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Abstract: The space-time geometry is rooted in the Minkowski 4-manifold. Minkowski and Euclidean
topological 4-manifolds behave differently in view of compactness and local homogeneity. As
a result, Zeno sequences are selectively admitted in such topological spaces. In this paper, the
generalizations of topologically fibered n-spaces are proposed to formulate topological decomposition
and the formation of projective fibered n-subspaces. The concept of quasi-compact fibering is
introduced to analyze the formation of Zeno sequences in topological n-spaces (i.e., n-manifolds),
where a quasi-compact fiber relaxes the Minkowski-type (algebraically) strict ordering relation under
topological projections. The topological analyses of fibered Minkowski as well as Euclidean 4-spaces
are presented under quasi-compact fibering and topological projections. The topological n-spaces
endowed with quasi-compact fibers facilitated the detection of local as well as global compactness
and the non-analytic behavior of a continuous function. It is illustrated that the 5-manifold with
boundary embedding Minkowski 4-space transformed a quasi-compact fiber into a compact fiber
maintaining generality.
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1. Introduction

In general, Minkowski 4-space (XM ≡ M4, τE) is often considered a (pseudo) Eu-
clidean topological 4-manifold, not necessarily with any boundary (i.e., the space XM ≡ M4

is equipped with local Euclidean topology). In the topological 4-manifold (XM, τE), the Eu-

clidean distance metric is computed as ∀xa, xb ∈ XM, d(xa, xb) =

(
∑

i∈[0,3]
(xa(i) − xb(i))

2

)1/2

,

where the coordinates of any point are represented as xa =
〈

xa(0), xa(1), xa(2), xa(3)

〉
. As

a result, one can formulate a metric topology on (XM, τE) based on the neighborhoods
of any point xa ∈ XM, which is given as Nx(a) = {xb : d(xa, xb) < ε}. However, in 1967,
Zeeman pointed out that the Euclidean topological 4-manifold (XM, τE) is a locally ho-
mogeneous space, although Minkowski 4-space XM is not a locally homogeneous space
everywhere [1]. Moreover, Zeeman proposed a new topology (XM, τZeeman), called Zeeman
topology, which is a finer topology on XM. The Zeeman topology effectively decomposed
the Minkowski 4-space XM into two topological subspaces, while allowing the continuity
of f : I → (XM, τZeeman) in the interval I ≡ [0, 1]. However, this invites the formation of
Zeno sequences in (XM, τZeeman) with respect to (XM, τE) mainly because of the differences
in local homogeneities of the corresponding topological spaces [1]. Furthermore, the topo-
logical space (XM, τZeeman) is not equipped with a countable neighborhood basis [2]. As an
alternative, a new topological space (XM, τpath) was proposed, which is now called path-
topology in the Minkowski 4-space XM. The topological space (XM, τpath) preserves causal
structures and the homeomorphism of conformal groups. In other words, the topological
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space (XM, τpath) is considered to be a connected 4-manifold in R4, where R = [−∞,+∞] is
the set of extended real numbers. However, the path-topological space (XM, τpath) does not
retain the property of local compactness [2]. Furthermore, the topological space (XM, τpath)
is not a regular and normal topological space. If an n-manifold is closed, then it is called as
an aspherical n-manifold if the universal covering of the n-manifold is contractible generating
a K(π, 1) − space [3]. It helps in determining the homeomorphism between Euclidean
space and the covering of the n-manifold through the formation of fundamental subgroups
of Abelian variety. In case of n = 4, the resulting 4-manifold is the (aspherical) Minkowski
space-time, which admits hyperbolic surfaces and the manifold can be fibered [4]. First, we
briefly present the concept of the Zeno sequence and the comparative analysis of the di-
verse properties of two topological spaces under consideration, M4 and the corresponding
Euclidean 4-space E4. Next, we detail the motivations as well as the contributions made in
this paper.

