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Abstract: In this paper, we demonstrate how various external forces influence the effect of the radia-
tion of a charged particle. As a particular example, we obtained a solution to the Dirac equation for
an electron in a constant homogeneous magnetic field and by taking into account the anomalous mag-
netic moment and influence of possible Lorentz invariance violation in minimal CPT-odd form. Based
on the solution found, we calculated the synchrotron radiation (SR) characteristics and predicted
possible observable effects attributable to the Lorentz invariance violation. As another example, we
calculated the stimulated synchrotron radiation in the presence of the field of an electromagnetic wave
and taking into account the inhomogeneity of an external magnetic field. Moreover, the superposition
of two electromagnetic waves was also considered taking into account the properties of radiated
electromagnetic waves. We also point out a way to use a corresponding semiclassical solution to
the Dirac equation to obtain synchrotron radiation without approximating the radiative amplitudes
themselves. This last way of calculating might be of use for studying SR in real circumstances of
radiation in an astrophysical magnetic field and in electron accelerators, where electron trajectories
are far from being circular.

Keywords: synchrotron radiation; Standard Model Extension (SME); Lorentz invariance violation

1. Introduction

The Standard Model of elementary particles is currently believed to be an effective
low-energy limit of a more fundamental theory that, in one way or another, unifies all of the
known physical interactions. As a result, peculiar effects that are not characteristic of the
Standard Model and that exhibit features of a deeper theory underlying them should exist
(and, despite being small, be observable in principle). In particular, Lorentz invariance (and
CPT parity) violation in the theory of physical particles attributable to dynamical factors
outside the scope of the Standard Model is expected. The theory that encompasses the
Standard Model and includes a phenomenological description of the Lorentz invariance
violation in a fairly general form is called the Standard Model Extension (SME) [1–9].

In this paper (we use definitions of symbols defined in a popular book [10]), we
examined several examples of an influence that external forces make on the properties
of the electromagnetic radiation of a charged particle. In particular, we considered a
particular realization of the SME with the following new (with respect to the Standard
Model Lagrangian) terms in the Lagrangian:

−ψγ5γµbµψ,

describing the interaction with bµ as a constant pseudovector and

1
2 µσαβFαβ,

describing the interaction with the electron anomalous (vacuum) magnetic moment [11],
which can be treated approximately as a constant, µ ' µ0

e2

2π , where µ0 = e
2m [12];

σµν = i
2 [γ

µ, γν], γ5 = −iγ0γ1γ2γ3. We put e > 0 so that the electron negative charge
is qe = −e. The covariant derivative is Dµ = ∂µ − ieAµ,
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We study (Section 2) the radiation of a high-energy electron (the synchrotron radiation
(SR)) under the influence of a constant pseudovector field, supposing that |b0| � |b| (for
the discussion of these estimates available at present, see, e.g., [6,13,14]).

In this work, we also demonstrate the influence of an external field of an electro-
magnetic wave, which may stimulate the resonance transition of an electron in a uniform
magnetic field (Section 3). We also considered an electron in a superposition of elec-
tromagnetic waves (Section 4) and electromagnetic radiation in a superposition of two
electromagnetic waves (bichromatic waves) (Section 5) (see also [15], where pair creation
on a nucleus in a field of a bichromatic plane electromagnetic wave was considered).

It should also be mentioned that SR has been prove to be a very useful instrument
to study various physical phenomena, such as confining massless Dirac particles in two-
dimensional curved space for graphene [16], the curvature-induced quantum spin-Hall
effect [17], and the synchrotron radiation photoemission study of alkaline-earth metals
such as Ba [18].

Throughout the work (except Section 3), the natural units h̄ = c = 1 are adopted.

2. The Lagrangian of the Model with Background Constant Condensate Field bµ

2.1. Model

The Lagrangian obtained for an electron interacting with the electromagnetic field Aµ

and background constant condensate field bµ has the form:

L = ψ
(

iγαDα −m + 1
2 µσαβFαβ − γ5γαbα

)
ψ. (1)

Here, Fαβ is the electromagnetic field tensor; µ is the electron anomalous (vacuum) magnetic

moment [11], which we may treat approximately as a constant quantity, µ ' µ0
e2

2π , where
µ0 = e

2m [12]; σµν = i
2 [γ

µ, γν], γ5 = −iγ0γ1γ2γ3. We put e > 0 so that the electron’s
negative charge is qe = −e. The covariant derivative is Dµ = ∂µ − ieAµ. We assume that, in
the laboratory reference frame, a constant homogeneous external magnetic field is directed
along the z-axis: H = Hez, H > 0 and there exists a constant vector bµ = {b, 0}, b = const.

