ξ)

∫ d

τ

θρ−1

(θρ − τρ)1−ξ
f (θ)dθ. (8)

Definition 2 ([24]). The generalized fractional derivatives (GFDs) which are associated with GFIs
(7) and (8) for 0 ≤ c < τ < d < ∞, are defined as follows:

(ρDξ
c+ f )(τ) =

(
τ1−ρ d

dτ

)n
(ρIn−ξ

c+ f )(τ)

=
ρξ−n+1

Γ(n− ξ)

(
τ1−ρ d

dτ

)n ∫ τ

c

θρ−1

(τρ − θρ)ξ−n+1 f (θ)dθ, (9)

(ρDξ
d− f )(τ) =

(
−τ1−ρ d

dτ

)n
(ρIn−ξ

d− f )(τ)

=
ρξ−n+1

Γ(n− ξ)

(
−τ1−ρ d

dτ

)n ∫ d

τ

θρ−1

(τρ − θρ)ξ−n+1 f (θ)dθ, (10)

if the integrals exist.

Definition 3 ([25]). The above GFDs define the left and right-sided generalized Liouville–Caputo
type fractional derivatives of f ∈ ACn

γ [c, d] of order ξ ≥ 0

ρ
CD

ξ
c+ f (z) =ρ Dξ

c+

[
f (τ)−

n−1

∑
k=0

γk f (c)
k!

(
τρ − cρ

ρ

)k
]
(z), γ = z1−ρ d

dz
, (11)

ρ
CD

ξ
d− f (z) =ρ Dξ

d−

[
f (τ)−

n−1

∑
k=0

(−1)kγk f (d)
k!

(
dρ − τρ

ρ

)k
]
(z), γ = z1−ρ d

dz
, (12)

when n = [ξ] + 1.

Lemma 1 ([25]). Let ξ ≥ 0, n = [ξ] + 1 and f ∈ ACn
γ [c, d], where 0 < c < d < ∞. Then,
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1. if ξ /∈ N

ρ
CD

ξ
c+ f (τ) =

1
Γ(n− ξ)

∫ τ

c

(
τρ − θρ

ρ

)n−ξ−1 (γn f )(θ)dθ

θ1−ρ
=ρ In−ξ

c+ (γn f )(τ), (13)

ρ
CD

ξ
d− f (τ) =

1
Γ(n− ξ)

∫ d

τ

(
θρ − τρ

ρ

)n−ξ−1 (−1)n(γn f )(θ)dθ

θ1−ρ
=ρ In−ξ

d− (γn f )(τ). (14)

2. if ξ ∈ N

ρ
CD

ξ
c+ f = γn f , ρ

CD
ξ
d− f = (−1)nγn f . (15)

Lemma 2 ([25]). Let f ∈ ACn
γ [c, d] or Cn

γ [c, d] and ξ ∈ R. Then,

ρIξ
c+

ρ
CD

ξ
c+ f (z) = f (z)−

n−1

∑
k=0

γk f (c)
k!

(
zρ − cρ

ρ

)k
,

ρIξ
d−

ρ
CD

ξ
d− f (z) = f (z)−

n−1

∑
k=0

(−1)kγk f (d)
k!

(
dρ − zρ

ρ

)k
.

In particular, for 0 < ξ ≤ 1, we have

ρIξ
c+

ρ
CD

ξ
c+ f (z) = f (z)− f (c), ρIξ

d−
ρ
CD

ξ
d− f (z) = f (z)− f (d).

We introduce the following notations for computational ease:

E1 = ε
vρ(ς+1)

ρς+1Γ(ς + 2)
, E2 = π

σρ($+1)

ρ$+1Γ($ + 2)
, Ê =

T ρ

ρ
, (16)

G = Ê2 − E1E2 6= 0, (17)

δ(τ) =

(
τρ

ρG

)
. (18)

Next, we are proving a lemma, which is vital in converting the given problem to a
fixed-point problem.

Lemma 3. Given the functions f̂ , ĝ ∈ C(0, T ) ∪ L(0, T ), p, q ∈ AC2
γ(E) and Λ 6= 0. Then the

solution of the coupled BVP:
ρ
CD

ξ
0+p(τ) = f̂ (τ), τ ∈ E := [0, T ],

ρ
CD

ζ
0+q(τ) = ĝ(τ), τ ∈ E := [0, T ],

p(0) = 0, q(0) = 0, p(T ) = ε ρIς
0+q(v), q(T ) = π ρI$

0+p(σ) 0 < σ < v < T ,

(19)

is given by

p(τ) =ρ Iξ
0+ f̂ (τ) + δ(τ)

[
Ê
(

ε ρIζ+ς
0+ ĝ(v)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
π ρIξ+$

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
(20)

and

q(τ) =ρ Iζ
0+ ĝ(τ) + δ(τ)

[
Ê
(

π ρIξ+$
0+ f̂ (σ)−ρ Iζ

0+ ĝ(T )
)
+ E2

(
ε ρIζ+ς

0+ ĝ(v)−ρ Iξ
0+ f̂ (T )

)]
. (21)
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Proof. When ρIξ
0+ ,ρ Iζ

0+ are applied to the FDEs in (19) and Lemma 2 is used, the solution
of the FDEs in (19) for τ ∈ E is

p(τ) =ρ Iξ
0+ f̂ (τ) + a1 + a2

τρ

ρ
=

ρ1−ξ

Γ(ξ)

∫ τ

0
θρ−1(τρ − θρ)ξ−1 f̂ (θ)dθ + a1 + a2

τρ

ρ
, (22)

q(τ) =ρ Iζ
0+ ĝ(τ) + b1 + b2

τρ

ρ
=

ρ1−ζ

Γ(ζ)

∫ τ

0
θρ−1(τρ − θρ)ζ−1 ĝ(θ)dθ + b1 + b2

τρ

ρ
, (23)

respectively, for some a1, a2, b1, b2 ∈ R. Making use of the boundary conditions
p(0) = q(0) = 0 in (22) and (23) respectively, we get a1 = b1 = 0. Next, we obtain
by using the generalized integral operators ρIξ

0+,ρ Iζ
0+ (22) and (23) respectively,

ρI$
0+p(τ) =ρ Iξ+$

0+ f̂ (τ) + a1
τρ$

ρ$Γ($ + 1)
+ a2

τρ($+1)