1.1. Concept of Zeno Sequence

The origin of the mathematical concept of the Zeno sequence is rooted in the paradox
of Zeno of Elea (sophist philosopher and mathematician, 490–430 BC), which has profound
effects on our understandings of time in the space-time geometry of physics, existing quan-
tum mechanical behaviors at sub-atomic scale, and the presence of Zeno effects in the mod-
eling of hybrid systems. The Zeno paradox essentially forces us to rethink the relationship
of mathematical continuity (i.e., axioms of real numbers) and the perceived reality in space-
time geometry [5,6]. According to Zeno, the infinite space and time are either atomic or in-
finitely divisible, indicating that a sequence (−∞ < Ll) < limx→+∞ f (x) < (Lh < +∞) gen-
erated by f : X → R may not have a strong convergence property at its limiting values [6].
We can find the (approximate) resemblance of a similar concept in pure mathematics: that
a convergent sequence is essentially a bounded Cauchy sequence, but a Cauchy sequence
may not always converge. An alternate (simplistic) view of the Zeno sequence can be
presented as an infinitely countable division of a finite interval, where the sequence may or
may not converge depending upon the nature of local homogeneity.

1.2. Topological Properties of Minkowski and Euclidean 4-Spaces

Let us consider a Minkowski topological 4-space (i.e., manifold M4) and the corre-
sponding Euclidean topological space, which is denoted as E4. The topological behaviors
of M4 and E4 are very different in view of the convergence of sequences, the compactness
of subspaces, and the topological decomposition of respective spaces [1]. Interestingly, the
topologically anomalous behaviors of M4 with respect to E4 can be observed even if we
consider that both spaces are R4 retaining dimensional-homogeneity, where R is the set of
real numbers. We summarize the distinguishing analytical properties of two topologies
as follows.

(Prop. 1): If (M4, τM) is a Minkowski topological space, then it admits the Zeno sequence.
On the contrary, the corresponding Euclidean topological 4-space (E4, τE) does not neces-
sarily admit the Zeno sequence. In other words, if f : Z → (E4, τE) generates a sequence
(Z is the set of integers) such that f (Z) ⊂ E4, then it eventually converges within (E4, τE).
However, the continuous function f : Z → (M4, τM) may not always converge in (M4, τM).

(Prop. 2): The topological space (M4, τM) is decomposable into two subspaces, such that
M4 = (Xt ≡ R)× (Xs ≡ R3), which is in line with product topology. As a consequence,
(M4, τM) becomes a finer topological space compared to (E4, τE), and it results in the
formation of Zeeman topological space [1]. Note that (E4, τE) is a locally homogeneous
topological space, whereas (M4, τM) is not a completely homogeneous topological space.

(Prop. 3): Let us consider that I = [0, 1] is a unit interval in real line and πt : (M4, τM)→ Xt

is a topological projection. If we consider a continuous function f : I → (M4, τM) preserving
the partial ordering relation in Xt such that ∀a, b ∈ I, [a < b]⇒ [(πt ◦ f )(a) < (πt ◦ f )(b)] ,
then f (I) is well-behaved in (M4, τM) by exhibiting analytic behavior and by retaining
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the compactness of f (I). On the contrary, the continuous function f : I → (E4, τE) may be
non-analytic almost everywhere in (E4, τE).

These observations motivate us to investigate further the generalizations of topological
decompositions in a fibered n-space and the possibilities of existence of the Zeno sequence
in such a space. The motivations and contributions made in this paper are presented in the
following sections (Sections 1.3 and 1.4, respectively).