The equation of motion for stationary states ψ(t, r) = e−iEtΨ(r):

HDΨ = EΨ (2)

is written with the Hermitian Hamiltonian operator:

HD = αP + γ0m− eA0 + µHγ0Σ3 − bγ5 (3)

with P = p + eA as the canonical quantum-mechanical momentum, p = −i∇; α = γ0γ,
Σi =

1
2 εijkσjk. Now, one must solve the eigenvalue problem (2) and find a complete system

of the electron wave functions {Ψ}.

2.2. The Equations of Motion and Their Solutions

For the vector potential of the uniform magnetic field parallel with the-z axis, we
considered the electromagnetic potential of the external magnetic field Aµ = {0, A} in the
axial-symmetric form

A = 1
2{−Hy, Hx, 0}. (4)

It is obvious that [pz, HD] = 0; hence, we may consider the problem (2) with a definite fixed
pz ≡ p :

Ψ(x, y, z) = 1√
2π

eipzφ(x, y), (5)

so that φ(x, y) satisfies the equation:

HDφ = Eφ, (6)
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where, in the expression (3) for HD, one must take P3 = p, so that P = {P̂1, P̂2, p} (P̂1, P̂2 are
operators).

Let us introduce now the “mixing angle” δ as follows:

δ = arctan
b

µH
, (7)

so that
µH = µ̃H cos δ, b = µ̃H sin δ, (8)

where
µ̃H =

√
(µH)2 + b2. (9)

We can now name the quantity µ̃ an effective anomalous magnetic moment and go over to
the effective mass and momentum:(

m̃
p̃

)
=

(
cos δ sin δ
− sin δ cos δ

)(
m
p

)
. (10)

It should be noted that the effective mass m̃ may take negative values, when p < −m cot δ.
It is easy to see that, with the help of the unitary transformation,

U−1HDU = H̃D, (11)

where
U = exp(− δ

2 γ3) = cos δ
2 − γ3 sin δ

2 , (12)

the Hamiltonian (3) can be brought to the following form:

H̃D = αP̃ + γ0m̃ + µ̃Hγ0Σ3, (13)

where P̃ = {P̂1, P̂2, p̃} (P̂1, P̂2 are the same as in the Hamiltonian (3)). Thus, our problem is
formally equivalent to the problem:

H̃Dφ̃ = Eφ̃, (14)

since the operators H̃D and HD have identical eigenvalues and their eigenvectors are related
by the transformation (12): φ = Uφ̃. It is interesting that the problem of a physical electron
with positive mass and an anomalous magnetic moment, moving in a magnetic field, was
already solved in [19]. For our purposes, for negative mass, m̃ < 0, we can make use of
the following unitary transformation H̃′D = γ5H̃Dγ5. Then, after effectively making the
following changes in the Hamiltonian: m̃→ −m̃, µ̃→ −µ̃, the results obtained in [19] can
be applied to H̃′D.

The final results of the solution of the problem (6) are as follows. The energy values
are

E = ε

√
(Π + µ̃H)2 + p̃2, ε = ±1, (15)

where

Π = ζ
√

m̃2 + 2eHn, n = 0, 1, . . . , ζ =

{
±1, n > 0,
− sign m̃, n = 0.

(16)

The quantity Π is the eigenvalue of the electron polarization operator:

Π̂ = Π⊥ cos δ + Π‖ sin δ, (17)

where
Π⊥ = mΣ + iγ0γ5[Σ× P], Π‖ = ΣP, (18)
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which can be diagonalized together with HD (when µ̃ 6= 0). This operator is a superposition
of the transversal Π⊥ and longitudinal Π‖ polarization operators [20,21]. In the expression
(16), n is the principal quantum number; it can be easily proven that the corresponding
integral of motion is (α1P1 + α2P2)

2 with the eigenvalues 2eHn. In the case of n = 0, the
sign of Π (i.e., the spin orientation), as follows from (16), takes a definite value. When
δ 6= 0, it depends on p (through m̃, according to (10)). Besides, it is clear that the form (17) is
valid not only under the assumption (5), but also in the general case when P3 = pz ≡ −i∂z;
moreover, Π is a gauge-invariant quantity (as it contains only the gauge-invariant canonical
momentum P).

