
Citation: Bu, Z.; Xu, Z. On r-Regular

Integers (mod nr). Symmetry 2022, 14,

2210. https://doi.org/10.3390/

sym14102210

Academic Editor: Dmitry V. Dolgy

Received: 21 September 2022

Accepted: 18 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On r-Regular Integers (mod nr)
Zhengjin Bu and Zhefeng Xu *

Research Center for Number Theory and Its Applications, Northwest University, Xi’an 710127, China
* Correspondence: zfxu@nwu.edu.cn

Abstract: Let ρr(nr) denote the number of positive r-regular integers (mod nr) that are less than or
equal to nr; in this paper, we investigate some arithmetic properties of certain functions related to
r-regular integers (mod nr). Then, we study the average orders and the extremal orders of ρr(nr)

in connection with the divisor function and the generalized Dedekind function. Moreover, we also
introduce an analogue of Cohen–Ramanujan’s sum with respect to r-regular integers (mod nr) and
show some basic properties of this function.
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1. Introduction

Let k, n be two integers, and (k, n) is the greatest common divisor of k and n. Mor-
gado [1] first introduced the concept of regular integers (mod n), that is, if there exists an
integer x such that k2x ≡ k (mod n), then the integer k is called regular (mod n). It was
also observed that k is regular (mod n) if and only if (k, n) is a unitary divisor of n. We
recall that d is said to be a unitary divisor of n if d|n and (d, n/d) = 1, notation d‖n. As
the background of this property, an element a of a ring R is said to be regular if there is
an x ∈ R such that a = axa. Moreover, it is obvious that the regular integers (mod n) are
an extension of the multiplicative inverse elements (mod n). In fact, we can get kx ≡ 1
(mod n) if (k, n) = 1, so that x = k̄ is the multiplicative inverse of k (mod n), and k = x̄ is
the multiplicative inverse of x (mod n), which are symmetric. On the other hand, there are
still some regular integers k (mod n) with (k, n) > 1, such that k2x ≡ k (mod n). However,
a regular integer k (mod n) also has a unique inverse element k̃ symmetric to it if and only
if both k2k̃ ≡ k (mod n) and k̃2k ≡ k̃ (mod n) hold [2]. Hence, it would be interesting
to better understand their behavior by studying their various arithmetic properties. For
example, see references [3–6].

More generally, Prasad, Reddy, and Rao [7] introduced generalized r-regular integers
(mod nr). Similar to the definition of regular integers (mod n): let r be an integer; an
integer k is said to be r-regular (mod nr) if there is an integer x such that kr+1x ≡ kr

(mod nr). In addition, Rao [8] proved that k is r-regular (mod nr) if and only if (k, nr)r is
a unitary divisor of nr, where (k, nr)r is the greatest rth power common divisor of k and nr.
The related research on the greatest rth power common divisor can be found in [9].

Let Regr(nr)={k : 1 ≤ k ≤ nr; k be an r-regular mod nr}; Reg(n)={k : 1 ≤ k ≤ n, k
be a regular mod n}; ρr(nr) = #Regr(nr) be the number of elements in the set Regr(nr);
ρ(n) = #Reg(n) be the number of elements in the set Reg(n). Obviously, for every n > 1,
r ≥ 1, we know that ϕ(n) < ρ(n) ≤ n and φr(nr) < ρr(nr) ≤ nr, where ϕ(n) is a Euler
ϕ-function, and φr is a generalization of the Euler ϕ-function defined by φr(nr) = #{k : 1 ≤
k ≤ nr, (k, nr)r = 1}.

In the past several years, a number of scholars have performed research on the basic
properties, arithmetic function and other issues of r-regular integers (mod nr); see the
papers [7,8]. Based on previous studies, we further investigate here some arithmetic prop-
erties of certain functions related to r-regular integers (mod nr). Furthermore, motivated
and inspired by the work of Tóth and Apostol [3–5], we also study the average orders and
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the extremal orders of ρr(nr) in connection with the divisor function and the generalized
Dedekind function. Then, we introduce an analogue of Cohen–Ramanujan’s sum with
respect to r-regular integers (mod nr) and show some basic properties of this function.