1.3. Motivations

It is evident from the aforesaid observations that (M4, τM) admits some of the topologi-
cal pathogeneses compared to the topological space (E4, τE). Interestingly, if X is a complete
and affine manifold with metric-signature pair 〈g, (+,+,+,−)〉, then X has 0-curvature
and it can cover manifold M4 [7]. Note that the topological space (M4, τM) retains the
Hausdorff separation property admitting Zeno sequences, and it is not a T4 topological
space [1]. On the other hand, the topological space (E4, τE) is locally homogeneous, and, as
a result, it does not allow the formation of any Zeno sequence. Let us consider a Hausdorff
topological n-space given as (X ≡ Rn, τX), which is decomposable as X = Xm × Xk in view
of product topology such that dim(Xm) ≥ 1 and dim(Xk) ≥ 1. If we fix dim(Xm) = 1 and
dim(Xk) = 3, then it is a Minkowski space, which can admit bilinear forms of rank-4, and
it generates space-fiber bundle over the time-fiber bundle [8]. However, there is restriction on
the fibrations over n-manifolds. In case of an n-manifold, if it is n− even (i.e., Minkowski
4-space), then it cannot be fibered over S1 due to the Chern-Gauss-Bonnet theorem [9].
Furthermore, it is known that even in the case of a Euclidean 4-manifold E4, the manifold
E4 cannot be fibered by a 2-dimensional fiber [10].

Evidently, we cannot easily extend, analyze, or guarantee the aforesaid diverse ob-
servations or properties in an n-space without the required topological generalizations.
Thus, a motivating question is: Is it possible to generalize the above mentioned diverse
topological properties in a decomposable n-space, and how can we analyze anomalous as
well as non-anomalous topological behaviors in such n-space considering topologies τM
and τE in the corresponding 4-spaces (i.e., through the reduction of dimensions)? Moreover,
some interesting questions are: How can we introduce fibering in such topological n-spaces,
and are there any commonalities in topological properties in such a fibered n-space? This
paper addresses these questions in view of general as well as geometric topology.

1.4. Contributions

The contributions made in this paper can be summarized as follows. In this paper, we
present the generalizations of topological decomposition in a fibered (Hausdorff) n-space,
and we analyzed the presence of the Zeno sequence in such a space under topological
projections. The strict partial ordering of a continuous function f : I → (M4, τM) is re-
laxed, allowing the possibility of the formation of a Zeno sequence irrespective of the
specific nature of topological space (i.e., either 4-Minkowski or 4-Euclidean under reduced
dimensions). This results in the concept of quasi-compactness of a topological subspace
and the formation of a quasi-compact fiber under the topological projections, which enables
us to analyze the formation of the Zeno sequence within topological spaces depending
upon the varieties of spaces. The multidimensional (n > 1) topological space helps to
attain generalizations of: (1) fibered topological decomposition in the presence of quasi-
compact subspaces, and (2) topological analyses of the analytic behavior of continuous
f : I → (X, τX) , where X is a Hausdorff n-space. We illustrate that the topological concepts

of local homogeneity and local compactness are different as compared to the quasi-compactness
in a fibered space, which helps in analyzing the natures of compactness, the formation of a
Zeno sequence, and the convergence of a sequence in any topologically decomposable mul-
tidimensional space. Finally, this paper presents the case studies specifically considering
Minkowski 4-space and Euclidean 4-space by applying the proposed topological analysis in
reduced dimensions. We show that the quasi-compact fibering of a Minkowski 4-space can
retain the strict partial ordering in standard form under projections, and the fibered, as well
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as decomposed, topological space determines the admissibility of a convergent sequence
depending upon the specific variety of a Hausdorff topological space (i.e., either (M4, τM)
or (E4, τE)). Moreover, it is shown that the topological compactness of an n-space can be
determined locally or globally through the employment of the concept of quasi-compact
fibers in the topologically fibered n-space.

The rest of the paper is organized as follows: Section 2 presents the preliminary con-
cepts and relevant classical results. Sections 3 and 4 present the definitions and main results,
respectively. Section 5 details the analytical case-studies (applications) of the proposed
concepts to Minkowski and Euclidean 4-spaces. Section 6 presents a comprehensive discus-
sion outlining the general applicabilities and distinctions of the proposed concepts. Finally,
Section 7 concludes the paper.

2. Preliminary Concepts

Let us consider a topological space of n-manifold denoted by (X, τX) such that
dim(X) = n > 0. It was shown by Urysohn that a second-countable topological space is
metrizable if it is a T3 topological space. As a consequence, the n-manifold (X, τX) is a
metrizable space, in general, and the local Euclidean subspaces play an important role in
determining the local (sequential) compactness, which is defined as follows [11].

