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Abstract: The operating point of a propeller hydropower station will deviate from the effective
workspace while the discharge reduces excessively during dry seasons. It usually leads to a decrease
in efficiency and even to being unable to work. To solve the above problem, a scheme named
decreasing capacity to increase efficiency was presented in this article. A low-specific-speed propeller
runner with fixed blades that has the same installing dimensions as the original one was redesigned
and equipped in dry seasons. A positive circulation at the outlet of the blades bigger than in
conventional runners is allowed. Some key technologies about hydraulic design for runner blades
were researched, which include distribution of velocity circulation at the inlet and outlet of the runner,
thickening of the epiphyseal line of an aerofoil, unfolding aerofoil being converted to a cylindrical
section, etc. In the section on digital modeling for runner blades, aerofoils on the cylindrical sections
at the rim and at the hub were constructed employing the trend extrapolation method. Moreover,
a blade digital model was built at one time according to the aerofoils on all cylindrical sections by
means of a successful redevelopment to UniGraphics, and it has perfect symmetry. A case presented
indicates that the method of decreasing capacity to increase efficiency is feasible. Using the method,
the turbine efficiency increased from less than 28.6% to 83.4% while the discharge decreased from
3.20 m3s−1 to 1.00 m3s−1, and then the hydropower unit was able to work properly.

Keywords: hydraulic turbines; propeller runners with fixed blades; low specific speed; trend extrap-
olation; decreasing capacity to increase efficiency

1. Introduction

A propeller turbine is a kind of axial flow hydro-turbine in which the fixed blades
have the advantages of large overflowing, high efficiency and good cavitation performance.
Moreover, the processing cost of the unit is low. It is also convenient to be installed, operate
and maintain. The propeller turbine is appropriate for a medium-mini size hydropower
unit [1]. Currently, the standardization and serialization of medium-mini size hydropower
units have been formulated, which have already formed one more complete system. In
addition, several new components are currently being developed constantly. For example,
Uchiyama et al. developed a micro-hydraulic turbine with excellent performance in the
passage of foreign matter included in the water flow [2]. The runner has four blades,
with a circular hollow around the rotating axis to pass foreign matter through the runner.
Moreover, Ma et al. designed an inlet guide, vane and runner for developing a 2.5 kW
hydraulic turbine. The efficiency and power of the turbine increased by 0.95% and 1.45%,
respectively, compared to those of the reference model [3].

As for the development of propeller runners, at present, most scholars are absorbed in
improving single capacity and increasing efficiency. For example, aiming at the problem
of the insufficient output of the Huangtankou Hydropower Station, based on the existing
conditions, a runner optimization design was implemented by CFD in reference [4], and
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an appropriate turbine type was selected to realize the capacity expansion. The maximum
output is increased by more than 10% compared with the original runner, and unit efficiency
is improved significantly. In addition, Li Tao [5] studied the transformation of an axial flow
turbine about capacity and corrosion in the Dujiangyan Shuangbo power station. Using an
improved lifting model, the capacity of the transformed unit increases from 5000 kW to
6000 kW under the design condition, and its efficiency of it is 91.1%, which is 2.1% higher
than the design one (89%).

The performance curves of propeller turbines are narrow [6], which means that it is
more sensitive to discharge changes. As for most small and medium hydropower stations
in many regions, the distribution of water resources in each season is highly uneven.
Generally, the discharge is greatly reductive during dry seasons, and then the operating
point is more likely to deviate from the effective workspace, which will usually lead to a
decrease in efficiency and even to being unable to work. What had mentioned is a difficult
problem in many hydropower stations. A feasible method to solve this problem is to reduce
the unit capacity in exchange for raising its efficiency. Keeping the original full passage
unchanged, only a new runner named low-specific-speed propeller runner with fixed
blades is redesigned and manufactured to replace the original one. The implementation
plan allows hydropower units that otherwise wouldn’t be able to work to do so properly
under the low-discharge conditions, which will increase the availability of water resources
and equipment, and improve economic benefit greatly. Low-head or low-specific-speed
propellers [7], and even low-specific-speed pumps [8], are also hot research topics at present.

With its rapid development of it, computer technology has been widely used in
the research of the design and manufacture of runners. Computer-aided design can be
applied to the hydraulic design of turbine runners and will raise their design efficiency and
design accuracy greatly. For example, according to the Standard Modular Hydropower
Technology proposed by the U.S. Department of Energy in 2017, Chen J provided a basic
design methodology and some geometrical considerations on Digital hydraulic design.
Additionally, he also presented some numerical simulation contents about several blade
configurations, including stator blade inlet angle, runner blade solidity, and runner blade
thickness, and how those geometrical configurations affect the overall performance and
fluid behaviors [9]. Due to the actual flow at the rim and hub cannot meet the independence
assumption among cylindrical layers, their aerofoils on the cylindrical sections cannot be
designed by the hydraulic calculation method. Consequently, during the 3D modeling
course for a runner blade, the aerofoils in the rim and hub can only be extended according
to several aerofoils obtained by calculating. As for 3D modeling for a runner blade, many
scholars are absorbed in surface reconstruction techniques. For instance, using a surface
approach, the free-form shape of a 3D camber surface was defined by a multi-directional
interpolation procedure, using the section approach, a Direct Profiling method was tested
to fitting a hydrofoil section to the real one in reference [10]. The technique can be used to
reverse and reconstruct an existing runner surface, however, is unable to extend it to the
two sides keeping the original trend.

