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Abstract: In this paper, we focus on a developable surface tangent to a timelike surface along a curve
in Minkowski 3-space, which is called the osculating developable surface of the timelike surface along
the curve. The ruling of the osculating developable surface is parallel to the osculating Darboux vector
field. The main goal of this paper is to classify the singularities of the osculating developable surface.
To this end, two new invariants of curves are defined to characterize these singularities. Meanwhile,
we also research the singular properties of osculating developable surfaces near their lightlike points.
Moreover, we give a relation between osculating Darboux vector fields and normal vector fields of
timelike surfaces along curves from the viewpoint of Legendrian dualities. Finally, some examples
with symmetrical structures are presented to illustrate the main results.

Keywords: osculating developable surfaces; Lorentzian support functions; singularities; Legendrian dualities

MSC: 57R45; 58K05

1. Introduction

Minkowski space, which is regarded as the mathematical setting for the theory of rela-
tivity, has been studied by both physicists and differential geometers in large amounts; see,
for example, [1–7]. As is known to all, there exist spacelike surfaces, timelike surfaces and
lightlike surfaces in Minkowski 3-space. Timelike surfaces have a vital role in theoretical
physics, which is usually called world sheets. In string theory, the world sheet is generated
by a string, which moves through space–time. Recently, some new results concerning world
sheets were obtained by physicists. For instance, Rojas introduced a covariant framework
to research the stability of small perturbations on the gonihedric string model by varia-
tional techniques. A general expression of the world sheet perturbations is displayed in [8].
Singularity theory, on the other hand, which is a direct descendant of differential calculus,
appeals to the research about geometry, equations and other disciplines (see [9–37]). A
singularity is a point such that a function reaches a maximum/minimum or a submanifold
is no longer smooth and regular. In this paper, we focus on a non-lightlike curve on a
timelike surface and a developable surface tangent to the timelike surface along the curve in
Minkowski 3-space. We focus on the investigation of the singularities of such a developable
surface here.

Darboux frames along curves on surfaces in Euclidean 3-space are classical and famous.
By using Darboux frames, Hananoi and Izumiya introduced a normal developable surface
of a surface along a curve in [38]. At this point, the developable surface is orthogonal to the
surface along the curve. Moreover, there exists a Lorentzian version of Darboux frames
along curves on surfaces [39]. Inspired by the above work, we define a special direction in
the Darboux frame at each point of the non-lightlike curve, which is directed by a vector in
the tangent plane to the timelike surface. In this case, the vector field is called an osculating
Darboux vector field along the non-lightlike curve. There exist three invariants with respect
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to the Darboux frame. Under a certain condition of these invariants, we define a ruled
surface along the non-lightlike curve, which is called an osculating developable surface.
The rulings of the osculating developable surface are directed by the osculating Darboux
vector field. We show the relation between normalized osculating Darboux vector fields and
normal vector fields of timelike surfaces along curves from the viewpoint of Legendrian
dualities in Section 3. Moreover, the osculating developable surface is also shown as
the envelope of the tangent planes of the timelike surface along the curve. By using the
three invariants above, we introduce two new invariants, which are closely related to the
singularities of osculating developable surfaces. In fact, one of these invariants equals
zero constantly if and only if the osculating developable surface is a cylindrical surface.
At this time, the non-lightlike curve is a contour generator associated with an orthogonal
projection (Theorem 2, (A)). In the case that the first invariant never vanished, the other
invariant equals zero constantly if and only if the osculating developable surface is a
conical surface. Meanwhile, the non-lightlike curve is a contour generator associated
with a central projection (Theorem 2, (B)). The concept of contour generators plays a
significant role in computer vision theory [40]. By using these two invariants, we also show
the classification of the singularities of the osculating developable surface (Theorem 3).
Lightlike submanifolds are degenerate submanifolds and they were systematically studied
in [41]. Here, we consider the singularities of the osculating developable surface near its
lightlike rulings (Corollary 2). In Section 6, the geometric meaning of the second invariant
is further discussed.

In Section 7, we consider curves on special timelike surfaces. Since de Sitter space
is a classical model for studying Lorentzian spherical geometry and de Sitter 2-space is a
timelike surface in Minkowski 3-space, we consider osculating developable surfaces of de
Sitter 2-space along curves. If we consider the small spacelike circle or the great timelike
hyperbolic curve, the osculating developable surface along the curve is a cylindrical surface.
If we consider the great spacelike circle or the small timelike hyperbolic curve, the osculating
developable surface along the curve is a conical surface (Propositions 5 and 6). In order to
illustrate Theorem 6, we also display an example of a timelike curve on de Sitter 2-space
so that the osculating developable surface along the curve has swallowtail singularities.
At last, we consider non-lightlike curves on timelike surfaces of revolution. We show that
the osculating developable surface along a timelike meridian curve is a cylinder, while the
osculating developable surface along a spacelike circle is a cylinder or a cone.

We assume that all manifolds and maps are C∞ throughout the paper, unless con-
trary statements are given.

2. Basic Notions

We introduce some basic notions in this section. Let R3 be a 3-dimensional vector
space. For any two vectors x = (x1, x2, x3) and y = (y1, y2, y3), the pseudo-scalar product
of them is defined by

〈x, y〉 = −x1y1 + x2y2 + x3y3.

We call the pair (R3, 〈, 〉) a Minkowski 3-space and denote it as R3
1.

For any two vectors x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3
1, we obtain a vector x ∧ y

that is defined by

x ∧ y=

∣∣∣∣∣∣
−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣,
where {e1, e2, e3} is the canonical basis of R3

1. We say that a non-zero vector x ∈ R3
1 is

timelike, spacelike or lightlike if 〈x, x〉 < 0, 〈x, x〉 > 0 or 〈x, x〉 = 0, respectively. The norm of
x is defined by ‖x‖ = (sign(x)〈x, x〉)1/2, in which sign(x) denotes the signature of x, which
is given by sign(x) = −1, 0, or 1 when x is timelike, lightlike or spacelike, respectively.
Moreover, for a vector v ∈ R3

1 and a real number c ∈ R, we define a plane whose normal
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vector is v as HP(v, c) = {x ∈ R3
1|〈x, v〉 = c}. Then, we call HP(v, c) a spacelike plane,

a timelike plane or a lightlike plane if v is timelike, spacelike or lightlike, respectively.
Let γ : I → R3

1 be a regular curve (i.e., γ̇(t) = dγ/dt 6= 0), where I is an open
interval. For any t ∈ I, the curve γ is called timelike, lightlike or spacelike if 〈γ̇(t), γ̇(t)〉 < 0,
〈γ̇(t), γ̇(t)〉 = 0 or 〈γ̇(t), γ̇(t)〉 > 0, respectively. We say that γ is a non-lightlike curve if γ is
a spacelike curve or a timelike curve. On the other hand, the arc-length of a non-lightlike
curve γ measured from γ(t0)(t0 ∈ I) is s(t) =

∫ t
t0
‖γ̇(t)‖dt. It is obvious that the parameter

s is determined such that ‖γ′(s)‖=1 for a non-lightlike curve. Then, γ′(s) = dγ/ds is called
the unit tangent vector of γ at s. We now define the hyperbolic space by

H2(−1) = {x ∈ R3
1|〈x, x〉 = −1},

the de Sitter 2-space by

S2
1 = {x ∈ R3

1|〈x, x〉 = 1},

and the close lightcone by

LC = {x ∈ R3
1|〈x, x〉 = 0}.