2. r-Regular Integers (mod nr) and Function ρr(nr)

In his early work, Tóth [3] first summarized some properties of regular integers
(mod n), then he and Apostol [6] introduced the multidimensional generalization of
ρ(n) and established identities for the power sums of regular integers (mod n) and for
other finite sums and products over regular integers (mod n). After that, with the help
of [3,9], Rao [8] introduced the notion of r-regular integers (mod nr), obtained some basic
properties of such integers as well as the arithmetic properties of certain functions related
to them.

Therefore, firstly, we state here the characterization of r-regular integers (mod nr). In
all that follows, n > 1 is of the canonical form n = pα1

1 pα2
2 . . . pαt

t , where p1 < p2 < . . . < pt
are primes and αi are integers ≥ 1.

Theorem 1 (Rao, [8]). For an integer a ≥ 1, the following are equivalent:

(i) a ∈ Regr(nr);
(ii) For every i ∈ 1, 2, . . . , t, we have either pi - a or pαir

i |a
α;

(iii) (a, nr)r‖nr;
(iv) aφr(nr)+r ≡ ar(mod nr);
(v) There exists an integer k ≥ 1, such that ak+r ≡ ar(mod nr).

Here, φr(nr) = #Rn,r = #{k : 1 ≤ k ≤ nr, (k, nr)r = 1} denote the number of elements
in Rn,r.

Then, based on the research above, we next give the sums of the s-th powers (s ∈ N) of
r-regular integers (mod nr) and investigate the average orders of the functions ∑

n≤x
ρr(nr)

and ∑
n≤x

ρr(nr)
φr(nr)

.

Theorem 2. For every s ∈ N and real x > 1, we have the following asymptotic formula:

∑
k≤x

k∈Regr(nr)

ks =
xs+1ρr(nr)

(s + 1)nr + O(xsnε).

Proof. For s ≥ 0, notice that

∑
n≤x

ns =
xs+1

s + 1
+ O(xs),

which means that we can deduce the following:

∑
n≤x

(k,n)r=1

ns = ∑
n≤x

ns ∑
d|(k,n)r

µr(d) = ∑
d|k

dsµr(d) ∑
e≤x/d

es

= ∑
d|k

dsµr(d)
(

xs+1

(s + 1)ds+1 + O(x/d)s
)

=
xs+1

s + 1 ∑
d|k

µr(d)
d

+ O

xs ∑
d|k
|µr(d)|


=

xs+1

s + 1
· φr(k)

k
+ O(xsτ(k)).
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Moreover, the integer k is r-regular (mod nr) if and only if (k, nr)r is a unitary divisor of
nr. So, from the definition of ρr(nr), we have the following:

ρr(nr) =
nr

∑
k=1

k∈Regr(nr)

1 = ∑
dr‖nr

nr

∑
k=1

(k,nr)r=dr

1 = ∑
dr‖nr

nr/dr

∑
j=1

(j,nr/dr)r=1

1

= ∑
dr‖nr

φr(nr/dr) = ∑
d‖n

φr(dr).

Thus, we can calculate as follows:

∑
k≤x

k∈Regr(nr)

ks = ∑
dr‖nr

∑
k≤x

(k,nr)r=dr

ks = ∑
dr‖nr

drs ∑
j≤x/dr

(j,nr/dr)r=1

js

= ∑
dr‖nr

drs
(

1
s + 1

( x
dr

)s+1 φr(nr/dr)

nr/dr + O
(( x

dr

)s
τ

(
nr

dr

)))

=
xs+1

(s + 1)nr ∑
dr‖nr

φr(nr/dr) + O

xs ∑
dr‖nr

τ

(
nr

dr

)
=

xs+1ρr(nr)

(s + 1)nr + O(xsnε).

This completes the proof of Theorem 2.

Here, we give a necessary lemma to prove Theorem 3.

Lemma 1. Let t ∈ N and real x > 1; then, we can obtain:

∑
n≤x

(n,t)=1

φr(nr) =
xr+1tr ϕ(t)

(r + 1)ζ(r + 1)Jr+1(t)
+ O(xrτ(t)).

where ζ(n) is a Riemann ζ-function, Jr(n) is a Jordan function, defined as Jr(n) = nr ∏
p|n

(
1− 1

pr

)
.