ρ$+1Γ($ + 2)
, (24)

ρIς
0+q(τ) =ρ Iζ+ς

0+ ĝ(τ) + b1
τρς

ρςΓ(ς + 1)
+ b2

τρ(ς+1)

ρς+1Γ(ς + 2)
, (25)

which, when combined with the boundary conditions p(T ) = ε ρIς
0+q(v),

q(T ) = πρI$
0+p(σ), gives the following results:

ρIξ
0+ f̂ (T ) + a1 + a2

T ρ

ρ
= ερIζ+ς

0+ ĝ(v) + b1
εvρς

ρςΓ(ς + 1)
+ b2

εvρ(ς+1)

ρς+1Γ(ς + 2)
, (26)

ρIζ
0+ ĝ(T ) + b1 + b2

T ρ

ρ
= πρIξ+$

0+ f̂ (σ) + a1
πσρ$

ρ$Γ($ + 1)
+ a2

πσρ($+1)

ρ$+1Γ($ + 2)
. (27)

Next, we obtain

a2Ê − b2E1 = ε ρIζ+ς
0+ ĝ(v)−ρ Iξ

0+ f̂ (T ), (28)

b2Ê − a2E2 = π ρIξ+$
0+ f̂ (σ)−ρ Iζ

0+ ĝ(T ), (29)

by employing the notations (16) in (26) and (27) respectively. We find that when we solve
the system of Equations (28) and (29) for a2 and b2,

a2 =
1
G

[
Ê
(

ε ρIζ+ς
0+ ĝ(v)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
π ρIξ+$

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
, (30)

b2 =
1
G

[
E2

(
ε ρIζ+ς

0+ ĝ(v)−ρ Iξ
0+ f̂ (T )

)
+ Ê

(
π ρIξ+$

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
. (31)

Substituting the values of a1, a2, b1, b2 in (22) and (23) respectively, we get the solution
for the BVP (19).

3. Existence Results for the Problem (1) and (2)

As a result of Lemma 3, we define an operator ∆ : P ×Q → P ×Q by

∆(p, q)(τ) = (∆1(p, q)(τ), ∆2(p, q)(τ)), (32)

where
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∆1(p, q)(τ) =ρIξ
0+ f (τ, p(τ), q(τ)) + δ(τ)

[
Ê
(

ε ρIζ+ς
0+ g(v, p(v), q(v))−ρ Iξ

0+ f (T , p(T ), q(T ))
)

+ E1

(
π ρIξ+$

0+ f (σ, p(σ), q(σ))−ρ Iζ
0+g(T , p(T ), q(T ))

)]
, (33)

∆2(p, q)(τ) =ρIζ
0+g(τ, p(τ), q(τ)) + δ(τ)

[
Ê
(

π ρIξ+$
0+ f (σ, p(σ), q(σ))−ρ Iζ

0+g(T , p(T ), q(T ))
)

+ E2

(
ε ρIζ+ς

0+ g(v, p(v), q(v))−ρ Iξ
0+ f (T , p(T ), q(T ))

)]
. (34)

For brevity’s sake, we’ll use the following notations:

J1 =

(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)
, (35)

K1 = |δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)
, (36)

J2 = |δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)
, (37)

K2 =

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
, (38)

Φ = min{1− [ψ1(J1 + J2) + ψ̂1(K1 +K2)], 1− [ψ2(J1 + J2) + ψ̂2(K1 +K2)]}. (39)

Theorem 1. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condition:
(A1) there exists constants ψm, ψ̂m ≥ 0(m = 1, 2) and ψ0, ψ̂0 > 0 such that

| f (τ, o1, o2)| ≤ ψ0 + ψ1|o1|+ ψ2|o2|,
|g(τ, o1, o2)| ≤ ψ̂0 + ψ̂1|o1|+ ψ̂2|o2|, ∀om ∈ R, m = 1, 2.

If ψ1(J1 + J2) + ψ̂1(K1 +K2) < 1, ψ2(J1 + J2) + ψ̂2(K1 +K2) < 1. Then ∃ at least
one solution for the BVP (1) and (2) on E , where J1,K1,J2,K2 are given by (35)–(38) respectively.

Proof. We define operator ∆ : P ×Q → P ×Q as being completely continuous in the
first step. The continuity of the functions f and g implies that the operators ∆1 and ∆2 are
continuous. As a result, the operator ∆ is continuous. Let Ψ ⊂ P ×Q be a bounded set to
demonstrate the uniformly bounded operator ∆. Then N̂1 and N̂2 are positive constants
such that | f (τ, p(τ), q(τ))| ≤ N̂1, |g(τ, p(τ), q(τ))| ≤ N̂2, ∀(p, q) ∈ Ψ. Then we have
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|∆1(p, q)(τ)| ≤ρIξ
0+| f (τ, p(τ), q(τ))|+ |δ(τ)|

[
|Ê |
(
|ε| ρIζ+ς

0+ |g(v, p(v), q(v))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)
+ |E1|

(
|π| ρIξ+$

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

)]

≤ N̂1

 |δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)
+

(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)


+ N̂2

{(
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
+
|E1|T ρζ

ρζ Γ(ζ + 1)

)
|δ|
}

,

when taking the norm and using (35) and (36), that yields for (p, q) ∈ Ψ,

||∆1(p, q)|| ≤ J1N̂1 +K1N̂2. (40)

Likewise, we obtain

||∆2(p, q)|| ≤N̂2

 |δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
+

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)


+ N̂1

{
|δ|
(
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)
+
T ρξ |E2|

ρξ Γ(ξ + 1)

)}
≤J2N̂1 +K2N̂2, (41)

using (37) and (38). Based on the inequalities (40) and (41), we can conclude that ∆1 and ∆2
are uniformly bounded, which indicates that the operator ∆ is uniformly bounded. Next,
we show that ∆ is equicontinuous. Let τ1, τ2 ∈ E with τ1 < τ2. Then we have

|∆1(p, q)(τ2)− ∆1(p, q)(τ1)|

≤ |ρIξ
0+ f (τ2, p(τ2), q(τ2))− ρIξ

0+ f (τ1, p(τ1), q(τ1))|

+ |δ(τ2)− δ(τ1)|
[
Ê
(
|ε| ρIζ+ς

0+ |g(v, p(v), q(v))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)
+ E1

(
|π| ρIξ+$

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

)]