We set a timelike embedding X : U → R3
1 from an open subset U ⊂ R2. We denote

M = X(U) and identify M and U according to the embedding X. Then, we say that X
is a timelike embedding if its tangent space Tp M is a timelike plane at any point p = X(u).
Moreover, let γ : I → U be a regular curve. Then, another curve γ : I → M ⊂ R3

1 is defined
by γ(t) = X(γ(t)). At this time, we say that γ is a curve on the timelike surface M.

In this paper, we consider γ as a non-lightlike curve; then, we can reparametrize it
by the arc-length s. Therefore, we can obtain the unit tangent vector t(s) = γ′(s) of γ(s).
Taking into consideration that X is a timelike embeding, then we can acquire a spacelike
normal vector field nγ along γ. Therefore, we construct a vector b(s) = nγ(s) ∧ t(s). Thus,
we have a pseudo-orthonormal frame {t(s), nγ(s), b(s)} along γ. Moreover, we also have
the following Frenet–Serret-type formulae:

t′(s) = κn(s)nγ(s)− δ(s)κg(s)b(s),
n′γ(s) = −δ(s)κn(s)t(s) + δ(s)τg(s)b(s),
b′(s) = −δ(s)κg(s)t(s) + τg(s)nγ(s),

where δ(s) = sign(t(s)), κn(s) = 〈t′(s), nγ(s)〉, κg(s) = 〈t′(s), b(s)〉 and τg(s) = 〈nγ(s),
b′(s)〉. We say that κn(s) is the normal curvature, κg(s) is the geodesic curvature and τg(s) is
the geodesic torsion of γ, respectively. Meanwhile, we say that
(1) γ is an asymptotic curve of M if and only if κn = 0,
(2) γ is a geodesic curve of M if and only if κg = 0,
(3) γ is a principal curve of M if and only if τg = 0.

In addition, a vector field D(s) along γ, which is defined by

D(s) = τg(s)t(s)− κn(s)b(s)

is called an osculating Darboux vector along γ. If τ2
g + κ2

n 6= 0 and τ2
g 6= κ2

n, we have the
following expressions of normalized osculating Darboux vector fields:

Ds(s) =
τg(s)t(s)− κn(s)b(s)√

δ(s)(τ2
g (s)− κ2

n(s))
if δ(s)τ2

g (s) > δ(s)κ2
n(s),

Dt(s) =
τg(s)t(s)− κn(s)b(s)√

δ(s)(κ2
n(s)− τ2

g (s))
if δ(s)τ2

g (s) < δ(s)κ2
n(s).
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On the other hand, we list some basic notions and important properties of ruled
surfaces and developable surfaces here. Let γ : I → R3

1 and ρ : I → R3
1\{0} be

C∞-mappings. Then, we define a mapping F(γ, ρ) : I ×R3
1 → R3

1 by

F(γ,ρ)(u, v) = γ(u) + vρ(u),

which is called a ruled surface in R3
1. At the same time, we call γ a base curve and ρ a director

curve. Moreover, the straight line γ(u) + vρ(u) defined for a fixed u ∈ I is called a ruling.
Moreover, we know that the ruled surface F(γ,ρ) is developable if and only if

〈γ̇(u), (ρ(u) ∧ ρ̇(u))〉 = 0.

If the director curve ρ satisfies ρ(u) ∧ ρ̇(u) = 0, then we say that F(γ,ρ) is a cylinder.
If the singularity of the developable surface F(γ,ρ) is a constant, then we say F(γ,ρ) is a cone.

Finally, we recall relevant notions of contour generators, briefly. Let S ⊂ R3
1 be a

surface and n be the unit normal vector field. Then, for a fixed vector d ∈ R3
1, the contour

generator of the orthogonal projection with respect to the direction d is defined by

{ω ∈ S|〈n(ω), d〉 = 0}.

Actually, the set above is the singular set of the orthogonal projection with respect to the
direction d. Furthermore, for a fixed point c ∈ R3

1, the definition of the contour generator of
the central projection with the center c is given by

{ω ∈ S|〈n(ω), ω− c〉 = 0}.

It can be found that the set is the singular set of the central projection with the center c.
The concept of contour generators plays a significant role in computer vision theory [40].

3. Legendrian Dualities

In this section, we recall some properties of Legendrian submanifolds and contact
manifolds [36].

Let M be a (2m + 1)-dimensional smooth manifold and W be a tangent hyperplane
field on M. Such a field is defined as the field of zeros of a 1-form ℘ locally. We say that
the tangent hyperplane field W is non-degenerate if ℘ ∧ (d℘)m 6= 0 at any point of M. Then,
we say that the pair (M, W) is a contact manifold if W is a non-degenerate hyperplane field.
In this case, ℘ and W are called the contact form and the contact structure, respectively.
Suppose: M→ M′ is a diffeomorphism between contact manifolds (M, W) and (M′, W ′).
Then, is called a contact diffeomorphism if d(W) = W ′. Meanwhile, contact manifolds
(M, W) and (M′, W ′) are contact diffeomorphic if there exists the contact diffeomorphism:
M→ M′. Moreover, a submanifold i : L ⊂ M of a contact manifold (M, W) is Legendrian if
dim L = m and dix(TxL) ⊂Wi(x) hold at any x ∈ L. In addition, the mapping i is called an
isotropic mapping if dix(TxL) ⊂ Wi(x) at any x ∈ L. A smooth fiber bundle π : E → N is a
Legendrian fibration if its total space E is provided with a contact structure and its fibers
are Legendrian submanifolds. Suppose π : E → N to be a Legendrian fibration. Then,
for a Legendrian submanifold i : L ⊂ E, the map π ◦ i : L→ N is called a Legendrian map.
Meanwhile, the image of a Legendrian map π ◦ i is called a wavefront set of i. For any y ∈ E,
as is known to all, there exists a local coordinate system (x1, . . . , xm, y1, . . . , ym, z) near y
such that

π(x1, . . . , xm, y1, . . . , ym, z) = (x1, . . . , xm, z).



Symmetry 2022, 14, 2251 5 of 21

Simultaneously, the contact structure is given by the 1-form

℘ = dz−
m

∑
i=1

yidxi.

In [42], the Legendrian dualities between pseudo-spheres in Minkowski space are intro-
duced, which become basic tools for studying submanifolds in pseudo-spheres. Firstly,
we define 1-forms 〈dv, w〉 = −w1dv1 + ∑3

i=2 widvi, 〈v, dw〉 = −v1dw1 + ∑3
i=2 vidwi in

R3
1 ×R3

1. Then, we consider the following:

(1) (a) H2(−1)× S2
1 ⊃ ∆1 = {(v, w)|〈v, w〉 = 0},

(b) π11 : ∆1 → H2(−1), π12 : ∆1 → S2
1,

(c) θ11 = 〈dv, w〉|∆1, θ12 = 〈v, dw〉|∆1.
(2) (a) S2

1 × S2
1 ⊃ ∆5 = {(v, w)|〈v, w〉 = 0},

(b) π51 : ∆5 → S2
1, π52 : ∆5 → S2

1,
(c) θ51 = 〈dv, w〉|∆5, θ52 = 〈v, dw〉|∆5.