Proof. For s > 0 and t ∈ N, we know that

∑
n≤x

(n,t)=1

ns =
xs+1 ϕ(t)
(s + 1)t

+ O(xsτ(t)),

and by using the properties of φr(nr), we can obtain the following equation:

∑
n≤x

(n,t)=1

φr(nr) = ∑
de=n≤x
(n,t)=1

µ(d)er = ∑
d≤x

(d,t)=1

µ(d) ∑
e≤x/d
(e,t)=1

er

= ∑
d≤x

(d,t)=1

µ(d)
(

ϕ(t)
(r + 1)t

( x
d

)r+1
+ O((x/d)rτ(t))

)

=
xr+1 ϕ(t)
(r + 1)t

∞

∑
d=1

(d,t)=1

µ(d)
dr+1 + O

(
xr+1 ∑

d>x

1
dr+1

)
+ O(xrτ(t)).
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Let D(k) = 1, if (k, nr)r = 1; 0, if (k, nr)r = 1. It is clear that for R(s) > 0 (see [10]
(Lemma 5)),

∞

∑
k=1

D(k)
ks =

ζ(s)
nrs Jrs(n).

Thus, let r = 1; it can easily be seen that

∞

∑
k=1

(k,n)=1

µ(k)
ks =

ns

ζ(s)Js(n)
.

Moreover, notice that s > 1, ∑
n>x

1
ns = O(x1−s); therefore, we have the following formula:

∑
n≤x

(n,t)=1

φr(nr) =
xr+1tr ϕ(t)

(r + 1)ζ(r + 1)Jr+1(t)
+ O(xrτ(t)).

Theorem 3. For real x > 1, we have the following asymptotic formula:

∑
n≤x

ρr(nr) =
xr+1

(r + 1)ζ(r + 1) ∏
p

(
1 +

pr+1 − pr

(pr+1 − 1)2

)
+ O(xr). (1)

∑
n≤x

ρr(nr)

φr(nr)
= x ∏

p

(
1 +

pr − 1(p− 1)
(pr − 1)(pr+1 − 1)

)
+ O(x1−r log x), (r > 1). (2)

Proof. Firstly, we give the proof for (1). It follows from Lemma 1 that

∑
n≤x

ρr(nr) = ∑
n≤x

nr

∑
k=1

k∈Regr(nr)

1 = ∑
e≤x

∑
d≤x/e
(d,e)=1

φr(dr)

=
xr+1

(r + 1)ζ(r + 1)

∞

∑
e=1

ϕ(e)
eJr+1(e)

+ O

(
xr+1 ∑

e>x

ϕ(e)
eJr+1(e)

)
+ O

(
xr ∑

e≤x

τ(e)
es

)
.

Then, by using the Euler product, we obtain the following formula:

∞

∑
n=1

ϕ(n)
nJr+1(n)

= ∏
p

(
1 +

p(1− 1/p)
ppr+1(1− 1/pr+1)

+
p2(1− 1/p)

p2 p2(r+1)(1− 1/pr+1)
+ . . .

)
= ∏

p

(
1 +

1− 1/p
1− 1/pr+1

(
1

pr+1 +
1

p2(r+1)
+ . . .

))

= ∏
p

(
1 +

pr+1 − pr

(pr+1 − 1)2

)
.

To sum up,

∑
n≤x

ρr(nr) =
xr+1

(r + 1)ζ(r + 1) ∏
p

(
1 +

pr+1 − pr

(pr+1 − 1)2

)
+ O(xr).

Next, we give the proof of (2). We know that the arithmetic function ρr is an analogue of
φr with respect to r-regular integers (mod nr). Additionally, for every n ≥ 1, the function
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ρr(nr) is multiplicative and ρr(nr) = ∑
d‖n

φr(dr) = ∑
pα‖n

(φr(pαr) + 1). In addition, for any

prime power pα (α ≥ 1), there is

ρr(pαr) = pαr − p(α−1)r + 1, ρr(pαr)/φr(pαr) = 1 + 1/φr(pαr).

