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Abstract: In this article, a new competitive neural network (CNN) with reaction-diffusion terms and
mixed delays is proposed. Because this network system contains reaction-diffusion terms, it belongs
to a partial differential system, which is different from the existing classic CNNs. First, taking into
account the spatial diffusion effect, we introduce spatial diffusion for CNNs. Furthermore, since the
time delay has an essential influence on the properties of the system, we introduce mixed delays
including time-varying discrete delays and distributed delays for CNNs. By constructing suitable
Lyapunov–Krasovskii functionals and virtue of the theories of delayed partial differential equations,
we study the global asymptotic stability for the considered system. The effectiveness and correctness
of the proposed CNN model with reaction-diffusion terms and mixed delays are verified by an
example. Finally, some discussion and conclusions for recent developments of CNNs are given.

Keywords: competitive neural networks; global asymptotic stability; reaction-diffusion; delays

1. Introduction

In 1996, Meyer-Bäse et al. [1] firstly introduced competitive neural networks (CNNs)
with different time scales. Using a quadratic-type Lyapunov function for the flow of a
CNN with different time scales as a global stability method, the authors studied the local
stability behavior around individual equilibrium points. In the earlier networks, the pools
of mutually inhibitory neurons with fixed synaptic connections were considered. In the
CNNs, there are two types of state variables: the short-term memory (STM) state variables
which describe the fast dynamics of the system, and the long-term memory (LTM) state
variables which describe the slow dynamics of the system. Because CNNs can accurately
reflect the state transformation of neurons, a large number of achievements have been
made in the study of different types of CNNs in the recent decades. Nie et al. [2] studied
the exact existence and dynamical behaviors of multiple equilibrium points for delayed
competitive neural networks with a class of nondecreasing piecewise linear activation
functions. Lu et al. [3,4] considered global exponential stability of delayed competitive
neural networks with different time scales. Competitive neural networks with time-varying
and distributed delays were studied in [5]. For more results about competitive neural
networks, see, e.g., [6–9] and related references.

On the other hand, diffusion phenomena exist widely in a neural network system,
especially, when neurons are shifting in asymmetric neural networks or when metabolites
and proteins move from one tier to other levels, see [10–12]. Hence, the study of neural
network needs to consider the changes of neurons in time and space at the same time. It is
of great theoretical and practical value to study the neural network system with a diffusion
term. Cao et al. [13] studied global exponential synchronization of delayed memristive
neural networks with reaction-diffusion terms. In [14], the authors studied inverse optimal
synchronization control of competitive neural networks with constant time delays by means
of the drive–response idea and inverse optimality techniques. Xu et al. [15] investigated
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global asymptotic stability of fractional-order competitive neural networks with multiple
time-varying-delay links. Zheng et al. [16] considered the fixed-time synchronization of
discontinuous competitive neural networks. Dynamical behavior of reaction-diffusion
neural networks and their synchronization was considered in [17]. For state estimation for
delayed genetic regulatory networks with reaction-diffusion terms, see [18]; for stability and
asymptotic stability problems for neural networks with reaction-diffusion terms, see [19,20];
and for oscillatory behaviors for neural networks with reaction-diffusion terms, see [21,22].

In this paper, we mainly deal with the global asymptotic stability for CNNs when
there exist reaction-diffusion terms and mixed delays in CNNs. For classic CNNs (without
reaction-diffusion terms), there exist many results, see, e.g., [3–5] and relevant references.
For research into CNNs, the most important results can be found in [1]. The main research
approaches for studying CNNs are the Lyapunov function method [1,4], fixed point the-
orem, and matrix theory [2]. The main limitation for the above methods is that they are
not suitable for dealing with stability problems for CNNs with reaction-diffusion terms
and mixed delays. For overcoming the above difficulties, we construct a new Lyapunov
function for the considered model on the base of theories of delayed partial differential
equations and Lyapunov stability. Up to now, to the best of our knowledge, there are no
articles studying the stability problems of CNNs with reaction-diffusion terms and mixed
delays. Inspired by the above reasons, we study the stability problems of the equilibrium
point for a class of reaction-diffusion CNNs with time-varying delays and distributed
delays. The main innovation points are summarized in the following three aspects:

(1) A new CNN model is introduced in this paper which extends some previous results;
to our best knowledge, there exist few papers for studying this new CNN model, such
as [3–6].