Here, πi1(v, w) = v, πi2(v, w) = w. Moreover, we remark that θ−1
i1 (0) and θ−1

i2 (0)
define the same tangent hyperplane field over ∆i, which are denoted by Wi (i = 1, 5). It has
been shown that (∆i, Wi) is a contact manifold and πij (j = 1, 2) are Legendrian fibrations.
Then, if (v, w) ⊂ (∆i, Ki), we say that v is ∆i-dual to w. Details of Legendrian fibrations
can be found in [43]. Then, we have the following duality theorem.

Theorem 1. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0 and τ2

g 6= κ2
n.

(1) If δτ2
g > δκ2

n, then Ds(s) is a ∆5-dual of nγ(s).
(2) If δτ2

g < δκ2
n, then Dt(s) is a ∆1-dual of nγ(s).

Proof. We define a mapping L5 : I → ∆5 by L5(s) = (nγ(s), Ds(s)). Then, we have
〈nγ(s), Ds(s)〉 = 0 and L∗5θ51 = 〈n′γ(s), Ds(s)〉 = 0. Thus, L5 is an isotropic mapping, so
that Ds(s) is a ∆5-dual of nγ(s). We define another mapping

L1 : I → ∆1; L1(s) = (nγ(s), Dt(s)).

Then, we can also show that L1 is an isotropic mapping. This means that (2) holds.

4. Osculating Developable Surfaces

We investigate a special surface of a given timelike surface M along a non-lightlike
curve in this section.

For a non-lightlike curve γ : I → M ⊂ R3
1 with τ2

g + κ2
n 6= 0, we define a mapping

OD : I ×R→ R3
1 as

OD(s, u) = γ(s) + uD(s) = γ(s) + u(τg(s)t(s)− κn(s)b(s)).

This is a ruled surface. Then, we have

D′ = (τ′g + δκnκg)t− (δκgκg + κ′n)b,

Thus, we obtain

〈γ′, D ∧ D′〉 =det(t, τgt− κnb, (τ′g + δκnκg)t− (δκgκg + κ′n)b)

=0.
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This means that OD is a developable surface. In this case, we call OD an osculating devel-
opable surface of M along γ. Moreover, we show two invariants ε(s), σ(s) of γ as follows:

ε(s) =δ(s)
(
τ2

g (s)− κ2
n(s)

)
κg(s) + κ′n(s)τg(s)− κn(s)τ′g(s),

σ(s) =(
κn(s)
ε(s)

)′ +
δ(s)κg(s)τg(s)

ε(s)
, when ε(s) 6= 0.

On the other hand, by calculation, we obtain D ∧ D′ = 0 if and only if

τg(δτgκg + κ′n) = κn(τ
′
g + δκnκg),

which is equivalent to ε(s) = 0. We also calculate that

∂OD
∂u
∧ ∂OD

∂s
=τg(uδτgκg + uκ′n)nγ − κn(1 + uτ′g + uδκnκg)nγ

=(uε− κn)nγ.

Therefore, (s0, u0) ∈ I × R is a singular point of OD if and only if ε(s0) 6= 0 and
u0 = κn(s0)

ε(s0)
. If (s0, 0) is a regular point (namely, κn(s0) 6= 0), then the normal vector

of OD at OD(s0, 0) = γ(s0) has the same direction of the normal vector of M at γ(s0).
Therefore, it is reasonable that we call OD the osculating developable surface of M along γ.
On the other hand, we use these two invariants to characterize the contour generators of M
as the following.

Theorem 2. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0. Then, we have

the following:

(A) The following are equivalent:

(1) OD is a cylinder,
(2) ε(s) ≡ 0,
(3) γ is a non-lightlike contour generator with respect to an orthogonal projection.

(B) If ε(s) 6= 0, then the following are equivalent:

(1) OD is a cone,
(2) σ(s) ≡ 0,
(3) γ is a non-lightlike contour generator with respect to a central projection.

Proof. (A) By definition, OD is a cylinder if and only if D ∧ D′ = 0. Because D ∧ D′ = 0
if and only if ε(s) ≡ 0, it means that (1) is equivalent to (2). Suppose that (3) holds; there
exists a vector d ∈ R3

1 such that 〈nγ(s), d〉 ≡ 0. Then, d = λt(s) + µb(s) for some real
numbers λ, µ. Since 〈n′γ(s), d〉 ≡ 0, we have −λκn(s)− µτg(s) = 0, so that D(s) is parallel
to d. Condition (1) holds. It is obvious that (1) implies (3).

(B) If the condition (1) is satisfied, then the singular value set of OD is a point. We
consider the following vector-valued function f (s) defined by

f (s) = γ(s) +
κn(s)
ε(s)

D(s).
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Therefore, if the condition (1) holds, it is equivalent to saying that the condition f ′(s) ≡ 0
holds. By a straightforward calculation, we obtain

f ′(s) =t + (
κn

ε
)′(τgt− κnb) +

κn

ε
[(τ′g + δκnκg)t− (δτgκg + κ′n)b]

=[(
κn

ε
)′τg +

δτ2
g κg + κ′nτg

ε
]t− [(

κn

ε
)′κn +

δτgκnκg + κ′nκn

ε
]b

=[(
κn

ε
)′ +

δκgτg

ε
](τgt− κnb).

This means that the conditions (1) and (2) are equivalent. According to the definition of
the contour generator with respect to a central projection, condition (3) implies that there
exists c ∈ R3

1 such that 〈γ(s)− c, nγ(s)〉 ≡ 0. If condition (1) holds, then we know that f (s)
is constant. Therefore, for the constant vector c = f (s) ∈ R3

1, we have

〈γ(s)− c, nγ(s)〉 =〈γ(s)− f (s), nγ(s)〉

=〈−κn(s)
ε(s)

D(s), nγ(s)〉

=0.

This means that condition (3) is satisfied. Conversely, by condition (3), there exists a
constant vector c ∈ R3

1 such that 〈γ(s)− c, nγ(s)〉 = 0. By taking the derivative at both
sides, we have

〈γ(s)− c, nγ(s)〉′ = 〈γ(s)− c,−δ(s)κn(s)t(s) + δ(s)τg(s)b(s)〉 = 0.

Then, there exists λ ∈ R such that γ(s) − c = λD(s). By taking the derivative again,
we obtain

〈γ− c, nγ〉′′ =〈t,−δκnt + δτgb〉+ 〈γ− c, (−δκnt + δτgb)′〉
=κn + λε = 0.

Then, we obtain

f (s) = γ(s) +
κn(s)
ε(s)

D(s) = γ(s)− λD(s) = c.

Hence, f (s) is constant; namely, condition (1) holds.

Corollary 1. The osculating developable surface OD is non-cylindrical if and only if ε(s) 6= 0.

According to the conclusions in Theorem 2, the invariants ε(s) and σ(s) might be
closely related to the singularities of osculating developable surfaces. In fact, by using
these two invariants, we can obtain the classification for the singularities of osculating
developable surfaces of M along non-lightlike curves. The main result of this paper is
as follows.

Theorem 3. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0. Then, we have

the following.

(A) The osculating developable surface OD of M along non-lightlike curve γ is not singular at
(s0, u0) if and only if u0ε(s0)− κn(s0) 6= 0.