Trend extrapolation is a method for predicting society, economy, science and technol-
ogy. Its fundamental assumption is that future is a continuous development along the past
and present. Currently, trend extrapolation is mainly used for information research. For
example, Meng, et al. used the household electricity consumption and population data of
30 provinces in China during 2001–2014, developed a hybrid trend extrapolation model
to explore the driving factors of household electricity consumption growth in China and
forecasted its future development trend before 2030 [11]. Friji, et al. proposed a generalized
mechanistic model characterizing the COVID-19 pandemic evolution from a susceptible
state to a discharged state. Once the model’s parameters are estimated, forecasting results
are derived, and uncertainty regions of the expected scenarios are provided [12]. According
to the similarities between curve extension and information research, we studied several in-
telligent extension-models in Reference [13] by introducing trend extrapolation, with which
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non-circular curves in planes can be extended intelligently for a short distance. However,
the method and models are not available for spatial non-circular curves or surfaces.

In view of the difficult problem of the propeller, the turbine runs properly while
the discharge reduces excessively during dry seasons; a modification plan of decreasing
capacity to increase efficiency has been presented, and several key technical problems in
hydraulic design have been solved in this article. In addition, a digital design method
for runner blades has been developed by applying trend extrapolation to the extension of
spatial non-circular curves and surfaces. In the end, the research achievement is applied to
an instantiation; the validity of the theoretical analysis is proved.

2. Reasons and Solutions for Failure to Generate
2.1. Reasons for Failure to Generate

The inlet of a propeller runner has no impact, yet the outlet is along a normal direction
under design conditions [14]. However, the design condition corresponds only to a certain
head and discharge. But in actual operation, due to the changes in reservoir level and
external load, head and discharge can frequently change, which will often make the
propeller turbine off its optimum operating condition. The farther the operating condition
from the design condition, the more efficiency declines.

Assuming the optimal operating condition of an original runner under high discharge
to be “A”, while the operating condition unable to generate under low discharge to be
“B”.The velocity triangles at the inlet and outlet of the airfoil are shown in Figure 1, where
the velocity circulation at the outlet of the cylindrical surface is zero. The blade inlet angle
will decrease from α′1 to α

′′
1 when the guide vane opening decreases under low-discharge

conditions, due to the velocity circulation at the outlet on the cylindrical section being zero,
v′2u= 0. The value of the absolute velocity at the inlet depends on H, hence is constant;
the direction of it varies with the guide vane opening, namely v′′1 = v′1. The value of a
circular velocity depends on the generated frequency; hence, it is constant. Therefore,
u′′1 = u′1 = u′′2 = u′2. According to the independence assumption among cylindrical layers [15],
the value and direction of the meridional velocity at the outlet should be equal to that at
the inlet, hence v′2m= v′1m, and v′′2m= v′′1m. The blade outlet angle of a propeller runner is
unable to adjust, and then β′2 remains constant, namely β

′′
2 = β′2.
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Figure 1. Velocity triangles at the inlet and outlet of the original runner: (a) Inlet, (b) Outlet.

As shown in Figure 1b, the value of v′′2u is too large, which means the Γ
′′
2 is too large.

According to the fundamental equation H′′ η′′s g = ω′′
(

Γ
′′
1 − Γ

′′
2
)
/2π, ∆Γ′′ being too little

will make a sharp drop in efficiency in the case that both H′′ and ω′′ are constant. The
propeller turbine will be unable to work because of too little η

′′
s if the discharge descends to

a certain value. Moreover, v′′2u being too large does not favor to energy recovery for draft
tubes [16], which can not only decrease efficiency but also reduce the running stability
of units. As shown in Figure 1a, β

′′
1 < β′1, so there is a great negative flow impact on

the outlet under the condition “B”. Thus, the hydraulic loss is enormous [17] and the
hydraulic efficiency of unit will reduce. For example, the optimal flow of GOE430 runner in
a hydropower station is 3.20 m3s−1. When the discharge declines to 1.5 m3s−1, the velocity
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circulation difference ∆Γ′′ = 3.02 m3s−1. The η
′′
s falls into 28.6%, and the units are unable to

work completely.

2.2. Solutions for Failure to Generate

To solve the above problem, we present a scheme as follows. A low-specific-speed
propeller runner with fixed blades, named new runner, that has the same installing dimen-
sions with the original one is redesigned. The new runner and the original one are used
interchangeably, corresponding to dry seasons and rainy seasons. As in the following, the
unit can work properly under different seasons. On account of the original flow passage
components remain unchanged, the reconstruction budget is the lowest.