(2) The model in the present paper contains various types of time delays: time-varying
delays, distributed delays, bounded delays, and unbounded delays. Time delay is
one of the inherent parameters of the system, which has an important impact on
the properties of the control system. The study of time delay has very important
application value.

(3) A simple method for studying CNNs with reaction-diffusion terms and various types
of delays is given. There is reason to believe that the method used in this paper can
easily be used to study other types of dynamic systems.

The rest of the article is organized as follows: In Section 2, a system description and
some preliminaries are given. Section 3 gives main results for global asymptotic stability of
CNNs. In Section 4, a numerical example is given to show the feasibility of the obtained
results. Finally, some conclusions and discussions are drawn in Section 5.

2. Model Description and Preliminaries

Consider the following CNNs with mixed delays:
STM : ẋk(t) = −akxk(t) + ∑m

d=1 bkd fd(xd(t)) + ∑m
d=1 ckd fd(xd(t− τd(t)))

+∑m
d=1 c̃kd

∫ t
t−γ(t) fd(xd(s))ds + Bk ∑i

d=1 ykd(t)ωd + Ik(t)
LTM : ẏkd(t) = −αkykd(t) + ωdβk fk(xk(t)),

(1)

where k = 1, 2, · · · , m, xk(t) denotes the state of the neuron current; ykd(t) denotes the
synaptic transfer efficiency; ωd is the external stimulus; bkd, ckd, c̃kd and Bk are connec-
tion weights; Ik(t) denotes the external input; fd(·) is the activation function; τd(t) ≥ 0
and γ(t) ≥ 0 are time-varying delays, ak, αk and βk are nonnegative constants. Let
sk(t) = ∑i

d=1 ykd(t)ωd = ωTyk(t), where ω = (ω1, · · · , ωi)
T , yk(t) = (yk1(t), · · · , yki(t))T .

Assume that ω2 = ω2
1 + · · ·+ ω2

i = 1. Then, system (1) can be rewritten by
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STM : ẋk(t) = −akxk(t) + ∑m

d=1 bkd fd(xd(t)) + ∑m
d=1 ckd fd(xd(t− τd(t)))

+∑m
d=1 c̃kd

∫ t
t−γ(t) fd(xd(s))ds + Bksk(t) + Ik(t)

LTM : ṡk(t) = −αksk(t) + βk fk(xk(t)).
(2)

Based on the motivation of introducing spatial diffusion for CNNs, we consider the joint
influences of spatial diffusion in system (2). Then,

STM : ∂xk(δ,t)
∂t = ∑P

p=1
∂

∂δp

(
dkp

∂xk(δ,t)
∂δp

)
− akxk(δ, t) + ∑m

d=1 bkd fd(xd(δ, t))

+∑m
d=1 ckd fd(xd(δ, t− τd(t))) + ∑m

d=1 c̃kd
∫ t

t−γ(t) fd(xd(δ, s))ds + Bksk(δ, t) + Ik(t)

LTM : ∂sk(δ,t)
∂t = ∑P

p=1
∂

∂δp

(
d∗kp

∂sk(δ,t)
∂δp

)
− αksk(δ, t) + βk fk(xk(δ, t)),

(3)

where dkp, d∗kp ≥ 0 are constants of diffusion effects, δ = (δ1, δ2, · · · , δP)
T ∈ Ω ⊂ RP, Ω is a

bounded compact set with smooth boundary ∂Ω and mesΩ > 0 in space RP. Means of other
parameters in system (3) are similar to the corresponding ones in system (1). System (3) has
the following initial values{