(B) The osculating developable surface OD of M along non-lightlike curve γ is locally diffeomor-
phic to the cuspidal edge C×R at (s0, u0) if
(i) ε(s0) 6= 0, σ(s0) 6= 0 and u0 = κn(s0)

ε(s0)
, or
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(ii) ε(s0) = κn(s0) = 0, ε′(s0) 6= 0 and

u0 6=
κ′n(s0)

−κ′′n (s0) + 2δ(s0)κg(s0)τ′g(s0) + δ(s0)τg(s0)κ′g(s0)
,

or
(iii) ε(s0) = ε′(s0) = κn(s0) = 0 and κ′n(s0) 6= 0.

(C) The osculating developable surface OD of M along non-lightlike curve γ is locally diffeomor-

phic to the swallowtail SW at (s0, u0) if ε(s0) 6= 0, σ(s0) = 0, σ′(s0) 6= 0 and u0 = κn(s0)
ε(s0)

.

Here, C × R = {(x1, x2, x3)|x2
1 = x3

2} × R is the cuspidal edge (see Figure 1). SW =
{(x1, x2, x3)|x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail (see Figure 2).

Let γ : I → M ⊂ R3
1 be a non-lightlike curve. If τ2

g (s0) = κ2
n(s0) 6= 0, then D(s0) =

τg(s0)t(s0) − κn(s0)b(s0) is a lightlike vector, and we call γ(s0) a lightlike point of OD.
If γ : I → M ⊂ R3

1 is a non-lightlike curve with τ2
g (s) ≡ κ2

n(s) 6= 0, then D(s) along γ(s)
are lightlike vectors. In this case, we say that OD is a lightlike osculating developable surface
of M along γ. Then, we have the following corollary.

Corollary 2. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0. Then, we have

the following:
(1) If τ2

g (s) ≡ κ2
n(s), the lightlike osculating developable surface OD of M along γ has no singu-

lar points.
(2) If OD is not a lightlike osculating developable surface of M along γ and γ(s0) is a lightlike
point of OD, then the osculating developable surface OD is locally diffeomorphic to the cuspi-
dal edge C × R at (s0, u0) if ε(s0) = κ′n(s0)τg(s0)− κn(s0)τ

′
g(s0) 6= 0, σ(s0) 6= 0 and u0 =

κn(s0)
κ′n(s0)τg(s0)−κn(s0)τ

′
g(s0)

. The osculating developable surface OD of M along non-lightlike curve γ is

locally diffeomorphic to the swallowtail SW at (s0, u0) if ε(s0) = κ′n(s0)τg(s0)− κn(s0)τ
′
g(s0) 6= 0,

σ(s0) = 0, σ′(s0) 6= 0 and u0 = κn(s0)
κ′n(s0)τg(s0)−κn(s0)τ

′
g(s0)

.

Figure 1. Cuspidal edge.

Figure 2. Swallowtail.

5. Lorentzian Support Functions
5.1. Unfoldings of Lorentzian Support Functions

We show a family of functions on a non-lightlike curve, which will be useful for
studying invariants of curves on timelike surfaces in this section. Let γ : I → M ⊂ R3

1
be a non-lightlike curve. Then, we define a function G : I × R3

1 → R by G(s, x) =
〈x− γ(s), nγ(s)〉. Here, G is called a Lorentzian support function on γ with respect to nγ. We
denote gx0(s) = G(s, x0) for any x0 ∈ R3

1. Then, we have the following proposition.
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Proposition 1. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0. Then, we have

(1) gx0(s0) = 0 if and only if there exist µ, ν ∈ R such that x0 − γ(s0) = µt(s0) + νb(s0).
(2) gx0(s0) = g′x0

(s0) = 0 if and only if there exists µ ∈ R such that x0−γ(s0) = µ(τg(s0)t(s0)
−κn(s0)b(s0)).

Suppose ε(s0) 6= 0. Then, we have the following:

(3) gx0(s0) = g′x0
(s0) = g′′x0

(s0) = 0 if and only if x0 − γ(s0) = κn(s0)
ε(s0)

(τg(s0)t(s0) −
κn(s0)b(s0)).

(4) gx0(s0) = g′x0
(s0) = g′′x0

(s0) = g(3)x0 (s0) = 0 if and only if x0−γ(s0) =
κn(s0)
ε(s0)

(τg(s0)t(s0)

−κn(s0)b(s0)) and σ(s0) = 0.
(5) gx0(s0) = g′x0

(s0) = g′′x0
(s0) = g(3)x0 (s0) = g(4)x0 (s0) = 0 if and only if x0 − γ(s0) =

κn(s0)
ε(s0)

(τg(s0)t(s0)− κn(s0)b(s0)), σ(s0) = 0 and σ′(s0) = 0.

Suppose ε(s0) = 0. Then, we have

(6) gx0(s0) = g′x0
(s0) = g′′x0

(s0) = 0 if and only if κn(s0) = 0 (namely, κn(s0) = 0, κ′n(s0) =
−δ(s0)τg(s0)κg(s0)) and there exists µ ∈ R such that x0 − γ(s0) = µt(s0).

(7) gx0(s0) = g′x0
(s0) = g′′x0

(s0) = g(3)x0 (s0) = 0 if and only if one of the following equa-
tions holds:
(a) ε′(s0) 6= 0, κn(s0) = 0, namely,

κn(s0) = 0, κ′n(s0) = −δ(s0)τg(s0)κg(s0),

− κ′′n (s0) + 2δ(s0)τ
′
g(s0)κg(s0) + δ(s0)τg(s0)κ

′
g(s0) 6= 0

and

x0 − γ(s0) =
κ′n(s0)

−κ′′n (s0) + 2δ(s0)τ′g(s0)κg(s0) + δ(s0)τg(s0)κ′g(s0)
t(s0).

(b) ε′(s0) = 0, κn(s0) = κ′n(s0) = 0 (namely, κg(s0) = κn(s0) = κ′n(s0) = 0), and there
exists µ ∈ R such that x0 − γ(s0) = µt(s0).

Proof. Since gx0(s) = 〈x0 − γ(s), nγ(s)〉, we have the following:

(i) gx0 =〈x− γ, nγ〉,
(ii) g′x0

=〈x− γ(s),−δκnt + δτgb〉,
(iii) g′′x0

=κn + 〈x− γ,−(δκ′n + τgκg)t + δ(τ2
g − κ2

n)nγ + (δτ′g + κnκg)b〉,

(iv) g(3)x0 =2κ′n + δτgκg

+ 〈x− γ,−[δκ′′n + 2τ′gκg + τgκ′g + κn(τ
2
g − κ2

n + δκ2
g)]t

+ 3δ(τgτ′g − κnκ′n)nγ + [δτ′′g − 2κ′nκg + κnκ′g + τg(δκ2
g + τ2

g − κ2
n)]b〉,

(v) g(4)x0 =3κ′′n + 3δκgτ′g + 2δκ′gτg + δκn(δκ2
g + τ2

g − κ2
n)

+ 〈x− γ, [−δκ′′′n − 3κ′gτ′g − 3κgτ′′g − κ′′g τg + κ′n(τ
2
g + 6κ2

n − 3δκ2
g)

+ κn(−5τgτ′g − 3δκgκ′g) + κgτg(−κ2
g − δτ2

g + κ2
n)]t

+ [δτ′′′g + 3κ′nκ′g + 3κ′′n κg + κnκ′′g + τ′g(3δκ2
g + 6τ2

g − κ2
n)

+ τg(3δκgκ′g − 5κnκ′n) + κnκg(δτ2
g − δκ2

n + κ2
g)]b

+ [(κ2
n − τ2

g )(−τ2
g + κ2

n − δκ2
g) + 2κg(κ

′
nτg − κnτ′g) + 3δ((τ′g)

2 − (κ′n)
2)

− 4δκnκ′′n + 4δτgτ′′g ]n〉.