The wave functions corresponding to the spectrum (15) in the polar coordinate system
(r, ϕ) are as follows:

φ(r, ϕ) = 1√
2π

ei(n−s−1/2)ϕ


c1 e−iϕ/2 In−1,s(ρ)

ic2 eiϕ/2 In,s(ρ)
c3 e−iϕ/2 In−1,s(ρ)

ic4 eiϕ/2 In,s(ρ)

√eH, ρ = 1
2 eHr2, (19)

where In,s(ρ) are the Laguerre functions:

In,s(ρ) =
√

s!
n! e−ρ/2ρ(n−s)/2Ln−s

s (ρ), (20)

expressed through the generalized Laguerre polynomials Ll
s(ρ):

Ll
s(ρ) =

1
s! eρρ−l ds

dρs

(
e−ρρs+l

)
; (21)

s = 0, 1, . . . is the radial quantum number; {ca} are constant coefficients depending on the
particle state. The solutions (19) are chosen to be the eigenfunctions of the z-component of
the fermion particle angular momentum operator Jz = −i ∂

∂ϕ + 1
2 Σ3, which corresponds to

the axial symmetry of our problem:

Jzψ =
(

l − 1
2

)
ψ, l = n− s. (22)

In the standard representation of the γ matrices, the coefficients {ca}, which meet the
normalization requirement for the wave functions:∫

rdr dϕ φ†φ = 1, (23)

can be written as follows: 
c1
c2
c3
c4

 =
1

2
√

2


A(Pα + εζQβ)
−ζB(Pα− εζQβ)

A(Pβ− εζQα)
ζB(Pβ + εζQα)

, (24)

where

A =

√
1 +

m̃
Π

, P =

√
1 +

p̃
E

,

B =

√
1− m̃

Π
, Q =

√
1− p̃

E
,

(25)

and
α = cos δ

2 − sin δ
2 , β = cos δ

2 + sin δ
2 . (26)

The expression (24) is valid for all n and m̃. It should be noted that Expressions (15), (16)
for the energy E and the quantity Π and Expression (24) for the coefficients {ca} do not
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include the quantum number s. This degeneracy is due to the independence of the electron
energy on its center of orbit.

Thus, we found the eigenvalues and obtained the system of orthonormalized eigen-
functions of the Hamiltonian HD; the full set of quantum numbers is {n, s, p, ζ, ε}, where

n, s = 0, 1, . . . , −∞ < p < +∞, ζ = ±1, ε = ±1. (27)

The wave functions and the energy spectrum are formally similar in structure to those of
the problem without Lorentz invariance breaking considered in [19]. However, in our case,
the parameters m̃, p̃, µ̃ are effective quantities depending, as well as the coefficients (24), on
the mixing angle δ.

2.3. Radiative Electron Transitions

We now use the wave functions obtained in the previous sections to calculate the elec-
tromagnetic radiation of an electron in an external uniform magnetic field. The calculation,
in contrast to the classical approach of the earlier publications on a similar subject (see,
e.g., [22–24]), is made entirely quantum mechanically. However, unlike Schwinger [25],
who took only the first quantum correction into account [25], we considered all the quan-
tum corrections asymptotically, which is appropriate for the case of the weak magnetic
field limit H � Hc, where the Schwinger criticalfield Hcm2/e ' 4.41× 1013 gauss.

Consider the electron transitions from some given initial state Ψ with energy E to a
lower state Ψ′ with energy E′. The total radiation power obtained can be written as follows
(see, e.g., [10], as well as [20,21]):

W =
e2

2π

∫
d3k δ(E− E′ − k) S, S = |〈α〉f|2. (28)

Here, k is the wave vector of the photon emitted, so that the energy of the photon is
ω = k ≡ |k|; f is the vector characterizing the polarization properties of the photon (it is
always orthogonal to k; the radiation is treated in the temporal gauge); the vector quantity
〈α〉 is related to the transition amplitude:

〈α〉 =
∫

d3x Ψ′†
(

αe−ikx
)

Ψ. (29)

Let (θ, ϕ) be the angles characterizing the direction of the radiation of a given polar-
ization in a spherical coordinate system with the z-axis parallel with the magnetic field
orientation, so that

k = k{sin θ cos ϕ, sin θ sin ϕ, cos θ}. (30)

Evaluating the integral in (29), due to the general form of the wave functions (5) and (19),
one finds (see [21] for the details of these calculations):

〈α〉 = 〈ᾱ〉 Is,s′(x) δ(p′ − p + k cos θ), (31)

where 〈ᾱi〉 are expressed through Laguerre functions In,n′(x) with the argument of all
Laguerre functions defined as follows:

x =
1

2eH
k2 sin2 θ. (32)