∂xk
∂n = ( ∂xk

∂δ1
, ∂xk

∂δ2
, · · · ∂xk

∂δP
)T , k = 1, 2, · · · , m,

∂sk
∂n = ( ∂sk

∂δ1
, ∂sk

∂δ2
, · · · ∂sk

∂δP
)T , k = 1, 2, · · · , m,

(4)

and {
xk(δ, s) = φxk(δ, s), s ∈ [−τ, 0], k = 1, 2, · · · , m,
sk(δ, s) = φsk(δ, s), s ∈ [−τ, 0], k = 1, 2, · · · , m,

(5)

where τ = maxt∈R{τd(t), γ(t)} for d = 1, 2, · · · , m, φxk(δ, s) and φsk(δ, s) are bounded and
continuous on Ω× [−τ, 0].

Throughout this paper, we need the following assumptions:
(H1) For each i = 1, 2, · · · , m, fi : R→ R is bounded and satisfies the Lipschitz condition,
i.e., there exists a constant Fi > 0 such that

| fi(x)− fi(y)| ≤ Fi|x− y| f or all x, y ∈ R.

For convenience, some notations are given. For each u = (u1, u2, · · · , um)T ∈ Rm,
define 1-norm of u by ||u||1 = ∑m

i=1 |ui|; for each x = (x1(δ, t), x2(δ, t), · · · , xm(δ, t))T ∈ Rm,
denote

||xi(δ, t)||2 =

( ∫
Ω
|xi(δ, t)|2dδ

) 1
2

, i = 1, 2, · · · , m, t ∈ R.

Definition 1. Assume that Y∗ = (x∗, s∗)T is an equilibrium point of system (3), where x∗ =
(x∗1 , x∗2 , · · · , x∗m)T and s∗ = (s∗1 , s∗2 , · · · , s∗m)T . We say that the equilibrium point Y∗ is globally
asymptotically stable, if there exists a constant M ≥ 1 such that

m

∑
i=1
||xi − x∗i ||2 +

m

∑
i=1
||si − s∗i ||2 ≤ M

(
||φx − x∗||2 + ||φs − s∗||2

)
for all t ≥ 0,

where

||φx − x∗||2 = sup
s∈[−τ,0]

m

∑
i=1
||φxi(δ, s)− x∗i ||2, ||φs − s∗||2 = sup

s∈[−τ,0]

m

∑
i=1
||φsi(δ, s)− s∗i ||2.
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3. Main Results

Theorem 1. Suppose that assumption (H1) holds. Then, the equilibrium point Y∗ = (x∗, s∗)T of
system (3) is globally asymptotically stable under the initial conditions (4) and (5), provided that

−2ak + |Bk|+ |βk|Fk + 2
m

∑
d=1

(
|bkd|Fd + |ckd|Fd + |c̃kd|Fdτ

)
< 0 (6)

and
− 2αk + |βk|Fk < 0, (7)

where k = 1, 2, · · · , m.

Proof. It is easy to see that bounded activation functions guarantee the existence of an
equilibrium point for system (3). The uniqueness of the equilibrium point for system (3)
can be obtained by the global asymptotic stability of the equilibrium point.

Assume that (x1(δ, t), x2(δ, t), · · · , xm(δ, t), s1(δ, t), s2(δ, t), · · · , sm(δ, t))T is any solu-
tion of the system (3). We rewrite system (3) as follows:

∂(xk − x∗k )
∂t

=
P

∑
p=1

∂

∂δp

(
dkp

∂(xk − x∗k )
∂δp

)
− ak(xk − x∗k )

+
m

∑
d=1

bkd[ fd(xd)− fd(x∗d)] +
m

∑
d=1

ckd[ fd(xd(δ, t− τd(t)))− fd(x∗d)]

+
m

∑
d=1

c̃kd

∫ t

t−γ(t)
[ fd(xd(δ, s))− fd(x∗d)]ds + Bk(sk − s∗k )

(8)

and
∂(sk − s∗k )

∂t
=

P

∑
p=1

∂

∂δp

(
d∗kp

(sk − s∗k )
∂δp

)
− αk(sk − s∗k ) + βk[ fk(xk(δ, t))− fk(x∗k )].