We know that {t(s), nγ(s), b(s)} is a pseudo-orthonormal frame for the formula (i), so the
assertion (1) holds.
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By the formula (ii), gx0(s0) = g′x0
(s0) = 0 if and only if there exist a, b ∈ R such that

x0 − γ(s0) = at(s0) + bb(s0) and aκn(s0) + bτg(s0) = 0. Thus, there exists µ ∈ R such that
a = µτg(s0) and b = −µκn(s0). The assertion (2) holds.

Moreover, by the formula (iii), gx0(s0) = g′x0
(s0) = g′′x0

(s0) = 0 if and only if

x0 − γ(s0) = µ(τg(s0)t(s0)− κn(s0)b(s0))

and

κn(s0) + 〈µ(τg(s0)t(s0)− κn(s0)b(s0)),−(δ(s0)κ
′
n(s0) + τg(s0)κg(s0))t(s0)

+ δ(s0)(τ
2
g (s0)− κ2

n(s0))nγ(s0) + (δ(s0)τ
′
g(s0) + κn(s0)κg(s0))b(s0)〉 = 0.

Since ε(s0) = δ(s0)
(
τ2

g (s0) − κ2
n(s0)

)
κg(s0) + κ′n(s0)τg(s0) − κn(s0)τ

′
g(s0), then κn(s0) −

µε(s0) = 0. It follows that ε(s0) 6= 0 and µ = κn(s0)
ε(s0)

, or ε(s0) = 0 and κn(s0) = 0. This
means that the proof of the assertions (3) and (6) is complete.

Suppose that ε(s0) 6= 0. Then, by the formula (iv), gx0(s0) = g′x0
(s0) = g′′x0

(s0) =

g(3)x0 (s0) = 0 if and only if

2κ′n + δτgκg +
κn

ε
[−τgκ′′n + τ′′g κn − 2δτgτ′gκg + 2δκnκ′nκg − δτ2

g κ′g + δκ2
nκ′g] = 0

at s = s0. Since

σ(s0) = (
κn(s0)

ε(s0)
)′ +

δ(s0)κg(s0)τg(s0)

ε(s0)
,

then the above equation is equivalent to ε(s0)σ(s0) = 0. It follows that σ(s0) = 0. The
assertion also holds in reverse.

Suppose that ε(s0) = 0. Then, by the formulae (iv), gx0(s0) = g′x0
(s0) = g′′x0

(s0) =

g(3)x0 (s0) = 0 if and only if κn(s0) = 0 (i.e., κn(s0) = 0, κ′n(s0) = −δ(s0)τg(s0)κg(s0)), and
there exists µ ∈ R such that x0 − γ(s0) = µt(s0) and

2κ′n(s0) + δ(s0)τg(s0)κg(s0)− µ(−κ′′n (s0) + 2δ(s0)κg(s0)τ
′
g(s0) + δ(s0)κ

′
g(s0)τg(s0)) = 0.

It follows that

−κ′′n (s0) + 2δ(s0)κg(s0)τ
′
g(s0) + δ(s0)κ

′
g(s0)τg(s0) 6= 0

and

µ =
κ′n(s0)

−κ′′n (s0) + 2δ(s0)τ′g(s0)κg(s0) + δ(s0)τg(s0)κ′g(s0)

or
−κ′′n (s0) + 2δ(s0)κg(s0)τ

′
g(s0) + δ(s0)κ

′
g(s0)τg(s0) = 0 and κ′n(s0) = 0.

Moreover, ε′(s0) = 0 is equivalent to −κ′′n (s0) + 2δ(s0)κg(s0)τ
′
g(s0) + δ(s0)κ

′
g(s0)τg(s0) = 0.

Then, we have (6) and (7).
By a similar discussion to the above, we have the assertion (5). This completes the

proof.

For the sake of proving Theorem 3, we need some general results on the singularity
theory for the germs of functions. For detailed descriptions, please refer to the book [36].
Let F : (R× Rr, (s0, x0)) → R be a function germ and f (s) = Fx0(s, x0). We say F is an
r-parameter unfolding of f . If f (l)(s0) = 0 for all 1 ≤ l ≤ k and f (k+1)(s0) 6= 0, then we
say f has Ak-singularity at s0. We also say f has A≥k-singularity at s0 if f (l)(s0) = 0 for all
1 ≤ l ≤ k. Meanwhile, let F be an r-parameter unfolding of f and f has Ak-singularity
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(k ≥ 1) at s0; we define the (k− 1)-jet of the partial derivative ∂F/∂xi at s0 as

j(k−1) ∂F
∂xi

(s, x0)(s0) =
k−1

∑
j=0

aji(s− s0)
j, (i = 1, . . . , r).

If the rank of the k× r matrix (aji) is k (k ≤ r), where a0i = ∂F/∂xi(s0, x0), then F is called
an R-versal unfolding of f . The discriminant set of F is defined by

DF = {x ∈ Rr | ∃ s ∈ R, F(s, x) =
∂F
∂s

(s, x) = 0}.

Then, there exists the following famous result (see [36]).

Theorem 4. Let F : (R× Rr, (s0, x0)) → R be an r-parameter unfolding of f (s) that has Ak-
singularity at s0. Supposing that F is an R-versal unfolding of f , if k = 2, then the germ of DF at x0
is diffeomorphic to C×Rr−1; if k = 3, then the germ of DF at x0 is diffeomorphic to SW ×Rr−2.

For the sake of proving Theorem 3, we have the following.

Proposition 2. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0 and G : I×R3

1 →
R be the Lorentzian support function on γ with respect to nγ. If gx0 has an Ak-singularity at s0
(k = 2, 3), then G is an R-versal unfolding of gx0 . Here, we suppose ε(s0) 6= 0 for k = 3.

Proof. We denote that x = (x1, x2, x3), γ(s) = (r1(s), r2(s), r3(s)) and nγ(s) = (n1(s), n2(s),
n3(s)). Then,

G(s, x) = −n1(s)(x1 − r1(s)) + n2(s)(x2 − r2(s)) + n3(s)(x3 − r3(s)),

so that

∂G
∂x1

= −n1(s),
∂G
∂x2

= n2(s),
∂G
∂x3

= n3(s).

Therefore, the 2-jet is

j2
∂G
∂x1

(s0, x0) = −n1(s0)− n′1(s0)(s− s0)−
1
2

n′′1 (s0)(s− s0)
2,

j2
∂G
∂xi

(s0, x0) = ni(s0) + n′i(s0)(s− s0) +
1
2

n′′i (s0)(s− s0)
2, (i = 2, 3).

We denote the following matrix:

A =

 −n1(s0) n2(s0) n3(s0)
−n′1(s0) n′2(s0) n′3(s0)
−n′′1 (s0) n′′2 (s0) n′′3 (s0)

.