Thus, we have

∑
n≤x

ρr(nr)

φr(nr)
= ∑

n≤x
∑
d‖n

1
φr(dr)

= ∑
de≤x

(d,e)=1

1
φr(dr)

= ∑
d≤x

1
φr(dr) ∑

e≤x/d
(d,e)=1

1

= ∑
d≤x

1
φr(dr)

(
ϕ(d)x

d2 + O(τ(d))
)

= x ∑
d≤x

ϕ(d)
φr(dr)d2 + O

(
∑
d≤x

τ(d)
φr(dr)

)

= x
∞

∑
d=1

ϕ(d)
φr(dr)d2 + O

(
x ∑

d>x

1
dr+1

)
+ O

(
∑
d≤x

τ(d)
φr(dr)

)
.

Moreover, the series
∞
∑

d=1

ϕ(d)
φr(dr)d2 is absolutely convergent, so by applying the Euler product,

we can obtain:

∞

∑
d=1

ϕ(d)
φr(dr)d2 = ∏

p

(
1 +

p− 1
p2(pr − 1)

+
p(p− 1)

p4 pr(pr − 1)
+

p2(p− 1)
p6 p2r(pr − 1)

+ . . .
)

= ∏
p

(
1 +

pr−1(p− 1)
(pr − 1)(pr+1 − 1)

)
,

and observe that

O

(
x ∑

d>x

1
dr+1

)
= O(x1−r),

O

(
∑
d≤x

τ(d)
φr(dr)

)
≤ O

(
∑
d≤x

τ(d)
dr

)
� O(x1−r log x).

To sum up, we can get:

∑
n≤x

ρr(nr)

φr(nr)
= x ∏

p

(
1 +

pr − 1(p− 1)
(pr − 1)(pr+1 − 1)

)
+ O(x1−r log x).

3. Extremal Orders

In many cases, it is difficult to determine the growth of some arithmetical functions,
so mathematicians will often first explore the average orders and extremal orders of those
functions to provide the bounds. For example, Tóth [3] investigated the average orders and
extremal orders of the functions ρ(n)/ϕ(n) and ρ(n) to compare the rates of growth of the
functions ρ(n) and ϕ(n). In [4], Apostol studied the extremal orders of the function ρ(n) in
connection with the divisor function σ(n) and the Dedekind function ψ(n). As we were
so inspired by the work of Tóth and Apostol, we now study the extremal orders of ρr(nr).
Before the proof, we introduce the following result:

Lemma 2 (Tóth and Wirsing, [11]). If f is a non-negative real-valued multiplicative arithmetic
function such that for each prime p,
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(i) η(p) = sup
α>0

( f (pα)) ≤
(

1− 1
p

)−1
,

(ii) there is an exponent ep = po(1) ∈ N satisfying f (pep) > 1 + 1
p ,

then lim sup
n→∞

f (n)
log log n = eγ ∏

p

(
1− 1

p

)
η(p), where γ is Euler’s constant.

This result can be used to obtain the maximal or minimal orders of a large class of
multiplicative arithmetic functions. For its application, we have the following theorems:

Theorem 4. For r ≥ 1, we have

lim sup
n→∞

ρr(nr)

nr = 1,

lim inf
n→∞

ρr(nr) log log n
nr = e−γ.

Proof. Since ρr(nr) ≤ nr for every n ≥ 1, and ρr(pr) = pr for every prime p, it follows that
lim sup

n→∞

ρr(nr)
nr = 1.

Moreover, it is clear that the function ρr(nr) is multiplicative and ρr(pαr) = pαr −
p(α−1)r + 1 for any prime p and integer α ≥ 1. Hence, take f (n) = nr

ρr(nr)
in Lemma 2, which

is a non-negative real-valued multiplicative arithmetic function. So we have:

f (pα) =
pαr

pαr − p(α−1)r + 1
=

(
1− 1

pr +
1

pαr

)−1
<

(
1− 1

p

)−1
= η(p),

and for ep = 2,

f (p2) =
p2r

p2r − pr + 1
= 1 +

pr − 1
p2r − pr + 1

> 1 +
1
p

for every prime p, so that (ii) in Lemma 2 is satisfied. Then, we can get

lim inf
n→∞

ρr(nr) log log n
nr = e−γ.