As for the new runner, the parameters of the velocity triangles of the aerofoils
on the same cylindrical section, against the original one, at the Inlet and Outlet un-
der the condition “B” does not make any mark at the top-right corner. According to
Hgηs = ω(Γ1 − Γ2)/2π [18], H and ω being constant, if the velocity circulation difference
of the new runner between inlet and outlet under the condition “B” reaches or approaches
that of the original runner under the condition “A”, the efficiency of the new runner under
the condition “B” reaches or approaches that of the original runner under the condition
“A”. That is to say, Γ1 − Γ2 = Γ′1 − Γ′2. Consequently, 2πrv1u − 2πrv2u = 2πrv′1u − 2πrv′2u.
Due to v′2u = 0 [15],

v2u = v1u − v′1u (1)

From the above analysis and Figure 2, some parameter relationships between the new
runner under condition “B” and the original runner under condition “A” on the same
cylindrical section are as follows.

v1 = v′′1 = v′1, α1 = α
′′
1 < α′1; u′′1 = u′′1 = u′1 = u′′2 = u′′2 = u′2, β2 < β′2 = β

′′
2 ; v1m = v2m = v′′1m = v′′2m.
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Figure 2. Velocity triangles at the inlet and outlet of new runner: (a) Inlet, (b) Outlet.

As shown in Figure 2b, v2u is significantly less than v′′2u. Therefore, if the inlet angle
and outlet angle of the new runner are approximately equal to the inflow angle and outflow
angle, there is no or little positive impact at the entrance. Moreover, the velocity circulation
of the outflow decreases greatly. In conclusion, the new runner can overcome the problem
of the original runner under condition “B”.

3. Digital Hydraulic Design for Blades

As for the new runner, the average cascade solidity should be great for the unit
discharge is rather small and the specific speed is very low [19]. Secondly, because of power
output decreases, the load on the blade’s declines compare to the original runners. Finally,
as shown in Figure 1b, compare to the original runner, the relative velocity distribution in
the vane passage of the new runner decreased greatly, but turbine setting, runner diameter
and speed are the same with the original runners. As a result, the cavitation performances
of the new runner depend exclusively on the designed aerofoils. Only if the aerofoils
are reasonably well designed, can the cavitation performances be superior to the original
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runner’s [4]. In the process of design, the epiphyseal lines of the aerofoils are designed
by singularity distribution method firstly, and then the epiphyseal lines are thickened on
comparing the thickness variation of a certain excellent aerofoil that has the most suitable
hydraulic parameters and similar specific speed against the new runner [20]. Several key
technical problems in digital hydraulic design for runner blades are solved as follows.

3.1. Distribution of Velocity Circulation

There are three kinds of distribution of velocity circulation at the inlet and outlet of
the runner [21]. One of them is that the velocity circulation at the outlet being zero lies in
the cylindrical section (denoted by M-M) in the middle locations between the rim and hub,
which is employed in this article. The distribution of the velocity circulation at the inlet
and outlet of the new runner are shown in Figure 3 under condition “B”. Considering the
specialty of the design condition, a positive Γ0 should be added to the initial distribution of
velocity circulation at the outlet of the new runner. Consequently, the velocity circulation
at the outlet on the M-M is Γ0.
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For the new runner, n′110 = n′D1√
Hη′s

[21],

ω′ =
2πn′

60
=

2πn′110
√

Hη′s
60D1

(2)

According to the fundamental equation of the turbine [21],

Γ′1 − Γ′2 = 2πrv′1u − 2πrv′2u =
60gD1

√
Hη′s

n′110
(3)

On the M-M, Γ′2 = 0, then,

v′1u =
60gD1

√
Hη′s

2πrMn′110
(4)

From Figure 1a,

v1 = v′1 =
√

v′21m + v′21u =
√

v′2z + v′21u (5)

v1u =
√

v2
1 + v2

1m =
√

v2
1 + v2

z (6)

From Equations (3)–(6), the velocity circulation of the new runner at the outlet on the
M-M is as follows.

Γ0 = 2πrMv2u = 2πrM

(
v1u − v′21u

)
= 2πrM

(√
v′2z + v′21u − v2

z −
60gD1

√
Hη′s

2πrMn′110

)
(7)
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From the basic equation of the turbine,

∆Γ = Γ1 − Γ2 =
2πHgηs

ω
(8)

According to the literature [21], the δΓ shown in Figure 3 can be described as follows.

δΓ = 0.2(Γ1 − Γ2) = 0.2× 2πHgηs

ω
(9)

If the velocity circulation at the outlet is regularly distributed in a straight line along
the radius direction, its distribution is as follows.

Γ2 = Γ0 +
4δΓ(r− rM)

D1 − db
= 2πrM

(√
v′2z + v′21u − v2

z −
60gD1

√
Hη′s

2πrMn′110

)
+

1.6πHgηs(r− rM)

(D1 − db)ω
(10)

From Equations (8) and (10), the distribution of the velocity circulation at the inlet
along the radius direction is as follows.