≤ρ1−ξN̂1

Γ(ξ)

∣∣∣∣∣
∫ τ1

0

[
θρ−1

(τ
ρ
2 − θρ)1−ξ

− θρ−1

(τ
ρ
1 − θρ)1−ξ

]
dθ +

∫ τ2

τ1

θρ−1

(τ
ρ
2 − θρ)1−ξ

dθ

∣∣∣∣∣
+ |δ(τ2)− δ(τ1)|

[
|Ê |
(

N̂2|ε|vρζ+ς

ρζ+ςΓ(ζ + ς + 1)
+
N̂1T ρξ

ρξΓ(ξ + 1)

)]

+ |δ(τ2)− δ(τ1)|
[
|E1|

(
N̂1|π|σρξ+$

ρξ+$Γ(ξ + $ + 1)
+
N̂2T ρζ

ρζ Γ(ζ + 1)

)]
→ 0 as τ2 → τ1. (42)

independent of (p, q) with respect to | f (τ, p(τ1), q(τ1))| ≤ N̂1 and |g(τ, p(τ1), q(τ1))| ≤ N̂2.
Similarly, we can express |∆2(p, q)(τ2)−∆2(p, q)(τ1)| → 0 as τ2 → τ1 independent of (p, q)
in terms of the boundedness of f and g. As a result of the equicontinuity of ∆1 and ∆2,
operator ∆ is equicontinuous. As a result of the Arzela–Ascoli theorem, the operator
is compact. Finally, we demonstrate that the set Π(∆) = {(p, q) ∈ P × Q : λ∆(p, q);
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0 < λ < 1} is bounded. Let (p, q) ∈ Π(∆).Then (p, q) = λ∆(p, q) . For any τ ∈ E , we have
p(τ) = λ∆1(p, q)(τ), q(τ) = λ∆2(p, q)(τ). By utilizing (A1) in (33), we obtain

|p(τ)| ≤ρIξ
0+(ψ0, ψ1|p(τ)|, ψ2|q(τ)|)

+ |δ(τ)|
(
|Ê |
(
|ε|ρIζ+ς

0+ (ψ̂0 + ψ̂1|p(v)|+ ψ̂2|q(v)|) +ρ Iξ
0+(ψ0 + ψ0|p(T )|+ ψ2|q(T )|)

)
+ |E1|

(
|π|ρIξ+$

0+ (ψ0 + ψ1|p(σ)|+ ψ2|q(σ)|) +ρ Iζ
0+(ψ̂0 + ψ̂1|p(T )|+ ψ̂2|q(T )|)

))
,

which results when taking the norm for τ ∈ E ,

||p|| ≤ (ψ0 + ψ1||p||+ ψ2||q||)J1 + (ψ̂0 + ψ̂1||p||+ ψ̂2||q||)K1. (43)

Similarly, we are capable of obtaining that

||q|| ≤ (ψ̂0 + ψ̂1||p||+ ψ̂2||q||)K2 + (ψ0 + ψ1||p||+ ψ2||q||)J2. (44)

From (43) and (44), we get

||p||+ ||q|| =ψ0(J1 + J2) + ψ̂0(K1 +K2) + ||p||
[
ψ1(J1 + J2) + ψ̂1(K1 +K2)

]
+ ||q||

[
ψ1(J1 + J2) + ψ̂1(K1 +K2)

]
,

which results, with ||(p, q)|| = ||p||+ ||q||,

||(p, q)|| ≤ ψ0(J1 + J2) + ψ̂0(K1 +K2)

Φ
.

As a result, Π(∆) is bounded. Thus, the nonlinear alternative of Leray–Schauder [26]
is valid and the operator ∆ has at least one fixed point. It implies that the BVP (1) and (2)
contain at least one solution on E .

Theorem 2. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condition:
(A2) there exists constants φm, φ̂m ≥ 0(m = 1, 2) such that

| f (τ, o1, o2)− f (τ, ô1, ô2)| ≤φ1|o1 − ô1|+ φ2|o2 − ô2|,
|g(τ, o1, o2)− g(τ, ô1, ô2)| ≤φ̂1|o1 − ô1|+ φ̂2|o2 − ô2|, ∀om, ôm ∈ R, m = 1, 2.

Furthermore, there exist S1,S2 > 0 such that | f (τ, 0, 0)| ≤ S1, |g(τ, 0, 0)| ≤ S2, Then,
given that

(J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2) < 1, (45)

the BVP (1) and (2) has a unique solution on E , whereJ1,K1,J2,K2 are given by (35)–(38) respectively.

Proof. Let us fix ϕ ≤ (J1+J2)S1+(K1+K2)S2
1−((J1+J2)(φ1+φ2)+(K1+K2)(φ̂1+φ̂2))

and demonstrate that ∆Bϕ ⊂ Bϕ

when operator ∆ is given by (32) and Bϕ = {(p, q) ∈ P × Q : ||(p, q)|| ≤ ϕ}. For
(p, q) ∈ Bϕ, τ ∈ E

| f (τ, p(τ), q(τ))| ≤ φ1|p(τ)|+ φ2|q(τ)|+ S1

≤ φ1||p||+ φ2||q||+ S1,
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and

|g(τ, p(τ), q(τ))| ≤ φ̂1|p(τ)|+ φ̂2|q(τ)|+ S2

≤ φ̂1||p||+ φ̂2||q||+ S2. (46)

This guides to

|∆1(p, q)(τ)| ≤ρIξ
0+

[
| f (τ, p(τ), q(τ))− f (τ, 0, 0)|+ | f (τ, 0, 0)|

]
+ |δ(τ)|

(
|Ê |
(
|ε|ρIζ+ς

0+ g[(v, p(v), q(v))− g(v, 0, 0)|+ |g(v, 0, 0)|]

+ρIξ
0+ f [(T , p(T ), q(T ))− f (T , 0, 0)|+ | f (T , 0, 0)]|

)
+ |E1|

(
|π|ρIξ+$

0+ f [ f (σ, p(σ), q(σ))− f (σ, 0, 0)|+ | f (σ, 0, 0)|]

+ρIζ
0+[|g(T , p(T ), q(T ))− g(T , 0, 0)|+ |g(T , 0, 0)|]

))

≤(φ1||p||+ φ2||q||+ S1)


(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)


+ (φ̂1||p||+ φ̂2||q||+ S2)