According to the Frenet–Serret-type formulae, we obtain

−detA =〈nγ(s0) ∧ n′γ(s0), n′′γ(s0)〉
=〈nγ(s0) ∧ (−δ(s0)κn(s0)t(s0) + δ(s0)τg(s0)b(s0)), (−δ(s0)κ

′
n(s0)− κg(s0)τg(s0))t(s0)

+ (δ(s0)τ
2
g (s0)− δ(s0)κ

2
n(s0))nγ(s0) + (δ(s0)τ

′
g(s0) + κn(s0)κg(s0))〉

=〈δ(s0)κn(s0)b(s0)− δ(s0)τg(s0), (−δ(s0)κ
′
n(s0)− κg(s0)τg(s0))t(s0)

+ (δ(s0)τ
2
g (s0)− δ(s0)κ

2
n(s0))nγ(s0) + (δ(s0)τ

′
g(s0) + κn(s0)κg(s0))〉

=κg(s0)(τ
2
g (s0)− κ2

n(s0)) + δ(s0)(κ
′
n(s0)τg(s0)− κn(s0)τ

′
g(s0))

=δ(s0)ε(s0) 6= 0.
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Therefore, rank A = 3. Moreover, the rank of

B̃ =

(
n1(s0) n2(s0) n3(s0)
n′1(s0) n′2(s0) n′3(s0)

)
=

(
nγ(s0)

−δ(s0)κn(s0)t(s0) + δ(s0)τg(s0)b(s0)

)
is always 2. Then, the rank of

B =

(
−n1(s0) n2(s0) n3(s0)
−n′1(s0) n′2(s0) n′3(s0)

)
is also always 2.

If gx0 has an Ak-singularity at s0 (k = 2, 3), then G is an R-versal unfolding of gx0 . This
completes the proof.

5.2. Proof of Theorem 3

Proof of Theorem 3. Now, we prove the main result of Theorem 3. By straightforward
calculations, we obtain

∂OD
∂u
∧ ∂OD

∂s
=τg(uδτgκg + uκ′n)nγ − κn(1 + uτ′g + uδκnκg)nγ

=(uε− κn)nγ.

We know that (s0, u0) is non-singular if and only if

∂OD
∂u
∧ ∂OD

∂s
6= 0.

It is equivalent to u0ε(s0)− κn(s0) 6= 0. Thus, we finish the proof of the assertion (1).
According to Proposition 1, the discriminant set DG of the Lorentzian support func-

tions G of γ with respect to nγ is the osculating developable surface of M along γ.
Suppose ε(s0) 6= 0. By assertions (3), (4) and (5) in Proposition 1, gx0 has the A2-

singularity (respectively, the A3-singularity) at s0 if and only if

u0 =
κn(s0)

ε(s0)

and σ(s0) 6= 0 (respectively, σ(s0) = 0 and σ′(s0) 6= 0). Then, by Theorem 4 and Proposi-
tion 2, we know assertions (2), (i) and (3) hold.

Suppose ε(s0) = 0. By assertions (6) and (7) of Proposition 1, gx0 has the A2-singularity
at s0 if and only if ε(s0) = 0, κn(s0) = 0 and

κ′n(s0)− u0
(
− κ′′n (s0) + 2δ(s0)τ

′
g(s0)κg(s0) + δ(s0)τg(s0)κ

′
g(s0)

)
6= 0.

It means that
−κ′′n (s0) + 2δ(s0)τ

′
g(s0)κg(s0) + δ(s0)τg(s0)κ

′
g(s0) 6= 0

and

u0 6=
κ′n(s0)

−κ′′n (s0) + 2δ(s0)τ′g(s0)κg(s0) + δ(s0)τg(s0)κ′g(s0)
,

or
−κ′′n (s0) + 2δ(s0)τ

′
g(s0)κg(s0) + δ(s0)τg(s0)κ

′
g(s0) = 0 and κ′n(s0) 6= 0.

Since ε′(s0) = 0 is equivalent to −κ′′n (s0) + 2δ(s0)κg(s0)τ
′
g(s0) + δ(s0)κ

′
g(s0)τg(s0) = 0. By

Theorem 4 and Proposition 2, we obtain the assertions (2), (ii) and (iii). Therefore, we finish
the proof.
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6. Invariants of Non-Lightlike Curves on Timelike Surfaces

In this section, we will consider geometric meanings of the invariant σ.
Let Γ : I → R3

1 × S2
1 be a curve and F : R3

1 × S2
1 → R be a submersion. We say that

Γ and F−1(0) have the contact of at least order k at t = t0 if the function g(t) = F ◦ Γ(t)
satisfies g(t0) = g′(t0) = · · · = g(k)(t0) = 0. Moreover, if Γ and F−1(0) have the contact
of at least order k at t = t0 and satisfy the condition g(k+1)(t0) 6= 0, then we say that Γ

and F−1(0) have the contact of order k at t = t0. Meanwhile, for any x ∈ R3
1, we define the

function gx : R3
1 × S2

1 → R as gx(a, b) = 〈x− a, b〉. Then, we have

g−1
x (0) = {(a, b) ∈ R3

1 × S2
1|〈a, b〉 = 〈x, b〉}.

For a fixed b ∈ S2
1, g−1

x (0)|R3
1 × {b} is a timelike plane that is defined by 〈a, b〉 = c, where

c = 〈x, b〉. For the reason that this plane is pseudo-orthogonal to b, it is parallel to the
tangent plane TvS2

1 at b. On the other hand, we can represent the tangent bundle of S2
1

as follows:

TS2
1 = {(a, b) ∈ R3

1 × S2
1|〈a, b〉 = 1}.

Let π2|g−1
x (0) : g−1

x (0)→ S2
1 be the canonical projection, where π2 : R3

1 × S2
1 → S2

1. Then,
π2|g−1

x (0) : g−1
x (0) → S2

1 is a bundle over S2
1. Moreover, a map Φ : g−1

x (0) → TS2
1 is

defined by Φ(a, b) = (a/〈x, b〉, b); then, Φ is a bundle isomorphism. Here, we denote
TS2

1(x) = g−1
x (0). Meanwhile, we call it an affine tangent bundle over S2

1 through x.
Let γ : I → M ⊂ R3

1 be a non-lightlike curve with τ2
g + κ2

n 6= 0. Assume that ε(s) 6= 0.
According to the proof of Theorem 2 (B), we have the derivative of the vector-valued
function f , which is f ′(s) = σ(s)D(s). Thus, if we suppose that σ(s) ≡ 0, then f is a
constant vector x0. We have

γ(s)− x0 = −κn(s)
ε(s)

D(s).

Therefore, we obtain

gx0(γ(s), nγ(s)) = gx0(s) = 〈γ(s)− x0, nγ(s)〉 = 0.

On the other hand, if there exists x0 ∈ R3
1 such that gx0(γ(s), nγ(s)) = 0, then we can obtain

γ(s)− x0 = −κn(s)
ε(s)

D(s)

and σ(s) ≡ 0. We consider such a curve (γ, nγ) : I → R3
1 × S2

1. Then, we have

Proposition 3. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0 and ε(s) 6= 0.

Then, there exists x0 ∈ R3
1 such that (γ, nγ)(I) ⊂ TS2

1(x0) if and only if σ(s) ≡ 0.