Definition 1. An n-manifold (X, τX) is locally Euclidean if ∀A ⊂ X, ∃B ⊂ Rn the continuous
function h : A→ B is a homeomorphism.

The aforesaid definition can be further generalized as: if (X, τX) is a connected, compact,
and metrizable topological space, then (X, τX) is an n-manifold which is locally Euclidean.

Remark 1. If we consider a decomposable n-manifold (X, τX) such that X = X1#X2, then
the composition is commutative, i.e., X2#X1 = X1#X2. Moreover, if it is decomposable as
X = (X1#X2)#X3, then it maintains the associativity as (X1#X2)#X3 = X1#(X2#X3).

Recall that the Minkowski 4-manifold is decomposable into two topological sub-
spaces [12]. Note that the decomposition of an n-manifold results in the formation of
submanifolds. This invites the notion of topological immersion [13].

Definition 2. If (X, τX) is a decomposable n-manifold such that X = X1#X2, then the submani-
folds X1, X2 are embeddings of the respective manifolds M, N such that i(M) ∼= X1 and i(N) ∼= X2
under the topological embedding i : {M, N} → X .

The classification of n-manifolds though homeomorphisms is due to Poincaré (i.e.,
Poincaré conjecture and its generalization for higher dimensions), which is presented in
the following theorem [14].

Theorem 1. If (X, τX) is a simply connected and compact topological 3-manifold without boundary,
then it is homeomorphic to S3 (i.e., 3-sphere in R4), and if it is an n-manifold (n ≥ 5), then it is
(n− 1)/2-connected for n− odd and n/2-connected for n− even.

Suppose (X, τX) is a closed aspherical n-manifold with universal covering generating
K(π, 1)− space such that π = π1(X). The following theorem establishes the interrelation-
ship between the homeomorphism between Euclidean space and the covering of (X, τX) in
view of a finitely generated fundamental subgroup [3].

Theorem 2. If S is a universal covering of (X, τX), then S is homeomorphic to Euclidean space if
π = π1(X) contains a finitely generated non-trivial Abelian subgroup.

Note that the aforesaid property may not be generalized for all dimensions, as it
considers that dim(X) 6= 3 and dim(X) 6= 4 without restricting to a base point in π [3]. The
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topological n-space (X, τX) is a T-space if it can be partitioned into {Cm : m ∈ Λ}, where
m→ +∞ , preserving certain properties [13]. It is important to note that a topological
T-space (X, τX) does not admit complete topological separation as a necessary condition. A
topological space can be discretely fibered through the lifting and covering spaces, which
is defined as follows [11,15].

Definition 3. If the continuous function p : A→ X is a covering map of (X, τX), then ∀x ∈ X,
p−1(x) is a discrete fiber at {x}. The topological space (X, τX) is weakly locally contractible if ∀x ∈ X,
∃Nx ⊂ X such that γ(Nx) = {x}, where γ : (X, τX)→ (X, τX) is a topological contraction.

The space denoted by (X, A, p) is called a Hurewicz fiber space. If we restrict to the
topological space of Euclidean n-manifold En, then the following theorem provides needed
insight [10].

Theorem 3. A Euclidean n-manifold En, n > 1 cannot be fibered by any 1-dimensional fiber if the
fiber is compact.

Interestingly, the lifting in fiber space (X, A, p) preserves the topological projections.

3. Generalizations in Topological n-Spaces

In this section, we present the generalization of the interplay of the topological decom-
position of a fibered space and the admissibility of a Zeno sequence in a fibered n-space.
The resulting concept of quasi-compactness of a topological subspace is defined along
with the formulation of topological projections in such an n-space. Let the topological
n-space (X, τX) be a decomposable space such that dim(X) = n and X = Xm × Xk, where
n = m + k, m < k. Suppose the functions πm : (X, τX)→ Xm and πk : (X, τX)→ Xk are
two topological projections maintaining continuity within the respective subspaces. This
results in the possibility of the incorporation of refined partial ordering (i.e., relaxing the
strict ordering in (M4, τM)), which is defined as follows.