{
|δ|
(
|E1|T ρζ

ρζΓ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}

||∆1(p, q)|| ≤ (φ1||p||+ φ2||q||+ S1)J1 + (φ̂1||p||+ φ̂2||q||+ S2)K1. (47)

Similarly, we obtain

|∆2(p, q)(τ)| ≤(φ̂1||p||+ φ̂2||q||+ S2)


(
T ρζ(1 + |δ||Ê |)

)
ρζΓ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)


+ (φ1||p||+ φ2||q||+ S1)

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)}
||∆2(p, q)|| ≤(φ̂1||p||+ φ̂2||q||+ S2)K2 + (φ1||p||+ φ2||q||+ S1)J2. (48)

As a result, (47) and (48) follow ||∆(p, q)|| ≤ ϕ, and thus ∆Bϕ ⊂ Bϕ. Now, for
(p1, q1), (p2, q2) ∈ P ×Q and any τ ∈ E , we get

|∆1(p1, q1)(τ)− ∆1(p2, q2)(τ)|

≤ρIξ
0+| f (τ, p1(τ), q1(τ))− f (τ, p2(τ), q2(τ))|

+ |δ(τ)|
(
|Ê |
(
|ε| ρIζ+ς

0+ |g(v, p1(v), q1(v))− g(v, p2(v), q2(v))|

+ρIξ
0+| f (T , p1(T ), q1(T ))− f (T , p2(T ), q2(T ))|

)
+ |E1|

(
|π| ρIξ+$

0+ | f (σ, p1(σ), q1(σ))− f (σ, p2(σ), q2(σ))|

+ρIζ
0+|g(T , p1(T ), q1(T ))− g(T , p2(T ), q2(T ))|

))
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≤(φ1||p1 − p2||+ φ2||q1 − q2||)


(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)


+ (φ̂1||p1 − p2||+ φ̂2||q1 − q2||)

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}

≤ (J1(φ1 + φ2) +K1(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||).

Similarly, we obtain

|∆2(p1, q1)(τ)− ∆2(p2, q2)(τ)|

≤(φ̂1||p1 − p2||+ φ̂2||q1 − q2||)


(
T ρζ(1 + |δ||Ê |)

)
ρζΓ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)


+ (φ1||p1 − p2||+ φ2||q1 − q2||)

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)}
≤ (J2(φ1 + φ2) +K2(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||)).

Thus we obtain

||∆1(p1, q1)(τ)− ∆1(p2, q2)(τ)|| ≤ (J1(φ1 + φ2) +K1(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||). (49)

In a similar manner,

||∆2(p1, q1)(τ)− ∆2(p2, q2)(τ)|| ≤ (J2(φ1 + φ2) +K2(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||). (50)

Hence, using (49) and (50) we can get

||∆(p1, q1)(τ)− ∆(p2, q2)(τ)|| ≤ ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))

(||p1 − p2||+ ||q1 − q2||).

As a consequence of condition ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2)) < 1, ∆ is
a contraction operator. As an outcome of the Banach fixed point theorem, we can conclude
that operator has a unique fixed point, which is the unique solution of the problem (1),
and (2).

For brevity’s sake, we’ll use the following notations:

Ω̂1 = J1 −
T ρξ

ρξΓ(ξ + 1)
+K1, (51)

Ω̂2 = J2 −
T ρζ

ρζΓ(ζ + 1)
+K2. (52)

Theorem 3. Assume that f , g : E ×R×R→ R are continuous functions satisfying the assump-
tion (A2) in Theorem 2. Furthermore, there exist positive constants U1,U2 such that ∀τ ∈ E and
ri ∈ R, i = 1, 2.

| f (τ, r1, r2)| ≤ U1, |g(τ, r1, r2)| ≤ U2. (53)

If

T ρξ(φ1 + φ2)

ρξΓ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
< 1, (54)
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then the BVP (1), and (2) has at least one solution on E .

Proof. Let us define a closed ball Bϕ = {(p, q) ∈ P ×Q : ||(p, q)|| ≤ ϕ} as follows and
split ∆1, ∆2 as:

∆1,1(p, q)(τ) =δ(τ)

(
Ê
(

ε ρIζ+ς
0+ g(v, p(v), q(v))−ρ Iξ

0+ f (T , p(T ), q(T ))
)

+ E1

(
π ρIξ+$

0+ f (σ, p(σ), q(σ))−ρ Iζ
0+g(T , p(T ), q(T ))

))
, (55)

∆1,1(p, q)(τ) =ρIξ
0+ f (τ, p(τ), q(τ)), (56)

∆2,1(p, q)(τ) =δ(τ)

(
Ê
(

π ρIξ+$
0+ f (σ, p(σ), q(σ))−ρ Iζ

0+g(T , p(T ), q(T ))
)

+ E2

(
ε ρIζ+ς

0+ g(v, p(v), q(v))−ρ Iξ
0+ f (T , p(T ), q(T ))

))
, (57)

∆2,2(p, q)(τ) =ρIξ
0+g(τ, p(τ), q(τ)). (58)

In the Banach space P ×Q, ∆1(p, q)(τ) = ∆1,1(p, q)(τ) + ∆1,2(p, q)(τ), and ∆2(p, q)
(τ) = ∆2,1(p, q)(τ) + ∆2,2(p, q)(τ) on Bϕ are closed, bounded and convex subsets of P ×Q.
Let us fix ϕ ≤ max{J1U1 + K1U2,J2U1 + K2U2} and show that ∆Bϕ ⊂ Bϕ to verify
Krasnoselskii’s theorem [27] condition (i), If we choose p = (p1, p2), q = (q1, q2) ∈ Bϕ, and
utilizing condition (53), we obtain

|∆1,1(p, q)(τ) + ∆1,2(p, q)(τ)|

≤ρIξ
0+| f (τ, p(τ), q(τ))|

+ |δ(τ)|
(
|Ê |
(
|ε| ρIζ+ς

0+ |g(v, p(v), q(v))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)
+ |E1|

(
|π|ρIξ+$

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤ U1


(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)


+ U2

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
≤ U1J1 + U2K1 ≤ ϕ.

In a similar manner, we can find that

|∆2,1(p, q)(τ) + ∆2,2(p, q)(τ)| ≤ U1J2 + U2K2 ≤ ϕ.