Γ1 = 2πrM

(√
v′2z + v′21u − v2

z −
60gD1

√
Hη′s

2πrMn′110

)
+

1.6πHgηs(r− rM)

(D1 − db)ω
+

2πHgηs

ω
(11)

3.2. Thickening of Epiphyseal Line of Aerofoil

Several discrete points (11 points in this article) on every epiphyseal line of an aerofoil
in stream surface can be calculated during the hydraulic calculation of the runner blade. A
continuous epiphyseal line of aerofoil can be fitted according to the above discrete points,
which can be thickened to an aerofoil with a certain thickness. GOE430 [20] shown in
Figure 4 is an aerofoil to thicken accordingly in this article. The position of every discrete
point calculated on the epiphyseal line may not coincide with that of the discrete point
selected (17 points in literatures [20]). Consequently, the epiphyseal line of aerofoil must
be interpolated into 17 points from the 11 points by calculating it according to the value
before they are thickened. Those points are signed, respectively, from the outlet to the inlet.
There are several interpolation methods, one of which is B-Spline interpolation. It enables
the fit curves interpolated to pass all the date points. In addition, the first and second
derivatives in nodes are continuous and smooth, and have a good convergence [22]. The
b-Spline interpolation method is applied in this article. After the 17 points are interpolated,
the thickened value yB (marked as yB

i ) and yH (marked as yH
i ) corresponding to the points

can be calculated respectively.
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As shown in Figure 5, 𝐺 and𝐺 (𝑖 = 1, 2, . . . ,20)  are the two adjacent points ob-
tained from interpolating. Obviously, the relative curvature of the blade aerofoil is minor, 
and the epiphyseal line 𝐺 𝐺  is very short. Therefore, 𝐺 𝐺  can be replaced by a line 
segment 𝐺 𝐺 . A point on the epiphyseal line is interpolated along its normal direction. 

Figure 4. GOE430 aerofoil.

As shown in Figure 5, Gi and Gi−1(i = 1, 2, . . . , 20) are the two adjacent points ob-
tained from interpolating. Obviously, the relative curvature of the blade aerofoil is minor,

and the epiphyseal line
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As shown in Figure 5, 𝐺 and𝐺 (𝑖 = 1, 2, . . . ,20)  are the two adjacent points ob-
tained from interpolating. Obviously, the relative curvature of the blade aerofoil is minor, 
and the epiphyseal line 𝐺 𝐺  is very short. Therefore, 𝐺 𝐺  can be replaced by a line 
segment 𝐺 𝐺 . A point on the epiphyseal line is interpolated along its normal direction. 

GiGi−1 is very short. Therefore,
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As shown in Figure 5, 𝐺 and𝐺 (𝑖 = 1, 2, . . . ,20)  are the two adjacent points ob-
tained from interpolating. Obviously, the relative curvature of the blade aerofoil is minor, 
and the epiphyseal line 𝐺 𝐺  is very short. Therefore, 𝐺 𝐺  can be replaced by a line 
segment 𝐺 𝐺 . A point on the epiphyseal line is interpolated along its normal direction. 

GiGi−1 can be replaced by a line
segment GiGi−1. A point on the epiphyseal line is interpolated along its normal direction.
That is to say, HiBi that is a line of the two points Hi and Bi on the front and the back of the
aerofoil thickened is perpendicular to GiGi−1.
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As shown in Figure 5, the coordinates value of Gi, Gi−1, Hi, Bi are
(
xG

i , yG
i
)
,
(

xG
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i−1

)
,(

xH
i , yH

i
)
,
(

xB
i , yB

i
)

respectively. From the right triangle AGi Hi (marked as Rt∆AGiHi) in

Figure 5, we can see: tan Γ =
yH

i −yG
i

xG
i −xH

i
; from Rt∆BGiGi−1, tan Γ =

xG
i −xG

i−1
yG

i −yG
i−1

; from Rt∆CBiGi,

tan Γ =
yG

i −yB
i

xB
i −xG

i
.

Due to |HiGi| = yHi and |BiGi| = yBi, the following two equations can be obtained in
Rt∆AGi Hi and Rt∆CBiGi according to Pythagoras theorem with the above analysis.

yH
i −yG

i
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i −xH
i
=
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i
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The first point on the epiphyseal line of the aerofoil is not necessarily thickened because it
is on the aerofoil surface [21]. The coordinate values

(
xH

i , yH
i
)

and
(
xB

i , yB
i
)
(i = 2, 3, . . . , 17)

of the points Hi and Bi can be determined by Equations (12) and (13). Therefore, the coordinate
values of 33 points on the aerofoil surface have been determined. A smooth curve can be
fitted from these points by using B-Spline. Thus, an unfolded aerofoil with a certain thickness
can be obtained.