(9)

Multiplying both sides of (8) by xk − x∗k and integrating them on Ω, we have

1
2

d
dt

∫
Ω
(xk − x∗k )

2dδ =
P

∑
p=1

∫
Ω
(xk − x∗k )

∂

∂δp

(
dkp

∂(xk − x∗k )
∂δp

)
dδ−

∫
Ω

ak(xk − x∗k )
2dδ

+
m

∑
d=1

∫
Ω

bkd[ fd(xd)− fd(x∗d)](xk − x∗k )dδ

+
m

∑
d=1

∫
Ω

ckd[ fd(xd(δ, t− τd(t)))− fd(x∗d)](xk − x∗k )dδ

+
m

∑
d=1

∫
Ω
(xk − x∗k )

(
c̃kd

∫ t

t−γ(t)
[ fd(xd(δ, s))− fd(x∗d)]ds

)
dδ

+
∫

Ω
Bk(sk − s∗k )(xk − x∗k )dδ.

(10)

From the boundary conditions (4) and (5), we have

P

∑
p=1

∫
Ω
(xk − x∗k )

∂

∂δp

(
dkp

∂(xk − x∗k )
∂δp

)
dδ = −

P

∑
p=1

∫
Ω

dkp

(
∂(xk − x∗k )

∂δp

)2

dδ (11)

and
P

∑
p=1

∫
Ω
(sk − s∗k )

∂

∂δp

(
d∗kp

∂(sk − s∗k )
∂δp

)
dδ = −

P

∑
p=1

∫
Ω

d∗kp

(
∂(sk − s∗k )

∂δp

)2

dδ. (12)
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From (10), (11), assumption (H1), and the Hölder integral inequality, we have

d||xk − x∗k ||
2
2

dt
≤ −2ak||xk − x∗k ||

2
2 +

m

∑
d=1
|bkd|Fd||xd − x∗d ||

2
2 +

m

∑
d=1
|bkd|Fd||xk − x∗k ||

2
2

+
m

∑
d=1
|ckd|Fd||xd − x∗d ||

2
2 +

m

∑
d=1
|ckd|Fd||xk − x∗k ||

2
2

+
m

∑
d=1
|c̃kd|Fdτ||xd − x∗d ||

2
2 +

m

∑
d=1
|c̃kd|Fdτ||xk − x∗k ||

2
2

+ |Bk|||xk − x∗k ||
2
2 + |Bk|||sk − s∗k ||

2
2

=

(
− 2ak + |Bk|+

m

∑
d=1
|bkd|Fd +

m

∑
d=1
|ckd|Fd +

m

∑
d=1
|c̃kd|Fdτ

)
||xk − x∗k ||

2
2

+
m

∑
d=1

(
|bkd|Fd + |ckd|Fd + |c̃kd|Fdτ

)
||xd − x∗d ||

2
2 + |Bk|||sk − s∗k ||

2
2.

(13)

Multiplying both sides of (9) by sk − s∗k and integrating them on Ω, in view of (12) and
assumption (H1), we have

d||sk − s∗k ||
2
2

dt
≤ −2αk||sk − s∗k ||

2
2 + |βk|Fk|sk − s∗k ||

2
2 + |βk|Fk|xk − x∗k ||

2
2

=

(
− 2αk + |βk|Fk

)
||sk − s∗k ||

2
2 + |βk|Fk|xk − x∗k ||

2
2.