Clearly the above two inequalities lead to the fact that ∆1(p, q) + ∆2(p, q) ∈ Bϕ. Thus,
we define operator (∆1,2, ∆2,2) as a contraction-satisfying condition (iii) of Krasnoselskii’s
theorem [27]. For (p1, q1), (p2, q2) ∈ Bϕ, we have
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|∆1,2(p1, q1)(τ)− ∆1,2(p2, q2)(τ)| ≤
ρ1−ξ

Γ(ξ)

∫ τ

0

θρ−1

(τρ − θρ)1−ξ

× | f (θ, p1(θ), q1(θ))− f (θ, p2(θ), q2(θ))|dθ

≤ T ρξ

ρξΓ(ξ + 1)
(φ1||p1 − p2||+ φ2||q1 − q2||) (59)

and

|∆2,1(p1, q1)(τ)− ∆2,1(p2, q2)(τ)| ≤
ρ1−ζ

Γ(ζ)

∫ τ

0

θρ−1

(τρ − θρ)1−ζ

× |g(θ, p1(θ), q1(θ))− g(θ, p2(θ), q2(θ))|dθ

≤ T ρζ

ρζ Γ(ζ + 1)
(φ̂1||p1 − p2||+ φ̂2||q1 − q2||). (60)

As a result (59) and (60),

|(∆1,2, ∆2,2)(p1, q1)(τ)− (∆1,2, ∆2,2)(p2, q2)(τ)|

≤T
ρξ(φ1 + φ2)

ρξ Γ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
(||p1 − p2||+ ||q1 − q2||),

is a contraction by (54). Therefore, condition (iii) of the Theorem is satisfied. Following
that, we can establish that the operator (∆1,1, ∆2,1) satisfies the Krasnoselskii theorem’s [27]
condition (ii). We can infer the continuous existence of the (∆1,1, ∆2,1) operator by examining
the continuity of the f , g functions. For each (p, q) ∈ Bϕ we have

|∆1,1(p, q)(τ)|

≤|δ(τ)|
(
|Ê |
(
|ε| ρIζ+ς

0+ |g(v, p(v), q(v))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)
+ |E1|

(
|π| ρIξ+$

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤ U1


(
T ρξ(|δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)


+ U2

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
= Ω̂1,

|∆2,1(p, q)(τ)| ≤ U2


(
T ρζ(|δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)


+ U1

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)}
= Ω̂2,

which leads to

||(∆1,1, ∆2,1)(p, q)|| ≤ Ω̂1 + Ω̂2.
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From the above inequalities, the set (∆1,1, ∆2,1)Bϕ is uniformly bounded. The following
step will demonstrate that the set (∆1,1, ∆2,1)Bϕ is equicontinuous. For τ1, τ2 ∈ E with
τ1 < τ2 and for any (p, q) ∈ Bϕ we get

|∆1,1(p, q)(τ2)− ∆1,1(p, q)(τ1)|

≤|δ(τ2)− δ(τ1)|
(
|Ê |
(
|ε| ρIζ+ς

0+ |g(ω, p(ω), q(ω))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)
+ |E1|

(
|π| ρIξ+$

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤|δ(τ2)− δ(τ1)

(
U1

((T ρξ(|δ||Ê |)
)

ρξ Γ(ξ + 1)
+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)
+ U2|δ|

( |E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

))
.

Likewise, we obtain

|∆2,1(p, q)(τ2)− ∆2,1(p, q)(τ1)|

≤|δ(τ2)− δ(τ1)

(
U2

((T ρζ(|δ||Ê |)
)

ρζ Γ(ζ + 1)
+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)
+ U1

(
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)))
.

Therefore |(∆1,1, ∆2,1(τ2)) − (∆1,1, ∆2,1(τ1))| → 0 as τ2 → τ1 independent of
(p, q) ∈ Bϕ Thus the set (∆1,1, ∆2,1)Bϕ is equicontinuous. As an outcome, the Arzela–
Ascoli theorem implies that the operator (∆1,1, ∆2,1) is compact on Bϕ. Krasnoselskii’s
theorem [27] statement leads us to the conclusion that the problem (1) and (2) has at least
one solution on E .

4. Example

Consider the following Liouville–Caputo type generalized FDEs coupled system:
3
4
CD

5
4
0+p(τ) = f (τ, p(τ), q(τ)), τ ∈ E := [0, 1],

3
4
CD

31
20
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ E := [0, 1],

(61)

supplemented with boundary conditions:{
p(0) = 0, q(0) = 0, p(1) = 1

6

3
4 I 13

20 q( 7
10 ), q(1) = 1

7

3
4 I 17

20 p( 1
2 ), (62)

where ξ = 5
4 , ζ = 31

20 , ρ = 3
4 , T = 1, ε = 1

6 , v = 7
10 , π = 1

7 , σ = 1
2 , ς = 13

20 , $ = 17
20 and

f (τ, p(τ), q(τ)) =
(1 + τ)

30

(
|p(τ)|

1 + |p(τ)| +
1
3

cos(q(τ)) + 3τ

)
, (63)

g(τ, p(τ), q(τ)) =
e−τ

25

(√
τ + 1
5

+
1
6

cos(p(τ)) +
|q(τ)|

1 + |q(τ)|

)
. (64)

With ψ0 = 1
10 , ψ1 = 1

30 , ψ2 = 1
90 , ψ̂0 = 1

125 , ψ̂1 = 1
25 , and ψ̂2 = 1

150 , the functions f
and g clearly satisfy the (A1) condition. Next, we find that (J1) = 2.5370237266984113,
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(K1) = 0.17111607453629377,J2 = 0.0906406939922634,K2 = 2.274156747108814,Ji,Ki
(i = 1, 2) are respectively given by (35),(36),(37) and (38), based on the data available. Thus
ψ1(J1 + J2) + ψ̂1(K1 +K2) u 0.18539972688882678 < 1, ψ2(J1 + J2) + ψ̂2(K1 +K2) u
0.04549809015197488 < 1, all the conditions of Theorem 1 are satisfied, and there is at
least one solution for problem (61) and (62) on [0, 1] with f and g given by (63) and (64)
respectively.