3.3. Unfolding Aerofoil Converted to Cylindrical Section

The unfolding aerofoil should be converted to the corresponding cylindrical section
in 3D solid modeling. According to the rotation-axis position determinacy [21], a line
connecting all rotation axes of the aerofoil is perpendicular to the runner axis. Likewise, a
line connecting all outlets of the aerofoil is also perpendicular to the runner axis. As shown
in Figure 6, as for the airfoil i(i = 1, 2, . . . , 5), the rotation axis (o′′1 o′′i ) of it is perpendicular to
the runner axis, and intersect in the point o with it. The outlet (A′′1 A′′i ) is also perpendicular
to the runner axis, and intersect in the point oA with it. It is obvious that all the rotation
axes lie on o′′1 o′′i and outlets on A′′1 A′′i . The radius of the aerofoil i on cylindrical section is ri.
As shown in Figure 6, x′′i y′′i z′′i is a coordinate system for hydraulic calculation; moreover,
its origin lies in the outlet. On the other hand, each coordinate axis of x′y′z′ is parallel to
that of x′′i y′′i z′′i . z′-axis is coincident with the runner axis. In addition, its origin lies on the
intersection of z′-axis and o′′1 o′′i . The coordinate values of a discrete point P′′i on the aerofoil
can be transformed into those in x′y′z′ using affine transformation [23]. See Equation (14),
in which (x′′o′ , y′′o′ , z′′o′ ) are the coordinate values of o′ in x′′i y′′i z′′i .x′i

y′i
z′i

=
x′′i

y′′i
z′′i

−
x′′o′

y′′o′
z′′o′

 (14)
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𝜌 cos𝜃𝜌 sin𝜃𝑦  (16)

4. Digital Hydraulic Design for Runner Blades 
Aerofoils on cylindrical section obtained by a hydraulic design for the runner blade 

are finite, usually are five in the middle of the blade, as shown in Figure 7. The aerofoils 
on cylindrical sections are saved to an EXCEL file in the form of point coordinates. The 
EXCEL file is converted into a “.csv” format ready for import into Imageware [24]. A bit-
map of the blade can be obtained, and then saved it as a “. igs” format, put it into  
UniGraphics. Finally, the points of aerofoil on cylindrical section are grouped in proper 
order and form a close curve by the “Spline Fitting” [25]. 

Figure 6. Discrete points on unfolding aerofoil being converted to cylindrical section.

The zθρ is a cylindrical coordinate system, its z -axis is coincident with the z′-axis
of the x′y′z′, and its polar axis is just the rotation axis of the runner. As for the airfoil i,∣∣oo′′i

∣∣ = ri. P′iv is a point that P′′i
(

P′i
)

is projected onto the y′-axis. According to the relations

between real 3D aerofoil and unfolding one,
∣∣o′′i P′iv

∣∣ equals to the arc length of
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As shown in Figure 5, 𝐺 and𝐺 (𝑖 = 1, 2, . . . ,20)  are the two adjacent points ob-
tained from interpolating. Obviously, the relative curvature of the blade aerofoil is minor, 
and the epiphyseal line 𝐺 𝐺  is very short. Therefore, 𝐺 𝐺  can be replaced by a line 
segment 𝐺 𝐺 . A point on the epiphyseal line is interpolated along its normal direction. 

o′′i Piv . As a
result, the coordinate value of P′′i

(
P′i
)

that is converted to the cylindrical section in zθρ is
shown in Equation (15). According to the conversion relationship between the cylindrical
coordinate system and spatial Cartesian coordinate system, the coordinate value of P′′i

(
P′i
)

in the cylindrical section in x′y′z′ is shown in Equation (16).ρi
θi
zi

=
1 0 0

0 −1/ri 0
0 0 1

ri
y′i
z′i

 (15)

xi
yi
zi

 = E

 ρi cos θi
ρi sin θi
yi

 (16)

4. Digital Hydraulic Design for Runner Blades

Aerofoils on cylindrical section obtained by a hydraulic design for the runner blade
are finite, usually are five in the middle of the blade, as shown in Figure 7. The aerofoils on
cylindrical sections are saved to an EXCEL file in the form of point coordinates. The EXCEL
file is converted into a “.csv” format ready for import into Imageware [24]. A bitmap of
the blade can be obtained, and then saved it as a “. igs” format, put it into UniGraphics.
Finally, the points of aerofoil on cylindrical section are grouped in proper order and form a
close curve by the “Spline Fitting” [25].



Symmetry 2022, 14, 2250 9 of 15Symmetry 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Aerofoils on Cylindrical Sections. 

Because the actual flow of the turbine in the rim and hub cannot meet the independ-
ence assumption among cylindrical layer. Therefore, the aerofoil of the cylindrical section 
is difficult to be obtained through hydraulic design and calculation. It brings great diffi-
culties for the 3D model of runner blades. With respect to this problem, two possible so-
lutions are provided, and then their performance characteristics are analyzed and com-
pared. 