(14)

Construct the following Lyapunov functional:

V(t) =
m

∑
k=1

(
||xk − x∗k ||

2
2 + ||sk − s∗k ||

2
2

)
. (15)

Calculating the upper right Dini derivative D+V(t) of V(t) along the solutions of
system (3), it follows from (6), (7), (13), and (14) that

D+V(t) ≤
m

∑
k=1

{
− 2ak + |Bk|+

m

∑
d=1
|bkd|Fd +

m

∑
d=1
|ckd|Fd +

m

∑
d=1
|c̃kd|Fdτ

+
m

∑
d=1

(
|bkd|Fd + |ckd|Fd + |c̃kd|Fdτ

)
+ |βk|Fk

}
||xk − x∗k ||

2
2

+
m

∑
k=1

(
− 2αk + |βk|Fk + |Bk|

)
||sk − s∗k ||

2
2

≤ 0.

Hence, V(t) ≤ V(0) for t ≥ 0. Furthermore, by (3.10), we have

V(0) =
m

∑
k=1

(
||xk(δ, 0)− x∗k ||

2
2 + ||sk(δ, 0)− s∗k ||

2
2

)
≤ sup

s∈[−τ,0]

m

∑
k=1

(
||xk(δ, s)− x∗k ||

2
2 + ||sk(δ, s)− s∗k ||

2
2

)
.

Thus,

m

∑
k=1

(
||xk − x∗k ||2 + ||sk − s∗k ||2

)
≤ sup

s∈[−τ,0]

m

∑
k=1

(
||xk(δ, s)− x∗k ||2 + ||sk(δ, s)− s∗k ||2

)
= ||φx − x∗||2 + ||φs − s∗||2.
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This implies that the equilibrium point of system (3) is globally asymptotically stable.
The proof is completed.

In system (3), the distributed delay is bounded. If the distributed delay is unbounded,
we consider the following system:

STM : ∂xk(δ,t)
∂t = ∑P

p=1
∂

∂δp

(
dkp

∂xk(δ,t)
∂δp

)
− akxk(δ, t) + ∑m

d=1 bkd fd(xd(δ, t))

+∑m
d=1 ckd fd(xd(δ, t− τd(t))) + ∑m

d=1 c̃kd
∫ t
−∞ Kd(t− s) fd(xd(δ, s))ds

+Bksk(δ, t) + Ik(t)

LTM : ∂sk(δ,t)
∂t = ∑P

p=1
∂

∂δp

(
d∗kp

∂sk(δ,t)
∂δp

)
− αksk(δ, t) + βk fk(xk(δ, t)),

(16)

where Kd(·) is the delay kernel function which satisfies the following assumption:
(H2) (i) Kd(·) : [0, ∞)→ [0, ∞) (d = 1, 2, · · · , m) is continuous;
(ii)
∫ ∞

0 Kd(s)ds = 1,
∫ ∞

0 sKd(s)ds < ∞;
(iii) There exists a positive number µ such that

∫ ∞
0 seµsKd(s)ds < ∞. Let system (3.1) have

the following initial conditions:{
∂xk
∂n = ( ∂xk

∂δ1
, ∂xk

∂δ2
, · · · ∂xk

∂δP
)T , k = 1, 2, · · · , m,

∂sk
∂n = ( ∂sk

∂δ1
, ∂sk

∂δ2
, · · · ∂sk

∂δP
)T , k = 1, 2, · · · , m,

(17)

and {
xk(δ, s) = φxk(δ, s), s ∈ (−∞, 0], k = 1, 2, · · · , m,
sk(δ, s) = φsk(δ, s), s ∈ (−∞, 0], k = 1, 2, · · · , m.

(18)

Theorem 2. Suppose that assumptions (H1) and (H2) hold. Then, the equilibrium point Y∗ =
(x∗, s∗)T of system (16) is globally asymptotically stable under the initial conditions (17) and (18),
provided that

−2ak + |Bk|+ 2
m

∑
d=1

(
|bkd|Fd + |ckd|Fd

)
+ 2

m

∑
d=1
|c̃kd|2ξkd F2ηd

d + |βk|Fk < 0 (19)

and
− 2αk + |βk|Fk < 0, (20)

where k = 1, 2, · · · , m, ξkd + ηd = 1 with ξkd, ηd ≥ 0.