In addition, we’ll use

f (τ, p(τ), q(τ)) =
τ

3
+

3
4(τ + 16)

+
|p(τ)|

1 + |p(τ)| +
2

75
cos(q(τ)), (65)

g(τ, p(τ), q(τ)) =
(1 + e−τ)

4
+

19
400

cos(p(τ)) +
1

60
|q(τ)|

1 + |q(τ)| , (66)

to demonstrate Theorem 2. It is simple to demonstrate that f and g are continuous and
satisfy the assumption (A2) with φ1 = 3

64 , φ2 = 2
75 , φ̂1 = 19

400 and φ̂2 = 1
60 . All the

assumptions of Theorem 2 are also satisfied with (J1 + J2)(φ1 + φ2) + (K1 + K2)(φ̂1 +
φ̂2) u 0.35014782699385444 < 1. As a result, Theorem 2 holds true, and the problem (61)
and (62) with f and g given by (65) and (66) respectively, has a unique solution on [0,1].

5. Ulam–Hyers Stability Results for the Problem (1) and (2)

The U–H stability of the solutions to the BVP (1) and (2) will be discussed in this
section using the integral representation of their solutions defined by

p(τ) = ∆1(p, q)(τ), q(τ) = ∆2(p, q)(τ), (67)

where ∆1 and ∆2 are given by (33) and (34). Consider the following definitions of nonlin-
ear operators

H1,H2 ∈ C(E ,R)× C(E ,R)→ C(E ,R),{
ρ
CD

ξ
0+p(τ)− f (τ, p(τ), q(τ)) = H1(p, q)(τ), τ ∈ E ,

ρ
CD

ζ
0+q(τ)− g(τ, p(τ), q(τ)) = H1(p, q)(τ), τ ∈ E .

It considered the following inequalities for some λ̂1, λ̂2 > 0 :

||H1(p, q)|| ≤ λ̂1, ||H2(p, q)|| ≤ λ̂2. (68)

Definition 4. The coupled system (1) and (2) is said to be U–H stable if V1,V2 > 0 and there
exists a unique solution (p, q) ∈ C(E ,R) of a problem (1) and (2) with

||(p, q)− (p∗, q∗)|| ≤ V1λ̂1 + V2λ̂2,

∀(p, q) ∈ C(E ,R) of inequality (68).

Theorem 4. Assume that (A2) holds. Then the problem (1) and (2) is U–H stable.

Proof. Let (p, q) ∈ C(E ,R)× C(E ,R) be the (1)–(2) solution of the problem that satisfies
(33) and (34). Let (p, q) be any solution that meets the condition (68):{

ρ
CD

ξ
0+p(τ) = f (τ, p(τ), q(τ)) +H1(p, q)(τ), τ ∈ E ,

ρ
CD

ζ
0+q(τ) = g(τ, p(τ), q(τ)) +H1(p, q)(τ), τ ∈ E ,
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so,

p∗(τ) = ∆1(p∗, q∗)(τ) +ρ Iξ
0+H1(p, q)(τ)

+ δ(τ)

(
Ê
[
ε ρIζ+ς

0+ H2(p, q)(v)−ρ Iξ
0+H1(p, q)(T )

]
+ E1

[
π ρIξ+$

0+ H1(p, q)(σ)−ρ Iζ
0+H2(p, q)(T )

])
.

It follows that

|∆1(p∗, q∗)(τ)− p∗(τ)| ≤ρIξ
0+|H1(p, q)(τ)|

+ |δ(τ)|
(
|Ê |
[
|ε| ρIζ+ς

0+ |H2(p, q)(v)|+ρ Iξ
0+|H1(p, q)(T )|

]
+ |E1|

[
|π| ρIξ+$

0+ |H1(p, q)(σ)|+ρ Iζ
0+|H2(p, q)(T )|

])

≤ λ̂1


(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)


+ λ̂2

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
≤J1λ̂1 +K1λ̂2.

Similarly, we obtain

|∆2(p∗, q∗)(τ)− q∗(τ)| ≤λ̂2


(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)


+ λ̂1

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |σρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)}
≤J2λ̂1 +K2λ̂2,

where J1,K1,J2, and K2 are defined in (35)–(38), respectively. As an outcome, we deduce
from operator ∆’s fixed-point property, which is defined by (33) and (34),

|p(τ)− p∗(τ)| =|p(τ)− ∆1(p∗, q∗)(τ) + ∆1(p∗, q∗)(τ)− p∗(τ)|
≤|∆1(p, q)(τ)− ∆1(p∗, q∗)(τ)|+ |∆1(p∗, q∗)(τ)− p∗(τ)|
≤((J1φ1 +K1φ̂1) + (J1φ2 +K1φ̂2))||(p, q)− (p∗, q∗)||
+ J1λ̂1 +K1λ̂2. (69)

|q(τ)− q∗(τ)| =|q(τ)− ∆2(p∗, q∗)(τ) + ∆2(p∗, q∗)(τ)− q∗(τ)|
≤|∆2(p, q)(τ)− ∆2(p∗, q∗)(τ)|+ |∆2(p∗, q∗)(τ)− q∗(τ)|
≤((J2φ1 +K2φ̂1) + (J2φ2 +K2φ̂2))||(p, q)− (p∗, q∗)||
+ J2λ̂1 +K2λ̂2. (70)
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From the above Equations (69) and (70) it follows that

||(p, q)− (p∗, q∗)|| ≤(J1 + J2)λ̂1 + (K1 +K2)λ̂2

+ ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))||(p, q)− (p∗, q∗)||.

||(p, q)− (p∗, q∗)|| ≤ (J1 + J2)λ̂1 + (K1 +K2)λ̂2

1− ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))

≤V1λ̂1 + V2λ̂2,

with

V1 =
J1 + J2

1− ((J1 + |J2)(φ1 + φ2) + (K1 + |K2)(φ̂1 + φ̂2))
,

V2 =
K1 +K2

1− ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))
.

Hence, the problem (1)–(2) is U–H stable.