4.1. Projection 
The curve of the nearest aerofoil 1 on the cylindrical section to the rim is projected 

onto the rim cylinder, which is taken as an approximate section curve of the aerofoil on 
the rim cylinder. Similarly, the curve of the nearest aerofoil 5 on the cylindrical section to 
the hub is projected onto the hub cylinder, which is taken as an approximate section curve 
of the aerofoil on the hub cylinder. A 3D model of the runner blade can be built according 
to the seven section curves by means of “Through Curves” in UniGraphics. The single 
blade model is shown in Figure 8a. The integrated runner digital model is shown in Figure 
8b. In projection method, the aerofoil on cylindrical section at the rim or hub is formed by 
projecting the nearest aerofoil to the rim or hub cylinder. That is to say, the projected aer-
ofoil is zoomed in or out based on the runner axes. As shown in Figure 8a, the positions 
A and B on the inlet of the runner are not in accordance with the trend of its middle part 
obtained by hydraulic calculation. Therefore, it is difficult to conform to the hydrody-
namic rule, which will lead to a decrease in hydraulic efficiency. 

  
(a) (b) 

Figure 8. Runner digital model via projection: (a) single blade model, (b) runner digital model. 

4.2. Trend Extrapolation 
Three kinds of intelligent extension-models [13] such as multinomial extension-

model, exponential extension-model and Gompertz extension-model had been built by 
introducing trend extrapolation, which can be selected and used reasonably according to 

A 

B 

Figure 7. Aerofoils on Cylindrical Sections.

Because the actual flow of the turbine in the rim and hub cannot meet the independence
assumption among cylindrical layer. Therefore, the aerofoil of the cylindrical section is
difficult to be obtained through hydraulic design and calculation. It brings great difficulties
for the 3D model of runner blades. With respect to this problem, two possible solutions are
provided, and then their performance characteristics are analyzed and compared.

4.1. Projection

The curve of the nearest aerofoil 1 on the cylindrical section to the rim is projected
onto the rim cylinder, which is taken as an approximate section curve of the aerofoil on
the rim cylinder. Similarly, the curve of the nearest aerofoil 5 on the cylindrical section
to the hub is projected onto the hub cylinder, which is taken as an approximate section
curve of the aerofoil on the hub cylinder. A 3D model of the runner blade can be built
according to the seven section curves by means of “Through Curves” in UniGraphics. The
single blade model is shown in Figure 8a. The integrated runner digital model is shown
in Figure 8b. In projection method, the aerofoil on cylindrical section at the rim or hub
is formed by projecting the nearest aerofoil to the rim or hub cylinder. That is to say, the
projected aerofoil is zoomed in or out based on the runner axes. As shown in Figure 8a,
the positions A and B on the inlet of the runner are not in accordance with the trend of its
middle part obtained by hydraulic calculation. Therefore, it is difficult to conform to the
hydrodynamic rule, which will lead to a decrease in hydraulic efficiency.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Aerofoils on Cylindrical Sections. 

Because the actual flow of the turbine in the rim and hub cannot meet the independ-
ence assumption among cylindrical layer. Therefore, the aerofoil of the cylindrical section 
is difficult to be obtained through hydraulic design and calculation. It brings great diffi-
culties for the 3D model of runner blades. With respect to this problem, two possible so-
lutions are provided, and then their performance characteristics are analyzed and com-
pared. 

4.1. Projection 
The curve of the nearest aerofoil 1 on the cylindrical section to the rim is projected 

onto the rim cylinder, which is taken as an approximate section curve of the aerofoil on 
the rim cylinder. Similarly, the curve of the nearest aerofoil 5 on the cylindrical section to 
the hub is projected onto the hub cylinder, which is taken as an approximate section curve 
of the aerofoil on the hub cylinder. A 3D model of the runner blade can be built according 
to the seven section curves by means of “Through Curves” in UniGraphics. The single 
blade model is shown in Figure 8a. The integrated runner digital model is shown in Figure 
8b. In projection method, the aerofoil on cylindrical section at the rim or hub is formed by 
projecting the nearest aerofoil to the rim or hub cylinder. That is to say, the projected aer-
ofoil is zoomed in or out based on the runner axes. As shown in Figure 8a, the positions 
A and B on the inlet of the runner are not in accordance with the trend of its middle part 
obtained by hydraulic calculation. Therefore, it is difficult to conform to the hydrody-
namic rule, which will lead to a decrease in hydraulic efficiency. 

  
(a) (b) 

Figure 8. Runner digital model via projection: (a) single blade model, (b) runner digital model. 

4.2. Trend Extrapolation 
Three kinds of intelligent extension-models [13] such as multinomial extension-

model, exponential extension-model and Gompertz extension-model had been built by 
introducing trend extrapolation, which can be selected and used reasonably according to 

A 

B 

Figure 8. Runner digital model via projection: (a) single blade model, (b) runner digital model.