Proof. Assume that (x1(δ, t), x2(δ, t), · · · , xm(δ, t), s1(δ, t), s2(δ, t), · · · , sm(δ, t))T is any so-
lution of the system (16). We rewrite system (16) as follows:

∂(xk − x∗k )
∂t

=
P

∑
p=1

∂

∂δp

(
dkp

∂(xk − x∗k )
∂δp

)
− ak(xk − x∗k )

+
m

∑
d=1

bkd[ fd(xd)− fd(x∗d)] +
m

∑
d=1

ckd[ fd(xd(δ, t− τd(t)))− fd(x∗d)]

+
m

∑
d=1

c̃kd

∫ t

−∞
Kd(t− s)[ fd(xd(δ, s))− fd(x∗d)]ds + Bk(sk − s∗k )

(21)

and
∂(sk − s∗k )

∂t
=

P

∑
p=1

∂

∂δp

(
d∗kp

(sk − s∗k )
∂δp

)
− αk(sk − s∗k ) + βk[ fk(xk(δ, t))− fk(x∗k )].

(22)
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Similar to the proof of Theorem 1, by (21) and (22), we have

d||xk − x∗k ||
2
2

dt
≤ −2ak||xk − x∗k ||

2
2 +

m

∑
d=1
|bkd|Fd||xd − x∗d ||

2
2 +

m

∑
d=1
|bkd|Fd||xk − x∗k ||

2
2

+
m

∑
d=1
|ckd|Fd||xd − x∗d ||

2
2 +

m

∑
d=1
|ckd|Fd||xk − x∗k ||

2
2

+ 2
m

∑
d=1
|c̃kd|

∫ t

−∞
Kd(t− s)Fd||xd − x∗d ||2|||xk − x∗k ||2ds

+ |Bk|||xk − x∗k ||
2
2 + |Bk|||sk − s∗k ||

2
2

=

(
− 2ak + |Bk|+

m

∑
d=1
|bkd|Fd +

m

∑
d=1
|ckd|Fd

)
||xk − x∗k ||

2
2

+
m

∑
d=1

(
|bkd|Fd + |ckd|Fd

)
||xd − x∗d ||

2
2 + |Bk|||sk − s∗k ||

2
2

+ 2
m

∑
d=1
|c̃kd|

∫ t

−∞
Kd(t− s)Fd||xd − x∗d ||2|||xk − x∗k ||2ds

(23)

and
d||sk − s∗k ||

2
2

dt
≤ −2αk||sk − s∗k ||

2
2 + |βk|Fk|sk − s∗k ||

2
2 + |βk|Fk|xk − x∗k ||

2
2

=

(
− 2αk + |βk|Fk

)
||sk − s∗k ||

2
2 + |βk|Fk|xk − x∗k ||

2
2.

(24)

Construct the following Lyapunov functional:

V(t) =
m

∑
k=1

[
||xk − x∗k ||

2
2 + ||sk − s∗k ||

2
2 +

m

∑
d=1
|c̃kd|2ξkd F2ηd

d

∫ ∞

0
Kd(s)

( ∫ t

t−s
||xd(δ, τ)− x∗d ||

2
2dτ

)
ds
]

. (25)

Calculating the upper right Dini derivative D+V(t) of V(t) along the solutions of
system (16), it follows from (23), (24), (19), (20), and assumption (H2) that