Theorem 5. For r ≥ 2, we have

lim inf
n→∞

σr(n)
ρr(nr)

= lim inf
n→∞

ψr(n)
ρr(nr)

= 1,

lim sup
n→∞

σr(n)
ρr(nr)(log log n)2 = lim sup

n→∞

ψr(n)
ρr(nr)(log log n)2 =

6
π2 e2γ,

where σr(n) is the divisor function, ψr(n) is the generalization of the Dedekind function, as defined
by ψr(n) = nr ∏p|n

(
1 + 1

pr

)
.

Proof. Firstly, we notice that ρr(nr) ≤ nr ≤ σr(n) for every n ≥ 1 since

lim
n→∞

σr(p)
ρr(pr)

= lim
n→∞

pr + 1
pr = 1,

for every prime p, and it is also clear that ψr(n) ≥ ρr(nr), ψr(n)
ρr(nr)

= pr+1
pr for every prime p;

hence, we have

lim inf
n→∞

σr(n)
ρr(nr)

= lim inf
n→∞

ψr(n)
ρr(nr)

= 1.
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Thus, the minimal order of σr(n)
ρr(nr)

and ψr(n)
ρr(nr)

is 1.

Next, we prove the maximal order of σr(n)
ρr(nr)

and ψr(n)
ρr(nr)

. When r = 1, it [4] is proved that

lim sup
n→∞

σ(n)
ρ(n)(log log n)2 = e2γ,

lim sup
n→∞

ψ(n)
ρ(n)(log log n)2 =

6
π2 e2γ.

For r ≥ 2, let f (n) =
√

σr(n)
ρr(nr)

in Lemma 2. Then,

f (pα) =

√
pr(α+1) − 1

(pr − 1)(prα − pr(α−1) + 1)
≤
√

p + 1
p− 1

= η(p) <
(

1− 1
p

)−1

and

f (p2) =

√
p3r − 1

(pr − 1)(prα − p2r + 1)
>

(
1 +

1
p

)
for every prime p, so (i) and (ii) in Lemma 2 are satisfied. Hence, we can obtain:

lim sup
n→∞

√
σr(n)√

ρr(nr) log log n
= eγ ∏

p

(
1− 1

p

)√
p + 1
p− 1

= eγ ∏
p

√(
1− 1

p2

)
=

√
6

π2 eγ;

moreover, since ψr(n) ≤ σr(n) and ψr(p) = σr(p) = pr + 1 for every prime p, it follows that

lim sup
n→∞

σr(n)
ρr(nr)(log log n)2 = lim sup

n→∞

ψr(n)
ρr(nr)(log log n)2 =

6
π2 e2γ,

and the proof is complete.

4. Ramanujan’s Sum with Respect to r-Regular Integers (mod nr)

Ramanujan’s sum cq(j) and Cohen–Ramanujan’s sum cr
q(j) are defined as

cq(j) = ∑
a mod q
(a,q)=1

exp(2πija/q),

cr
q(j) = ∑

a mod qr

(a,qr)r=1

exp(2πija/qr),

where r, q ∈ N and j ∈ Z. In [12], Tóth introduced an analogue of Ramanujan’s sum with
respect to regular integers (mod q)

c̄q(j) = ∑
a mod q

a∈Reg(q)

exp(2πija/q)

and revealed that this analogue had properties similar to the usual Ramanujan’s sum.
Let gq denote the characteristic function of the unitary divisors of q; that is, gq(a) = 1

if a‖q, and gq(a) = 0 if otherwise. In addition, let µ̄q denote the function defined by
(µ̄q ∗ 1)(a) = gq(a), where ∗ is the Dirichlet convolution and 1(a) = 1 for all a ∈ N. Then,
gq(a) and µ̄q(a) are both multiplicative in a.

We know that Ramanujan’s sums and their variations make appearances in the sin-
gular series of the Hardy–Littlewood asymptotic formula for Waring problems and in the
asymptotic formula of Vinogradov on the sums of three primes. Furthermore, its gener-
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alizations have also been extensively studied by scholars. Therefore, we now define the
analogue of Ramanujan’s sum with respect to r-regular integers (mod qr) as follows:

c̄r
q(j) = ∑

a mod qr

a∈Regr(qr)

exp(2πija/qr).

Then, we have following results.

Theorem 6. Let r, q ∈ N and j ∈ Z, and we have

(i) c̄r
q(j) = ∑d|(j,qr)r drµ̄qr

( q
d
)
;

(ii) c̄r
q(j) = ∑dr‖qr cr

d(j);
(iii) c̄r

q(j) is multiplicative in q.