4.2. Trend Extrapolation

Three kinds of intelligent extension-models [13] such as multinomial extension-model,
exponential extension-model and Gompertz extension-model had been built by introducing
trend extrapolation, which can be selected and used reasonably according to the feature
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points of curves. Almost all non-circular curves in plane can be extended intelligently.
The study also found that a curve extended near the starting point is proving well by
comparison with the theoretical curve. The closer the distance from the starting point,
the higher the accuracy is. 33 homonymous points on the five aerofoil curves gained by
hydraulic calculation need to be fitted using a curve. It is obvious that the fitting curve
is a spatial curve. Therefore, the extension technology for planar curves based on trend
extrapolation in reference [13] is not immediately available.

4.2.1. Extending Spatial Curve

33 homonymous points on the five aerofoil curves are marked as Pk
i , where k equals

to 1, 2, . . . , 5; i equals to 1, 2, . . . , 33. As shown in Figure 9, S is a curve fitted by the
homonymous points i on the five aerofoil curves. Its expressions are as follows.

F(xi, yi, zi) = 0
G(xi, yi, zi) = 0

(17)
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The Pk
i in the curve S are projected onto the plane xoy, the projected points of which

are marked as Pk
[xoy]i; similarly, the Pk

i are projected onto the plane xoz, the projected points

of which are marked as Pk
[xoz]i. As shown in Figure 9, the projected points Pk

[xoy]i can be

fitted into a plane curve S[xoy], see in Equation (18); likewise,Pk
[xoz]i can be fitted into S[xoz],

see in Equation (19). {
S[xoy](xi, yi) = 0
zi = z0

(18)

{
S[xoz](xi, zi) = 0
yi = y0

(19)

As shown in Figure 9, the radiuses of the cylinders from Section 1 to Section 5 are
decreasing at an arithmetic progression rate. That is to say, ri+1 − ri are all constant. On the
other hand, the difference of that between the rim and Section 1 is (ri+1 − ri)/2, the same
as between Section 5 and the hub. As for the plane curves S[xoy] and S[xoz], due to the parts
of them to be extended are approximately 10% of the length of the original curves, they
only need to be extended for a short distance. According to the literature [13], the extension
technology for plane curves based on trend extrapolation can be adopted.

As shown in Figure 9, the curves S[xoy] and S[xoz] can be extended respectively in rim
direction using the extension technology for plane curves based on trend extrapolation in
literature [13]. Thus, the plane curves S′[xoy] and S′[xoz] can be obtained, and their expressions
are shown in Equations (20) and (21).{

S′[xoy]

(
xj, ŷj

)
= 0

zj = z0
(20)
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{
S′[xoz]

(
xj, ẑj

)
= 0

yj = y0
(21)

Taking S′[xoy] and S′[xoz] as two generatrixes, two cylindrical surfaces can be formed
by them being stretched along the z-axis and the y-axis respectively. Eventually, they are
crossing on the curve S′. Their expressions are shown in Equation (22).{

S′[xoy]

(
xj, ŷj

)
= 0

S′[xoz]

(
xj, ẑj

)
= 0

(22)

In the same way, the curves S[xoy] and S[xoz] can be extended respectively in hub
direction, and then the plane curves S′′

[xoy] and S′′
[xoz] can be obtained. Taking S′′

[xoy] and

S′′
[xoz] as two generatrix, two cylindrical surfaces can also be formed by them being stretched

along the z-axis and the y-axis respectively. They are crossing on the curve S′′ . The curves
S′ and S′′ are the intelligent extension parts, respectively, of the spatial curve S along the
rum and the hub direction. The intersections of the curve S′ with the rim cylinder are
marked as P6

i ; the intersections of the curve S′′ with the hub cylinder are marked as P0
i .

4.2.2. Digital Modeling for Runner

A hydraulic design program for runner blades has been developed by using MATLAB,
in which the 33 discrete points on each of the five aerofoil curves gained by hydraulic
calculation have been fitted into a closed curve by using a B-Spline [22]. By means of
the above method of extending spatial curve using trend extrapolation, the homonymous
points P6

i and P0
i on the aerofoils on the rim and hub separately can be obtained. Similarly,

those points can be fitted into hub aerofoil and rim one separately by using B-Spline.
The top view of the extending curves of aerofoils on the cylindrical section is shown in
Figure 10a; the spatial diagram of the extending curves of aerofoils on the cylindrical section
is shown in Figure 10b. The same as projection method, a 3D model of the runner blade
can also be built according to the seven section curves by means of “Through Curves” in
UniGraphics. The single-blade model is shown in Figure 11a. The integrated runner digital
model is shown in Figure 11b. Unlike Figure 8, the aerofoils on the inlet of the runner are
accord with the trend of its middle part. Therefore, there is a high hydraulic efficiency for
the runner.

1 
 

 
(a) (b) 

 
Figure 10. Extending curves of aerofoils on cylindrical section: (a) top view, (b) spatial diagram.
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shown in Figure 12b. Compared with the runner model shown in Figure 11, the blade 
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Figure 11. Runner digital model via trend extrapolation: (a) Single Blade Model, (b) Runner Digital Mode.