D+V(t) ≤
m

∑
k=1

{
− 2ak + |Bk|+

m

∑
d=1
|bkd|Fd +

m

∑
d=1
|ckd|Fd

+
m

∑
d=1

(
|bkd|Fd + |ckd|Fd

)
+ |βk|Fk

}
||xk − x∗k ||

2
2

+
m

∑
k=1

(
− 2αk + |βk|Fk + |Bk|

)
||sk − s∗k ||

2
2

+
m

∑
k=1

{
2

m

∑
d=1
|c̃kd|

∫ ∞

0
Kd(s)Fd||xd − x∗d ||2|||xk − x∗k ||2ds

}
+

m

∑
k=1

{ m

∑
d=1
|c̃kd|2ξkd F2ηd

d

∫ ∞

0
Kd(s)

(
||xd(δ, t)− x∗d ||

2
2 − ||xd(δ, t− s)− x∗d ||

2
2

)
ds
}

≤
m

∑
k=1

{
− 2ak + |Bk|+

m

∑
d=1
|bkd|Fd +

m

∑
d=1
|ckd|Fd

+
m

∑
d=1

(
|bkd|Fd + |ckd|Fd

)
+ |βk|Fk + 2

m

∑
d=1
|c̃kd|2ξkd F2ηd

d

}
||xk − x∗k ||

2
2

+
m

∑
k=1

(
− 2αk + |βk|Fk + |Bk|

)
||sk − s∗k ||

2
2

≤ 0.
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Hence, V(t) ≤ V(0) for t ≥ 0. From (25), we have

V(t) ≥
m

∑
k=1

[
||xk − x∗k ||

2
2 + ||sk − s∗k ||

2
2

]
and

V(0) =
m

∑
k=1

[
||xk(δ, 0)− x∗k ||

2
2 + ||sk(δ, 0)− s∗k ||

2
2 +

m

∑
d=1
|c̃kd|2ξkd F2ηd

d

∫ ∞

0
Kd(s)

( ∫ 0

−s
||xd(δ, τ)− x∗d ||

2
2dτ

)
ds
]

≤
[

1 +
m

∑
d=1
|c̃kd|2ξkd F2ηd

d

∫ ∞

0
sKd(s)ds

]
sup

s∈(−∞,0]

m

∑
k=1
||xk(δ, s)− x∗k ||2

+ sup
s∈(−∞,0]

m

∑
k=1
||sk(δ, s)− s∗k ||2.

Let

M = max
k=1,2,··· ,m

(
1 +

m

∑
d=1
|c̃kd|2ξkd F2ηd

d

∫ ∞

0
sKd(s)ds

)
.

Then, M ≥ 1 and

m

∑
k=1

(
||xk − x∗k ||2 + ||sk − s∗k ||2

)
≤
√

M sup
s∈[−τ,0]

m

∑
k=1

(
||xk(δ, s)− x∗k ||2 + ||sk(δ, s)− s∗k ||2

)
=
√

M||φx − x∗||2 + ||φs − s∗||2.

This implies that the equilibrium point of system (16) is globally asymptotically stable.
The proof is completed.

Corollary 1. Suppose that assumptions (H1) and (H2) hold. Then, the equilibrium point Y∗ =
(x∗, s∗)T of system (16) is globally asymptotically stable under the initial conditions (17) and (18),
provided that

−2ak + |Bk|+ 2
m

∑
d=1

(
|bkd|Fd + |ckd|Fd

)
+ 2

m

∑
d=1
|c̃kd|2F2

d + |βk|Fk < 0 (26)

and
− 2αk + |βk|Fk < 0, (27)

where k = 1, 2, · · · , m.

Remark 1. In general, constructing a Lyapunov functional is a main research method for studying
stability problems of neural networks, see [23–27]. However, constructing a proper Lyapunov
functional is very difficult for obtaining the stability criteria of a complicated system. In this paper,
a simple Lyapunov functional is constructed. Using this Lyapunov functional, we can easily study
the dynamic behavior of a competitive network system.

Remark 2. Since system (1) contains reaction-diffusion terms, we develop new ways (see
Equations (11) and (12)) to deal with these terms so that we can obtain the stability conclusions of
the solution smoothly.