Definition 4. Let (X, τX) be a topological n-space and f : I → (X, τX) be a continuous function
such that A ⊂ f (I). The topological projections are defined to maintain refined partial ordering in
the subspace Am ⊂ Xm if the following conditions are preserved.

πm(A) = Am,
∀a, b ∈ I, [a < b]⇒ [(πm ◦ f )(a) ≤ (πm ◦ f )(b)]. (1)

It is important to note that the aforesaid property allows the possibility of non-analytic
pathological behavior of f (I) within Ak ⊂ Xk if (X, τX) is a non-compact n-space and
τX ≡ τE, maintaining the generality. Moreover, we can preserve the total ordering of f (I)
in Am ⊂ Xm if we consider that τX ≡ τM in a 4-space. If we consider that (X, τX) is a
topologically fibered n-space, then the analysis of the admissibility of a Zeno sequence
and compactness become facilitated. The definition of a topological fiber in an n-space is
defined as follows.

Definition 5. The continuous function f : I → (X, τX) is a topological fiber in an n-space if the
following properties are preserved.

πB : Xm → Xk,

∃a ∈ I, {(πm ◦ f )(a)} ∩ Xm 6= φ,

(π−1
B ◦ (πk ◦ f ))(I) ∼= {(πm ◦ f )(a)}.

(2)

Note that the fibering point a ∈ I is considered to be unique while examining the
admission of Zeno sequence in (X, τX). This results in the concept of the topological
fibering of an n-space, which is defined as follows.
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Definition 6. A space A ⊆ X in a topological n-space (X, τX) is called as a topologically fibered
space if FA = { fi : Io → A, i ∈ Λ} is a set of topological fibers such that ∪

i∈Λ
fi(I) = A.

Remark 2. Note that, if a topological subspace A ⊂ X can be compactly fibered, then A ⊂ X and
Ao ∈ τX , preserving the local compactness.

If we relax the condition for the preservation of local compactness of a topological
subspace in a fibered n-space, then it results in the concept of the quasi-compactness of a
topological subspace. The definition of a topologically quasi-compact subspace is presented
as follows.

Definition 7. A topological space A ⊆ X in a topological n-space (X, τX) is defined to be quasi-
compact if there exists a topological fiber f : I → A maintaining the following conditions.

f (Io) ⊂ A,
(πk ◦ f )(I) ∼= (πB ◦ f )(I),

{(πB ◦ (πm ◦ f ))(sup(I))} ∪ {(πB ◦ (πm ◦ f ))(inf(I))} ⊆ {−∞,+∞}.
(3)

Remark 3. Suppose we consider a subspace A ⊂ X in a topologically fibered n-space. It is
important to note that if A ⊂ X is quasi-compact, then it is possible that A 6= A and πm(A) is
closed in Xm. In other words, the projective subspace πk(A) is not closed in Xk, admitting the
non-analytic behavior of the corresponding fiber in the topological n-space (X, τX).

4. Main Results

This section presents a set of topological properties in generalized forms in a fibered
n-space for analyzing Zeno sequences (and convergence of sequences), where specific
references to topological 4-spaces are made if it is necessary for maintaining the clarity.
In the following theorem, we show that the existence of a quasi-compact fiber affects the
existence of the Zeno sequence irrespective of the nature of underlying topological 4-spaces.

Theorem 4. If f : Z+ → A forms a sequence within the subspace A ⊂ X of a fibered 4-space, then
it is not a Zeno sequence in (X, τM) and (X, τE) if A ⊂ X does not contain any quasi-compact fiber.