By means of the manual modeling method “Through Curves” in UNIGRAPHICS,
two aerofoil curves are selected each time to generate part of the aerofoil surface, which
is partial and fractional. Thus, the surface is discontinuous in junction. As shown in
Figures 8 and 11, the surface obtained is not smooth, which will necessarily lead to a
decrease in hydraulic efficiency. In order to make the blade surface became smooth and
continuous, an optimization program was developed and integrated into UNIGRAPHICS
using Visual C++ in this article. The seven aerofoil curves can be imported into the program
running in the NX Open Grip environment at one time, and then those curves are picked
up in turn using sphere.grx to fit into a B-surface at once [22]. The single blade model
optimized is shown in Figure 12a. The integrated runner digital model optimized is shown
in Figure 12b. Compared with the runner model shown in Figure 11, the blade surface of
that shown in Figure 12 is continuous and smooth, and has better flow-field stability and
higher hydraulic efficiency.
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5. Case

The basic parameters of runner GOE430 in a hydropower station are shown in Table 1.
Rated discharge during rainy seasons is 3.20 m3s−1. While the discharge decreased to
1.00 m3s−1 during dry seasons, the hydropower unit is unable to work.

Table 1. Operating condition parameters.

Parameters H n Q D1 db ηs η

Units m r·min−1 m3s−1 mm / / /
Value 13.50 750 1.00 800 0.35 90% 80%

A new runner used in dry seasons has been designed according to the plan of decreas-
ing capacity to increase efficiency, in which part of the intermediate and final results are as
follows: n110 = 172.1 r/min; Q110 = 0.4483 m3s−1; ns = 322.6 m·kW; incremental velocity
circulation Γ0 = 1.46 m2s−1; (l/t)pj = 1.5; Z = 6. Based on GOE430, a new runner that has
been designed and manufactured is shown in Figure 13, which has been put into operation.
By running in experiment test and practical work, η = 83.4%, it can fulfill power properly.
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6. Conclusions

The reason for the unit being unable to generate is that the velocity circulation at
the outlet of the original runner is too large under low-discharge conditions during dry
seasons, and then its hydraulic efficiency would reduce sharply. To solve the problem, a
low-specific-speed propeller runner with fixed blades has been redesigned and equipped in
dry seasons according to the scheme of decreasing capacity to increase efficiency. The new
runner has the same installing dimensions, the same runner type, and some parameters
with the original one. However, a positive circulation at the outlet of the blades bigger than
in a conventional runner is allowed. Moreover, the new runner has bigger cascade solidity,
a greater number of blades, and then has better cavitation characteristics. Computer-aided
design technologies are employed in hydraulic design. Such methods as “thickening of
epiphyseal line of aerofoil” and “unfolding aerofoil being converted to cylindrical section”
have been researched and worked out. Hence it becomes possible to reduce R & D cycle,
and improve design efficiency greatly. The runner digital model provides a foundation for
CFD analysis and NC manufacturing. A method to establish the aerofoils on the cylindrical
sections at the rim and hub has been provided. Employing trend extrapolation in this
article, a spatial curve can be extended successfully. Thus, the aerofoils on the cylindrical
sections can also be extended along the rum and hub direction according to their tendency.
Comparing to projection method, this method can gain a runner blade with its surface
being more in line with the trend of the middle part, and being more accord with fluid
dynamics. Thus, the hydraulic efficiency is higher. The blade curves have been established
through secondary development of UNIGRAPHICS with Visual C++ according to the
aerofoils on the cylindrical sections, and picked up in turn to fit into a B-surface at once.
Comparing to “Through Curves”, the blade surface obtained is continuous and smooth,
and has better flow-field stability and higher hydraulic efficiency. A new runner in the
case has been successfully applied in a hydropower station. The result shows that the
technical route is reasonable and scheme is rational and feasible. Using the method, the
turbine efficiency increased from less than 28.6% to 83.4% while the discharge decreased
from 3.20 m3s−1 to 1.00 m3s−1. The redevelopment came to a complete success.
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Nomenclature

α inlet angle of blade (rad)
β outlet angle of blade (rad)
Γ angle (rad)
v flow velocity (ms−1)
u circumferential velocity (ms−1)
H head (m)
Γ velocity circulation (m2s−1)
ηs hydraulic efficiency
η turbine efficiency
ω angular velocity (rads−1)
r radius (m)
rM radius of M-M cylindrical section
n speed of revolution (r min−1)
n110 optimum unit speed (r·min−1)
Q discharge (m3s−1)
Q110 optimum unit discharge (m3s−1)
ns specific speed (m·kW)
(l/t)pj average cascade solidity
Z number of blades
D1 nominal Diameter (mm)
db hub Ratio
E identity matrix
xj x-coordinate of the expansion-point j
ŷj y-coordinate of the expansion-point j extended
ẑj z-coordinate of the expansion-point j extended
Subscripts
1 inlet
2 outlet
u circumferential direction
m meridional direction
z direction of shaft
i serial number of points.
Superscripts
′ parameters of the original runner when working under the condition “A”
” parameters of the original runner when working under the condition “B”
k serial number of aerofoils.
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