Remark 3. In this paper, we only obtain the global asymptotic stability for competitive neural
networks with reaction-diffusion terms and mixed delays. However, we cannot obtain the global
exponential stability; the main reason is that system (3) contains reaction-diffusion terms and mixed
delays and this makes it difficult to construct a suitable Lyapunov function. The global exponential
stability of system (3) is a problem that we need to solve in the future.
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4. An Example

Example 1. Consider the following system:

STM : ∂xk(δ,t)
∂t = ∂

∂δp

(
dkp

∂xk(δ,t)
∂δp

)
− akxk(δ, t) + ∑m

d=1 bkd fd(xd(δ, t))

+∑m
d=1 ckd fd(xd(δ, t− τd(t))) + ∑m

d=1 c̃kd
∫ t
−∞ Kd(t− s) fd(xd(δ, s))ds

+Bksk(δ, t)

LTM : ∂sk(δ,t)
∂t = ∂

∂δp

(
d∗kp

∂sk(δ,t)
∂δp

)
− αksk(δ, t) + βk fk(xk(δ, t)),

(28)

where p = 1, k = d = 1, 2, Kd(t) = te−t, dkp = d∗kp = 1, τd(t) = | sin t|, fd(ξ) =

|ξ + 1| − |ξ − 1|. Obviously, | fd(ξ1)− fd(ξ2)| ≤ 2|ξ1 − ξ2| and Fd = 2. Let

a1 = 10.5, a2 = 12, b11 =
5
4

, b12 = −2
3

, b21 =
2
3

, b22 =
7

10
,

c11 = −3
4

, c12 = −1
2

, c21 =
5
6

, c22 =
2
5

, B1 = B2 =
3
5

,

c̃11 =
3
4

, c̃12 =
1
5

, c̃21 =
1
3

, c̃22 =
4
3

, α1 = α2 = 3.1, β1 = β2 = 1.

It is easy to check that

−2a1 + |B1|+ 2
2

∑
d=1

(
|b1d|Fd + |c1d|Fd + |c̃1d|Fdτ

)
+ |β1|F1 ≈ −0.81 < 0,

−2a2 + |B2|+ 2
2

∑
d=1

(
|b2d|Fd + |c2d|Fd + |c1d|Fd + |c̃2d|Fdτ

)
+ |β2|F2 ≈ −3.63 < 0,

−2α1 + |β1|F1 = −4.2 < 0,

−2α2 + |β1|F2 = −4.2 < 0.

All the hypotheses of Theorem 1 are satisfied. Since f1(0) = f2(0), then (x∗, s∗)T =
(0, 0, 0, 0)T is a constant solution of system (28) which is globally asymptotically stable.

5. Conclusions and Discussion

This paper is devoted to studying the global asymptotic stability for competitive
neural networks with reaction-diffusion terms and mixed delays by using the mathematical
analysis technique and Lyapunov functional method. For achieving the global asymptotic
stability of the competitive neural networks, we use some inequality analysis techniques.
We construct a suitable Lyapunov functional for the considered system and obtain some
new criteria for guaranteeing the global asymptotic stability of competitive neural networks
with reaction-diffusion terms and mixed delays. It should be pointed out that we first study
the global asymptotic stability of competitive neural networks with reaction-diffusion terms
and mixed delays. Finally, a numerical simulation has been shown to verify the correctness
of our theoretical results. However, we only obtain the global asymptotic stability in this
paper, we cannot obtain the global exponential stability which will be our research focus in
the future.

Since the CNNs in the present paper contain reaction-diffusion terms, they belong
to a partial differential equation and the traditional methods of dealing with an ordinary
differential system are no longer applicable. By using theories of delayed partial differential
equation and Lyapunov stability, we construct a suitable Lyapunov function and obtain
global asymptotic stability. We believe that the method in the present paper can be used for
other types of systems, such as impulsive partial differential equations, stochastic partial
differential equations, and so on.
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