Proof. (i). It is clear that a is r-regular (mod qr) if and only if (a, qr)r is a unitary divisor of
qr; thus, we can deduce that:

c̄r
q(j) = ∑

a mod qr
exp(2πija/qr)gqr ((a, qr)r)

=
qr

∑
a=1

exp(2πija/qr) ∑
d|(a,qr)r

µ̄qr (d)

= ∑
d|q

µ̄qr (d)
qr

∑
a=1
dr |a

exp(2πija/qr)

= ∑
d|q

µ̄qr (d)
qr/dr

∑
a=1

exp(2πija/
qr

dr )

= ∑
d|q

µ̄qr (
q
d
)

dr

∑
a=1

exp(2πija/dr)

= ∑
d|q
dr |j

drµ̄qr

( q
d

)

= ∑
d|(j,qr)r

drµ̄qr

( q
d

)
,

where we used

qr

∑
a=1

exp(2πija/qr) =

{
qr, if qr|j;
0, if qr - j.

It is well-known that the usual Cohen–Ramanujan sum can be written as follows:

cr
q(j) = ∑

d|(j,qr)r

drµ
( q

d

)
.

Therefore here, formula (i) also gave such a convolutional expression of c̄r
q(j), which is

accordingly an analogous result of the Cohen–Ramanujan sum.
(ii). From (i) and (iii) of Theorem 1, we can easily obtain:

c̄r
q(j) = ∑

a mod qr

a∈Regr(qr)

exp(2πija/qr) = ∑
dr‖qr

qr

∑
a=1

(a,qr)r=dr

exp(2πija/qr)



Symmetry 2022, 14, 2210 9 of 10

= ∑
dr‖qr

qr/dr

∑
a=1

(a,qr/dr)r=1

exp(2πija/
qr

dr ) = ∑
dr‖qr

cr
d(j).

(iii). Let q, h be positive integers and (q, h) = 1; we know that for every positive integer
j, Cohen-Ramanujan’s sum cr

q(j) is multiplicative in q, that is, cr
qh(j) = cr

q(j)cr
h(j). Thus,

from (ii), we can get the following equation:

c̄r
qh(j) = ∑

dr‖qrhr
c̄r

d(j) = ∑
dr

1‖qr
∑

dr
2‖hr

cr
d1d2

(j)

= ∑
dr

1‖qr
cr

d1
(j) ∑

dr
2‖hr

cr
d2
(j) = c̄r

q(j)c̄r
h(j).

Hence, its values at prime powers q = pα are given as follows:

c̄r
pα(j) = ∑

dr‖pαr
cr

d(j) = 1 + cr
pα(j) =


1 + pαr − p(α−1)r, if pαr|j,
1− p(α−1)r, if p(α−1)r|j, pαr - j,
1, otherwise.

Note that for j = 0, we have ρr(pα) = φr(pαr) + 1.

5. Conclusions

In this article, the aim was to investigate various functions based on r-regular integers
(mod nr). We know that the arithmetic function ρr is an analogue of φr, and that the
function ρr(nr) and φr(nr) are both multiplicative for every n ≥ 1. Hence, in order to
compare the rates of growth of the functions, Theorem 3 investigated the average orders
and extremal orders of the functions ρr(nr) in connection with φr(nr), the divisor function
and generalized Dedekind function in Theorems 3–5. These results add to the rapidly
expanding field and provide a basis for deeper research into r-regular integers. Moreover,
we introduced an analogue of Cohen–Ramanujan’s sum with respect to r-regular integers
(mod nr) and showed some basic properties of this function in Theorem 6. This function
is a natural generalization of the usual Ramanujan sum and its investigation provided a
deeper insight into Ramanujan’s sum. More broadly, research is also needed to determine
the multidimensional generalization of the arithmetic function ρr(nr), which will be the
focus of our upcoming research. Furthermore, a more natural progression of this work is
to investigate the behavior of some arithmetic functions with respect to r-regular integers
(mod nr). These include the weighted average of the c̄r

q(j), expansions of the arithmetic
functions of several variables with respect to the c̄r

q(j), and so on.
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