Proof. We prove the aforesaid theorem by considering two cases representing fibered
(X, τM) and (X, τE), respectively. �

Case-I: Let us first consider the topological 4-space (X, τM) endowed with Minkowski
topology under fibering. The topological decomposition results in X = Xm × Xk, where
dim(Xm) = 1 and dim(Xk) = 3. Suppose f : Z+ → A forms a sequence within the fibered
subspace A ⊂ X such that FX = {hi : I → X, i ∈ Λ} is a set of topological fibers preserving
the relaxed ordering property, given as ∀a, b ∈ I, [a < b]⇒ [(πm ◦ hi)(a) ≤ (πm ◦ hi)(b)] .
If A ⊂ X, A = Ao does not contain any quasi-compact fiber, then A = ∪

i∈Λ
gi(I) such

that ∀i ∈ Λ, gi(I) ⊂ hi(I), where gi : I → A . As a result, we can conclude that ∀i ∈ Λ,
(πm ◦ gi)(I) ⊂ (R ≡ Xm) is compact. Moreover, the fibered subspace under topological
projections maintains the following two conditions, which are given as:

(1) ∪
i∈Λ
{(πB ◦ (πm ◦ gi))(sup(I))} ⊂ R\{−∞,+∞} and,

(2) ∪
i∈Λ
{(πB ◦ (πm ◦ gi))(inf(I))} ⊂ R\{−∞,+∞}.

Thus, we can conclude that A ⊂ X is locally compact in fibered (X, τM) if it does
not contain any quasi-compact topological fiber, and, as a result, it cannot admit a non-
convergent sequence in A ⊂ X because f : Z+ → A converges in A.
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Case-II: Let us consider the topological 4-space (X, τE) endowed with Euclidean topology
under fibering FX = {hi : I → X, i ∈ Λ}. Suppose we consider a topologically fibered
subspace A ⊂ X, A = Ao, where FA = {gi : Io → A, i ∈ Λ} is a set of topological fibers
such that A = ∪

i∈Λ
gi(I) and ∀i ∈ Λ, gi(I) ⊂ hi(I). In other words, A ⊂ X does not

contain any quasi-compact fiber. Note that, in the topological space (X, τE), we do not
need to impose the ordering relation under topological projection. Suppose that we are not
decomposing the space X. As a result, if we consider that A ∈ τE, then A ∪ ∂A = A, which
is locally compact in (X, τE). Hence, the subspace A ⊂ X within the fibered topological
4-space cannot admit the Zeno sequence because f : Z+ → A converges in A. On the other
hand, if we consider topological decomposition as X = Xm×Xk by following the principles
of product topology, then it results in the conclusion that πm(A) ⊂ Xm and πk(A) ⊂ Xk are
both locally compact subspaces. Hence, the function f : Z+ → A converges in A within
(X, τE), and, as a result, f : Z+ → A is not a Zeno sequence in (X, τM) and (X, τE). �

We can further generalize this observation in a fibered n-space to determine compact-
ness, which is presented in the following theorem.

Theorem 5. If (X, τX) is a topologically fibered n-space with at least one quasi-compact fiber, then
(X, τX) is not a compact topological space.

Proof. The proof is relatively straightforward. If we consider a quasi-compact fiber hi(I) ∈ FX,
then f : Z+ → X is not a convergent sequence if f (Z+) ⊂ hi(I) such that either (πB ◦ (πm ◦
hi))(inf(I)) ∈ f (Z+), (πB ◦ (πm ◦ hi))(sup(I)) ∈ f (Z+), or both properties are preserved
within the topologically fibered n-space (X, τX). Hence, the topologically fibered n-space
(X, τX), containing a quasi-compact fiber, is not compact. �

Interestingly, the admission of a non-convergent sequence irrespective of the nature
of topological 4-spaces can be examined in a generalized form in the respective fibered
4-spaces, (X, τM) and (X, τE), which also examines the existence of a Zeno sequence. This
observation is presented in the following lemma.

Lemma 1. If the subspaces A ⊂ X within the fibered topological 4-spaces (X, τM) and (X, τE)
have at least one quasi-compact fiber, then A ⊂ X cannot admit Zeno sequence.