The result of the proposition above states that the geometric meaning of the singu-
larities of OD is related to both the curve and the shape of the timelike surface along
the non-lightlike curve. Let γ : I → M ⊂ R3

1 be a non-lightlike curve with τ2
g + κ2

n 6= 0.
Meanwhile, we consider the support function gx0(s) = gx0(γ(s), nγ(s)). According to
Proposition 1 (2) , one can find that (γ, nγ) is tangent to TS2

1(x0) at s = s0 if and only if
x0 = OD(s0, u0) for some u0 ∈ R. In addition, we have the following.

Proposition 4. Let γ : I → M ⊂ R3
1 with τ2

g + κ2
n 6= 0 be a non-lightlike curve and ε(s) 6= 0.

For x0 = OD(s0, u0), we have the following:
(1) (γ, nγ) and TS2

1(x0) have contact of order 2 at s = s0 if and only if u0 = κn(s0)
ε(s0)

and σ(s0) 6= 0.
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(2) (γ, nγ) and TS2
1(x0) have contact of order 3 at s = s0 if and only if u0 = κn(s0)

ε(s0)
, σ(s0) = 0 and

σ′(s0) 6= 0.

Proof. By Proposition 1, (3) and (4), one can obtain gx0(s0) = g′x0
(s0) = g′′x0

(s0) = 0 and

g(3)x0 (s0) 6= 0 if and only if u0 = κn(s0)
ε(s0)

and σ(s0) 6= 0. Since gx0(γ(s), nγ(s)) = gx0(s),

the conditions above imply that (γ, nγ) and TS2
1(x0) have contact of order 2 at s = s0.

By using Proposition 1, (4) and (5), we can obtain the assertion (2) similar to the case
above.

Moreover, for the classification results of Theorem 3, we show the geometric meaning
as follows.

Theorem 5. Let γ : I → M ⊂ R3
1 be a non-lightlike curve with τ2

g + κ2
n 6= 0 and ε(s) 6= 0.

(1) (γ, nγ) and TS2
1(x0) have contact of order 2 at s = s0 if and only if u0 = κn(s0)

ε(s0)
and

σ(s0) 6= 0. In this case, the image of the osculating developable surface OD of M along γ is
locally diffeomorphic to the cuspidal edge C×R at (s0, u0).

(2) (γ, nγ) and TS2
1(x0) have contact of order 3 at s = s0 if and only if u0 = κn(s0)

ε(s0)
, σ(s0) = 0

and σ′(s0) 6= 0. In this case, the image of the osculating developable surface OD of M along
γ is locally diffeomorphic to the swallowtail SW at (s0, u0).

7. Curves on Special Timelike Surfaces
7.1. Curves on the de Sitter 2-Space

De Sitter 2-space S2
1 = {x ∈ R3

1|〈x, x〉 = 1} is a special timelike surface in R3
1. We

consider the non-lightlike curves on S2
1. Let γ : I → S2

1 be a non-lightlike curve. In this
case, the Darboux frame along γ is {t, γ, b}. We have κn(s) = −δ(s) and τg(s) = 0. The
Frenet–Serret-type formula is as follows:

t′(s) = −δ(s)γ(s)− δ(s)κgb(s),
γ′(s) = t(s),
b′(s) = −δ(s)κg(s)t(s).

It follows that D(s) = δ(s)b(s) and OD(s, u) = γ(s) + uδ(s)b(s). Therefore, we have

ε(s) = −δ(s)κg(s), σ(s) = −
κ′g(s)
κ2

g(s)
.

Then, as a corollary of Theorem 3, we have the following theorem.

Theorem 6. Let γ : I → S2
1 be a non-lightlike curve. Then,

(1) (OD, (s0, u0)) is regular if and only if −u0κg(s0) + 1 6= 0.
(2) The image of (OD, (s0, u0)) is locally diffeomorphic to the cuspidal edge C×R if κg(s0) 6= 0,
κ′g(s0) 6= 0 and u0 = 1

κg(s0)
.

(3) The image of (OD, (s0, u0)) is locally diffeomorphic to the swallowtail SW if κg(s0) 6= 0,
κ′g(s0) = 0, κ′′g (s0) 6= 0 and u0 = 1

κg(s0)
.

Now, we consider some special curves on S2
1, such as the spacelike circle, which is the

intersection of the plane x1 = k with S2
1. It is defined by

Ck = {x ∈ S2
1|x1 = k}.

We call it a small circle if k = 0, and call it a great circle if k 6= 0. Ck is a spacelike curve on S2
1.

Proposition 5. Let γ : I → S2
1 be a non-lightlike curve and OD be the osculating developable

surface of S2
1 along γ. Then, we have the assertions below.
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(1) If γ is a small circle, then OD is a circular cylinder.
(2) If γ is a great circle, then OD is a circular cone.

Proof. If γ is a small circle, then κg(s) ≡ 0 and b(s) is constant. Thus, OD(s, u) =
γ(s) + ub(s) is a circular cylinder that is tangential to S2

1 along γ (see Figure 3). If γ

is a great circle, then κg(s) ≡ k√
k2+1

and κ′g(s) ≡ 0, so that ε(s) 6= 0 and σ(s) ≡ 0. It means

that OD(s, u) = γ(s) + uδ(s)b(s) is a cone tangent that is tangential to S2
1 along γ (see

Figure 4).

Figure 3. OD along the small circle.

Figure 4. OD along the great circle.

On the other hand, we consider the timelike hyperbolic curve, which is the intersection
of the plane x3 = k (−1 < k < 1) with S2

1. It is defined by

Hk = {x ∈ S2
1|x3 = k}.

We call it a great hyperbolic curve if k = 0, and call it a small hyperbolic curve if k 6= 0. Hk is a
timelike curve on S2

1, and we have the proposition below.

Proposition 6. Let γ : I → S2
1 be a non-lightlike curve and OD the osculating developable surface

of S2
1 along γ. Then, we have the assertions below.

(1) If γ is a great hyperbolic curve, then OD is a cylinder.
(2) If γ is a small hyperbolic curve, then OD is a cone.

Proof. Let γ be a timelike hyperbolic curve Hk; then, one can define γ by

γ(s) = (
√

1− k2 sinh
s√

1− k2
,
√

1− k2 cosh
s√

1− k2
, k).

Then, we have
t(s) = (cosh

s√
1− k2

, sinh
s√

1− k2
, 0),

and κg(s) = 2 − 2
√

1− k2. If γ is a great hyperbolic curve, then κg(s) ≡ 0 and b is
constant. Hence, OD(s, u) = γ(s)− ub(s) is a cylinder that is tangential to S2

1 along γ (see
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Figure 5). If γ is a small hyperbolic curve, then κg(s) 6= 0 and κ′g(s) ≡ 0. It follows that
OD(s, u) = γ(s) + uδ(s)b(s) is a cone that is tangential to S2

1 along γ (see Figure 6).

Figure 5. OD along the great hyperbolic curve.

Figure 6. OD along the small hyperbolic curve.

The following example of a timelike curve on S2
1 shown below serves to illustrate

Theorem 6.

Example 1. Let γ : I → S2
1 be a timelike curve defined by

γ(t) = (t, t2,
√

1− t4 + t2), t ∈ (−0.41, 0.41).

The Darboux frame along γ is {γ(t), t(t), b(t)}. Then, by a straightforward calculation, we obtain

t(t) =
( √1− t4 + t2
√

1− 4t2 − t4
,

2t
√

1− t4 + t2
√

1− 4t2 − t4
,

t− 2t3
√

1− 4t2 − t4

)
,

b(t) =
( t3 + 2t√

1− 4t2 − t4
,

t4 + 1√
1− 4t2 − t4

,
t2
√

1− t4 + t2
√

1− 4t2 − t4

)
.