6. Example

Consider the following Liouville–Caputo type generalized FDEs coupled system:
19
20
C D

5
4
0+p(τ) =

√
τ

2 + 1
5(τ+25)

|p(τ)|
1+|p(τ)| +

3
80 cos(q(τ)), τ ∈ [0, 1],

19
20
C D

31
20
0+q(τ) = τ

5 + 17
300 cos(p(τ)) + 1

70
|q(τ)|

1+|q(τ)| , τ ∈ [0, 1],
(71)

supplemented with boundary conditions:{
p(0) = 0, q(0) = 0, p(1) = 5

6

19
20 I 13

20 q( 9
20 ), q(1) = 6

7

19
20 I 17

20 p( 13
20 ), (72)

where ξ = 5
4 , ζ = 31

20 , ρ = 19
20 , T = 1, ε = 5

6 , v = 9
20 , π = 6

7 , σ = 13
20 , ς = 13

20 , $ = 17
20 and

| f (τ, p1(τ), q1(τ))− f (τ, p2(τ), q2(τ))| =
1

125
|p1(τ)− p2(τ)|+

3
80
|q1(τ)− q2(τ)|, (73)

|g(τ, p1(τ), q1(τ))− g(τ, p2(τ), q2(τ))| =
17

300
|p1(τ)− p2(τ)|+

1
70
|q1(τ)− q2(τ)|. (74)

With φ1 = 1
125 , φ2 = 3

80 , φ̂1 = 17
300 , and φ̂2 = 1

70 , the functions f and g clearly
satisfy the (A2) condition. Next, we find that (J1) = 1.9529307397739033, (K1) =
0.21135021378560123,J2 = 0.42682560046779994,K2 = 1.6225052940838325,Ji,Ki(i =
1, 2) are respectively given by (35),(36),(37) and (38), based on the data available. Thus
((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2)) u 0.2383953280869716 < 1, all the conditions
of Theorem 5.2 are satisfied, and there is a unique solution for problem (71) and (72) on
[0, 1], which is stable for Ulam–Hyers, with f and g given by (73) and (74) respectively.

7. Existence Results for the Problem (1) and (75)

Furthermore, we are investigating the system (1) under the following conditions:

p(0) = 0, q(0) = 0,

p(T ) = ερIς
0+q(v) = ερ1−ς

Γ(ς)

∫ v
0

θρ−1

(vρ−θρ)1−ς q(θ)dθ,

q(T ) = πρI$
0+p(v) = πρ1−$

Γ($)

∫ v
0

θρ−1

(vρ−θρ)1−$ p(θ)dθ,

0 < v < T .

(75)
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Bear in mind that the conditions (2) contain strips of varying lengths, whereas the
one in (75) contains only one strip of the same length (0, v). We introduce the following
notations for computational ease:

E1 = ε
vρ(ς+1)

ρς+1Γ(ς + 2)
, E2 = π

vρ($+1)

ρ$+1Γ($ + 2)
, Ê =

T ρ

ρ
, (76)

G = Ê2 − E1E2 6= 0, (77)

δ(τ) =

(
τρ

ρG

)
. (78)

Lemma 4. Given the functions f̂ , ĝ ∈ C(0, T ) ∩ L(0, T ), p, q ∈ AC2
γ(E) and Λ 6= 0. Then the

solution of the coupled BVP:
ρ
CD

ξ
0+p(τ) = f̂ (τ), τ ∈ E := [0, T ],

ρ
CD

ζ
0+q(τ) = ĝ(τ), τ ∈ E := [0, T ],

p(0) = 0, q(0) = 0, p(T ) = ερIς
0+q(v), q(T ) = πρI$

0+p(v), 0 < v < T ,

(79)

is given by

p(τ) =ρ Iξ
0+ f̂ (τ) + δ(τ)

([
ε ρIζ+ς

0+ ĝ(v)−ρ Iξ
0+ f̂ (T )

]
+
[
π ρIξ+ς

0+ f̂ (v)−ρ Iζ
0+ ĝ(T )

])
(80)

and

q(τ) =ρ Iζ
0+ ĝ(τ) + δ(τ)

([
π ρIζ+ς

0+ f̂ (v)−ρ Iζ
0+ ĝ(T )

]
+
[
ε ρIζ+ς

0+ ĝ(v)−ρ Iξ
0+ f̂ (T )

])
. (81)

Proof. When ρIξ
0+,ρ Iζ

0+ are applied to the FDEs in (79) and Lemma 4 is used the solution
of the FDEs in (79) for τ ∈ E is

p(τ) =ρ Iξ
0+ f̂ (τ) + a1 + a2

τρ

ρ
=

ρ1−ξ

Γ(ξ)

∫ τ

0
θρ−1(τρ − θρ)ξ−1 f̂ (θ)dθ + a1 + a2

τρ

ρ
, (82)

q(τ) =ρ Iζ
0+ ĝ(τ) + b1 + b2

τρ

ρ
=

ρ1−ζ

Γ(ζ)

∫ τ

0
θρ−1(τρ − θρ)ζ−1 ĝ(θ)dθ + b1 + b2

τρ

ρ
, (83)

respectively, for some a1, a2, b1, b2 ∈ R. Making use of the boundary conditions p(0) =
q(0) = 0 in (82) and (83) respectively, we get a1 = b1 = 0. We obtain by using the
generalized integral operators ρI$

0+,ρ Iζ
0+ (82) and (83) respectively,

ρI$
0+p(τ) =ρ Iξ+$

0+ f̂ (τ) + a1
τρ$

ρ$Γ($ + 1)
+ a2

τρ($+1)

ρ$+1Γ($ + 2)
, (84)

ρIς
0+q(τ) =ρ Iζ+ς

0+ ĝ(τ) + b1
τρς

ρςΓ(ς + 1)
+ b2

τρ(ς+1)

ρς+1Γ(ς + 2)
, (85)

which, when combined with the boundary conditions p(T )=ερIς
0+q(v), q(T ) = πρI$

0+p(v),
gives the following results:

ρIξ
0+ f̂ (T ) + a1 + a2

T ρ

ρ
= ερIζ+ς

0+ ĝ(v) + b1
εvρς

ρςΓ(ς + 1)
+ b2

εvρ(ς+1)

ρς+1Γ(ς + 2)
, (86)
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ρIζ
0+ ĝ(T ) + b1 + b2

T ρ

ρ
= πρIξ+$

0+ f̂ (v) + a1
πvρ$

ρ$Γ($ + 1)
+ a2

πvρ($+1)

ρ$+1Γ($ + 2)
. (87)

Next, we obtain

a2Ê − b2E1 = ερIζ+ς
0+ ĝ(v)−ρ Iξ

0+ f̂ (T ), (88)

b2Ê − a2E2 = πρIξ+$
0+ f̂ (v)−ρ Iζ

0+ ĝ(T ), (89)

by employing the notations (76)–(78) in (86) and (87) respectively. We find that when we
solve the system of Equations (88) and (89) for a2 and b2,

a2 =
1
G

[
Ê
(

ερIζ+ς
0+ ĝ(v)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
πρIξ+$

0+ f̂ (v)−ρ Iζ
0+ ĝ(T )

)]
, (90)

b2 =
1
G

[
E2

(
ερIζ+ς

0+ ĝ(v)−ρ Iξ
0+ f̂ (T )

)
+ Ê

(
πρIξ+$

0+ f̂ (v)−ρ Iζ
0+ ĝ(T )

)]
. (91)

Substituting the values of a1, a2, b1, b2 in (82) and (83) respectively, we get the solution
for (79).