Proof. The proof is a direct consequence of theorem 5, considering (X, τM) and (X, τE),
where dim(X) = 4. If the fibered topological subspaces A ⊂ X in either (X, τM) or (X, τE)
are selected such that ∃hi(I) ∈ FX , hi : I → A is a quasi-compact fiber, then A ⊂ X is
not locally compact in (X, τM) and (X, τE). As a result, we can formulate a sequence
by f : Z+ → A , such that f (Z+) ⊂ hi(I), where either (πB ◦ (πm ◦ hi))(inf(I)) ∈ f (Z+),
(πB ◦ (πm ◦ hi))(sup(I)) ∈ f (Z+), or both the conditions are preserved. Thus, the function
f : Z+ → A is not convergent in A considering either A ∈ τM or A ∈ τE; hence, it cannot

be a Zeno sequence (note that we have considered A = Ao). �

Interestingly, the quasi-compactness of a topological subspace determines the com-
pactness of the topological space globally. This observation is presented in the follow-
ing corollary.

Corollary 1. In a fibered topological n-space (X, τX), if A ⊂ X is quasi-compact, then X is not a
compact topological n-space.

Let us take a different view. If we consider the relationship between the topological
compactness and quasi-compact fibers in a fibered n-space, then it can be shown that the
local as well as the global compactness of a fibered n-space can be determined through the
existence of quasi-compact fibers. This observation is presented in the following theorem
as a generalization.
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Theorem 6. If every subspace A ⊂ X of a fibered topological n-space (X, τX) do not have any
quasi-compact fiber, then (X, τX) is compact everywhere.

Proof. Let us consider a fibered topological n-space (X, τX) and an arbitrary subspace
Au ⊂ X such that τA = Au ∩ τX . If ∀B ∈ τA, i ∈ Λ, fi : Io → B and it is true that (πm ◦ fi)(I)
and (πk ◦ fi)(I) are compact, then B = ∪

i∈Λ
fi(I) is a locally compact topological n-subspace.

As a consequence, Au ⊂ X is also a locally compact n-subspace in (X, τX). Furthermore,
if X = ∪

u∈Λ
Au, then X is a globally compact topological n-space. Hence, the topologically

fibered n-space (X, τX) does not contain any quasi-compact fiber preserving local as well
as global compactness (i.e., (X, τX) is compact everywhere). �

5. Applications to Minkowski and Euclidean 4-Spaces

In this section, we present the applications of the generalizations and the correspond-
ing topological analyses considering Minkowski and Euclidean 4-spaces. The topological
analyses examine the cases of admissibility of Zeno sequences and conditions affecting
compactness.

5.1. Fibered Minkowski 4-Space

It was mentioned earlier that, in the topologically fibered Minkowski 4-space (X = M4,
τM), a quasi-compact fiber f : I → (X, τM) admits the Zeno sequence, and the proposed
generalizations do not induce any influence preserving strict ordering in Xt ≡ R. In other
words, the sequence generated by h : Z+ → (X, τM) admits the Zeno sequence such that
h(Z+) ⊂ f (I) and, additionally, ∀a, b ∈ I, [a < b]⇒ [(πt ◦ h)(a) < (πt ◦ h)(b)] . However,
the proposed generalizations of topological decomposition ensure that the subspace A ⊂ X
in (X = M4, τM) is compact, eliminating the formation of a Zeno sequence (i.e., non-
converging sequence) if A ⊂ X is locally compact without any existence of a quasi-compact
fiber f |A : I → (X, τM) .