The derivative of b(t) is given by

b′(t) =
(
− −2− 3t2 + 6t4 + t6

(1− 4t2 − t4)
3
2

,−2t(−2− 3t2 + 6t4 + t6)

(1− 4t2 − t4)
3
2

,

t(2− t2 − 12t4 + 11t6 + 2t8)

(1− 4t2 − t4)
3
2
√

1− t4 + t2

)
.

By the Frenet-type formulae, one can obtain κg(t) = 2+3t2−6t4−t6

(1−4t2−t4)
3
2

. It follows that

κ′g(t) =
30(t + t5)

(1− 4t2 − t4)
5
2

, κ′′g (t) =
30(1 + 16t2 + 14t4 + 5t8)

(1− 4t2 − t4)
7
2

.
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We have κ′g(t) = 0 if and only if t = 0, at this moment, κg(0) = 2 6= 0 and κ′′g (0) = 30 6= 0.
By Theorem 6, if t = 0, the osculating developable surface OD along γ has the swallowtail
singularities (see Figure 7).

Figure 7. OD along the timelike curve with swallowtail singularities.

7.2. Curves on a Timelike Surface of Revolution

We focus on non-lightlike curves on a timelike surface of revolution in this subsection.
A timelike surface of revolution is defined by

X(u, v) = (u, f (u) cos v, f (u) sin v)

for (u, v) ∈ U ⊂ R2, where f (u) 6= 0 and ( f ′(u))2 < 1. It is easy to show that

Xu = (1, f ′(u) cos v, f ′(u) sin v), Xv = (0,− f (u) sin v, f (u) cos v).

Then, the unit spacelike normal vector field along M = X(U) is

n(u, v) =
(
− f (u) f ′(u)√

f 2(u)− f 2(u)( f ′(u))2
,− f (u) cos v√

f 2(u)− f 2(u)( f ′(u))2
,− f (u) sin v√

f 2(u)− f 2(u)( f ′(u))2

)
.

Then, for a non-lightlike curve

γ(t) =
(
u(t), f (u(t)) cos v(t), f (u(t)) sin v(t)

)
on M, we obtain the Darboux frame as follows.

nγ(t) =−
f√

f 2(1− f ′2)

(
f ′, cos v, sin v

)
,

t(t) =
1√

δ(t)
(

f ′2u̇2 − u̇2 + f 2v̇2
) (u̇, f ′u̇ cos v− f v̇ sin v, f ′u̇ sin v + f v̇ cos v

)
,

b(t) =nγ(t) ∧ t(t)

=
1√

δ(t) f 2
(
1− f ′2

)(
f ′2u̇2 − u̇2 + f 2v̇2

) ( f 2v̇,− f u̇ sin v + f f
′2u̇ sin v + f 2 f ′v̇ cos v,

− f f
′2u̇ cos v + f 2 f ′v̇ sin v + f u̇ cos v

)
,

where

δ(t) = sign(t(t)), u =u(t), v = v(t), f ′ =
d f
du

,

u̇ =
du
dt

, v̇ =
dv
dt

.
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We can calculate that

γ̇(t) =
(
u̇, f ′u̇ cos v− f v̇ sin v, f ′u̇ sin v + f v̇ cos v

)
,

γ̈(t) =
(
ü, f ′′u̇2 cos v + f ′ü cos v− 2 f ′u̇v̇ sin v− f v̈ sin v− f v̇2 cos v,

f ′′u̇2 sin v + f ′ü sin v + 2 f ′u̇v̇ cos v + f v̈ cos v− f v̇2 sin v
)
,

ṅγ(t) =
f 2 f ′ f ′′u̇ + f f

′3u̇− f f ′u̇

[ f 2(1− f ′2)]
3
2

(
− f f ′,− f cos v,− f sin v

)
+

1√
f 2(1− f ′2)

(
− f

′2u̇− f f ′′u̇,− f ′u̇ cos v + f v̇ sin v,− f ′u̇ sin v− f v̇ cos v
)
.

Moreover, one can obtain

κg(t) =
〈nγ(t) ∧ γ̇(t), γ̈(t)〉

‖γ̇(t)‖3

=
1√

δ(t)[ f ′2u̇2 − u̇2 + f 2v̇2]3
√

f 2(1− f ′2)

(
f 2üv̇( f

′2 − 1) + f 2u̇v̈(1− f
′2) + 2(1− f

′2) f f ′u̇2v̇

+ f 2 f ′ f ′′u̇2v̇− f 3 f ′v̇3),
κn(t) =

〈γ̈(t), nγ(t)〉
‖γ̇(t)‖2

=
− f f ′′u̇2 + f 2v̇2

δ(t)( f ′2u̇2 − u̇2 + f 2v̇2)
√

f 2(1− f ′2)
,

τg(t) =−
〈ṅγ(t), b(t)〉
‖γ̇(t)‖

=
f 2u̇v̇− f 2 f

′2u̇v̇− f 3 f ′′u̇v̇
δ(t) f 2(1− f ′2)( f ′2u̇2 − u̇2 + f 2v̇2)

.

For a timelike meridian curve γ(u) = X(u, v0) =
(
u, f (u) cos v0, f (u) sin v0

)
, we have

v̇ = dv0
dt = 0. Then,

κg(u) ≡ 0, κn(u) =
− f f ′′

(1− f ′2)
√

f 2(1− f ′2)
, τg(u) ≡ 0.

In this case ε ≡ 0, the osculating developable surface OD along γ is a cylinder (see Figure 8).
For a spacelike circle γ(v) = X(u0, v) =

(
u0, f (u0) cos v, f (u0) sin v

)
, we have u̇ =

du0
dt = 0. Then,

κg(v) =
− f ′√

f 2(1− f ′2)
, κn(v) =

1√
f 2(1− f ′2)

, τg(v) ≡ 0.

Since | f ′(u)| < 1, if f ′(u0) = 0, we have ε = −κ2
nκg ≡ 0. At this time, the osculating

developable surface OD along γ is a cylinder (see Figure 9). If f ′(u0) 6= 0, then ε is a
nonzero constant and σ ≡ 0. At this time, the osculating developable surface OD along γ
is a cone (see Figure 10).
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Figure 8. OD along the timelike meridian curve.

Figure 9. If f ′(u0) = 0, OD along the spacelike circle.

Figure 10. If f ′(u0) 6= 0, OD along the spacelike circle.

8. Conclusions

By choosing the three-dimensional Minkowski space as a background in space–time,
we define the osculating developable surface of a timelike surface along a curve, whose
ruling is parallel to the osculating Darboux vector field. Our main purpose is to study
the singularities of such a surface. For this, by using the singularity theory, we classify
the generic singularities of osculating developable surfaces that are cuspidal edges and
swallowtails. In particular, these types of singularities are characterized by the invariants
ε(s) and σ(s). In fact, the osculating developable surface is a cylinder if and only if ε(s) ≡ 0;
the osculating developable surface is a cone if and only if ε(s) 6= 0 and σ(s) ≡ 0. We
also show some special geometric properties of the singularities of osculating developable
surfaces from the viewpoint of contact geometry. Moreover, we obtain the dual relationship
between the rulings and the normals of osculating developable surfaces.
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