For brevity’s sake, we’ll use the following notations:

J1 =

(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|vρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)
, (92)

K1 = |δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+
|Ê ||ε|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)
, (93)

J2 = |δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+
|π||Ê |vρ(ξ+$)

ρξ+$Γ(ξ + $ + 1)

)
, (94)

K2 =

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|vρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
. (95)

To finish up, we will go over the results of existence, uniqueness, and Ulam–Hyers
stability for problems (1) and (75), respectively. For reasons that are similar to those in
Sections 3–6, we are not providing the proof.

Corollary 1. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condi-
tion: (A1) there exists constants ψm, ψ̂m ≤ 0(m = 1, 2) and ψ0, ψ̂0 > 0 such that

| f (τ, o1, o2)| ≤ ψ0 + ψ1|o1|+ ψ2|o2|,
|g(τ, o1, o2)| ≤ ψ̂0 + ψ̂1|o1|+ ψ̂2|o2|, ∀om ∈ R, m = 1, 2.

If ψ1(Ĵ1 + Ĵ2) + ψ̂1(K̂1 + K̂2) < 1, ψ2(Ĵ1 + Ĵ2) + ψ̂2(K̂1 + K̂2) < 1. Then at least one
solution for the BVP (1) and (75) on E , where Ĵ1, K̂1, Ĵ2, K̂2 are given by (92)–(95) respectively.
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Corollary 2. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condi-
tion: (A2) there exists constants φm, φ̂m ≤ 0(m = 1, 2) such that

| f (τ, o1, o2)− f (τ, ô1, ô2)| ≤φ1|o1 − ô1|+ φ2|o2 − ô2|,
|g(τ, o1, o2)− g(τ, ô1, ô2)| ≤φ̂1|o1 − ô1|+ φ̂2|o2 − ô2|, ∀om, ôm ∈ R, m = 1, 2.

Moreover, there exist S1,S2 > 0 such that | f (τ, 0, 0)| ≤ S1, | f (τ, 0, 0)| ≤ S2, Then,
given that

(J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2) < 1, (96)

the BVP (1) and (75) has a unique solution on E , where Ĵ1, K̂1, Ĵ2, K̂2 are given by (92)–(95)
respectively.

Corollary 3. Assume that f , g : E ×R×R→ R are continuous functions satisfying the assump-
tion (A2) in Theorem 2. Further more, there exist positive constants U1,U2 such that ∀τ ∈ E and
ri ∈ R, i = 1, 2.

| f (τ, r1, r2)| ≤ U1, |g(τ, r1, r2)| ≤ U2. (97)

If

T ρξ(φ1 + φ2)

ρξΓ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
< 1, (98)

then the BVP (1), and (75) has at least one solution on E .

Corollary 4. Assume that (A2) holds. Then the problem (1) and (75) is Ulam–Hyers stable.

8. Asymmetric Cases

Remark 1. If ρ = 1, the problem (1) generalized Liouville–Caputo type reduces to the classical
Caputo form. {

CDξ
0+ p(τ) = f (τ, p(τ), q(τ)), τ ∈ G := [0, T ],

CDζ
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ G := [0, T ].

(99)

Remark 2. If ρ = 1 in the boundary conditions (2) and (75) generalized Riemann–Liouville
integral boundary conditions reduces to the Riemann–Liouville integral conditions respectively.

p(0) = 0, q(0) = 0,
p(T ) = εIς

0+q(v) = ε
Γ(ς)

∫ v
0 (v− θ)ς−1q(θ)dθ,

q(T ) = πI$
0+p(σ) = π

Γ($)

∫ σ
0 (σ− θ)$−1 p(θ)dθ,

0 < σ < v < T ,

(100)

and 
p(0) = 0, q(0) = 0,
p(T ) = εIς

0+q(v) = ε
Γ(ς)

∫ v
0 (v− θ)ς−1q(θ)dθ,

q(T ) = πI$
0+p(v) = π

Γ($)

∫ v
0 (v− θ)v−1 p(θ)dθ,

0 < v < T .

(101)
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Remark 3. If ρ = 1 and ς = $ = 1 in the boundary conditions (2) and (75) generalized Riemann–
Liouville integral boundary conditions reduces to the classical integral conditions respectively.{

p(0) = 0, q(0) = 0, p(T ) = ε
∫ v

0 q(θ)dθ, q(T ) = π
∫ σ

0 p(θ)dθ 0 < σ < v < T (102)

and{
p(0) = 0, q(0) = 0, p(T ) = ε

∫ v
0 q(θ)dθ, q(T ) = π

∫ v
0 p(θ)dθ 0 < v < T . (103)

9. Conclusions

This paper employs coupled nonlinear generalized Liouville–Caputo fractional dif-
ferential equations and Katugampola fractional integral operators to solve a novel class
of boundary value problems. Applying the techniques of fixed-point theory to discover
the existence criterion for solutions is efficient. While the second outcome provides a
sufficient criterion to establish the problem’s unique solution, the first and third results
define various criteria for the presence of solutions to the given problem. In the fourth
section, the Hyers–Ulam stability of the solution was determined. In the remarks, we have
shown the asymmetric cases of the assigned problem. Moreover, the form of the solution
in these kinds of remarks can be used to study the positive solution and its asymmetry in
more depth. We conclude that our results are novel and can be viewed as an expansion
of the qualitative analysis of fractional differential equations. Our results are novel in this
configuration and add to the literature on nonlinear coupled generalized Liouville–Caputo
fractional differential equations with nonlocal boundary conditions utilizing Katugampola-
type integral operators. Future research could focus on various conceptions of stability and
existence in relation to a Lotka–Volterra prey-predator system/coupled logistic system.
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