5.2. Fibered Euclidean 4-Space

In the case of topologically fibered Euclidean 4-space (X = E4, τE), the existence
of a quasi-compact fiber f : I → (X, τE) indicates the possibility of admission of a non-
converging sequence in (X = E4, τE) through h(Z+) ⊂ f (I). However, the distinction in
this case is that the quasi-compact fiber f : I → (X, τE) does not preserve the ordering prop-
erty in Xm ≡ R under the topological projection such that ∃a ∈ I, [a < b]⇒ [(πm ◦ h)(a) =
(πm ◦ h)(b)] . Note that it is not necessary to impose the restriction that a = 0 always. Sup-
pose we consider a quasi-compact fiber fE : I → (X, τE) such that ∀a ∈ (0, 1), ∀bi > a; the
topological projection maintains the condition given by: (πm ◦ fE)(bi) = (πm ◦ fE)(bi+1).
Evidently, the sequence h(Z+) ⊂ fE(I) is non-convergent in (X = E4, τE). It is im-
portant to note that the function fE : I → (X, τE) is admissible in (X = E4, τE), but
fE≡M : I → (X, τM) is not admissible in (X = M4, τM).

Finally, the behavior of a rectifying curve f : Io → (X = M3, τM) in the open interval
is an interesting subject with physical interpretations in a Minkowski 3-space [16,17]. The
proposed quasi-compact fibering in a Minkowski 4-space may facilitate the extension of
related results in higher dimensions through the generalizations.

6. Discussions

The presence of Zeno effects (i.e., effects due to existence of Zeno sequence) can
be found in gravitational physics (space-time geometry), quantum mechanical physics
(quantum Zeno phase), and in the modeling of hybrid systems [1,18–22]. Interestingly, in
the physical world, the existence of spin and the spin-state of an elementary particle (i.e.,
electron) are due to the Zeeman topological effects under certain conditions [21]. In order
to mitigate the topologically inconsistent behaviors of Minkowski space-time 4-manifold
due to Zeno effects, the ambient cosmological metric is proposed based on a (M4 × R)
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5-manifold structure [18]. The (M4 × R) 5-manifold embeds Minkowski 4-space, admitting
the Einstein equation, and it restricts topological degeneracy of (M4, τM) by eliminating
singularities. It aims to resolve the formation of Zeno sequence-like non-convergent causal
curves by considering a 5-manifold with a boundary. However, the concept proposed in this
paper does not require the bounded n-manifold, and it considers the existence of oriented
singularities in an n-space to maintain generality. Moreover, if we apply the proposed
concept to (M4 × R), then we can essentially form a compact fiber out of a quasi-compact
fiber due to the existence of bounded Cauchy sequences in (M4× R). Similarly, the concept
of quasi-compact fibers can be admitted in a Minkowski 4-manifold for analyzing the
local compactness, as explained earlier in this paper. Note that the concept of the quasi-
compact fiber does not depend on the nature of homogeneity of topological spaces or
its decomposability. The proposed generalizations assist the topological analysis of local
compactness without paying any specific attention to the local homogeneity of various
topological spaces, including Minkowski and Euclidean spaces.

7. Conclusions

The determination of compactness and the formation of a Zeno sequence in various
topological spaces become difficult due to the differences in local homogeneities of the
respective topological spaces. The fiberings of different topological n-manifolds have
specific requirements that affect the topological analysis to establish common properties
and the preservation of distinctions. The generalizations of topological decomposition,
algebraic ordering, and projections under fibering facilitate the topological analysis of the
local as well as the global compactness of topological n-spaces. The concept of a quasi-
compact fiber assists in analyzing the formation of Zeno sequences in various topological
spaces. The analytic behavior of a continuous function can be clearly understood for
various topological spaces in the presence of fibered topological decompositions and
projections. The generalizations can be applied to Minkowski and Euclidean 4-spaces to
analyze various distinguishing topological properties, preserving the fundamental results
such as the retention of the algebraic total ordering of a continuous function in Minkowski 4-
space under decomposition. The dimension reduction does not greatly alter the topological
properties of the proposed generalizations. Moreover, the topological 5-manifold with a
boundary embedding Minkowski 4-space can admit quasi-compact fiber by transforming
it into a compact fiber preserving generality. However, the behavior of the sequence of the
continuous causal curves in a quasi-compactly fibered n-space without boundary and the
rectifiabilities of such curves need further investigation.
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