Making the summation over the quantum numbers n′, s′, p′ characterizing the final
state and evaluating the integral over k in (28), one obtains the expression for the radiation
power (related to one unit of length of the z-axis):

W = ∑
n′

e2

2π

∫ k2 sin θ dθ dϕ∣∣∣1 + ( ∂E′
∂k

)
n′

∣∣∣ S̄, S̄ = |〈ᾱ〉f|2, (33)
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where k and p′ obey the conservation laws of energy and the z-component of the momen-
tum:

E′ = E− k, p′ = p− k cos θ. (34)

We use the symbol
(

∂E′
∂k

)
n′

to denote a derivative of the energy E′ considered as a function

of p′, where p′ is defined through (34), with respect to k, with n′ being fixed. It is important
that, since there exists the relation (see [21]):

∞

∑
s′=0

Is,s′(x)Im,s′(x) = δsm (for all allowed x), (35)

the summation has taken the numbers s, s′ out of consideration; this is closely connected
with the degeneracy and invariance existing in our problem (see Section 2.2). Thus, the
initial quantum number s may be arbitrary.

Note that we are still considering the electron initial and final states with the definite
spin quantum numbers ζ and ζ ′, respectively, i.e., we do not make any averaging or
summation over them.

2.4. Radiation of an Ultra-Relativistic Electron

Let us now consider the most interesting case of a high-energy particle (m/E ≡ λ� 1)
in a comparatively weak magnetic field H � Hc = m2/e ' 4.41× 1013 gauss) with the
initial longitudinal momentum p = 0, which corresponds to the electron states with n� 1.
Indeed, examining this case, one approximately finds from (15):

n ' 1
2λ2

Hc

H
� 1. (36)

When calculating the radiation effects, we shall restrict ourselves to the zero approxima-
tion in µ̃H/E. In fact, it is not difficult to prove that only three small parameters are of
importance in our problem, i.e., λ, δ, µ̃H/E. However, it is easily seen that under typical
laboratory conditions (E ∼ 1 GeV, H ∼ 104 gauss), the estimate |δ| � µ̃H/E is valid if only
b � 10−20 eV, which justifies our approximation µ̃H/E → 0 for this range of b (see also
the Conclusions).

It is obvious that the chosen approximation µ̃→ 0 reduces the problem to the case of
the Dirac Hamiltonian:

H0
D = αP + γ0m (37)

which follows from (3), when µ→ 0, b→ 0. Operator (37) has the spectrum:

E =
√

m2 + 2eHn + p2. (38)

In our case, contrary to [20,21], the operator (17), commuting with H0
D, should be used,

describing “transversal-longitudinal” polarization of the particle. Now, System (34) can be
solved, and considering the case p = 0, we arrive at:

k =
E

sin2 θ

(
1−

√
1− β2

(
1− n′

n

)
sin2 θ

)
, β2 = 1− λ2. (39)

Since we are considering the states with n� 1, it is a good approximation to change the
sum in (33) into an integral treating n′ as a continuous variable. With the help of (39), it is
possible to change the variable of integration from n′ to k explicitly:

dn′∣∣∣1 + ( ∂E′
∂k

)
n′

∣∣∣ = − E′

eH
dk. (40)
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In that way, one obtains the spectral–angular distribution w(k) of the radiation (we imply,
of course, that 0 < k < E):

W =
∫

dk sin θ dθ dϕ w(k), w(k) =
e2

2π

E′k2

eH
S̄. (41)

In the case n, n′ � 1 we are interested in (It can be seen that transitions to the states
with n′ ∼ 1 are actually suppressed when n � 1, so that our consideration is consistent.
The issues concerning the approximation we make are discussed in [20] in more detail.),
there exist the asymptotic expressions for the Laguerre functions:

In,n′(x)
In,n′−1(x)
In−1,n′(x)

In−1,n′−1(x)

 ' η

λ̃K1/3(z) +


0

−(1 + ξy)
1
−ξy

λ̃2K2/3(z) +O(λ3)

, (42)

where Kν(z) are the modified Bessel functions of the second kind:

η =

√
1 + ξy

3π2 , ξ =
3
2

H
Hc

1
λ

,

z =
y
2

(
λ̃

λ

)3(
1 +O(λ2)

)
, λ̃2 = 1− β2 sin2 θ.

(43)

The dimensionless spectral variable y is related to the photon energy k by the formula:

k
E
=

ξy
1 + ξy

, 0 < y < +∞. (44)

It can be shown that the quantities λ̃ and cos θ are of the same magnitude as λ and ∆θ ' λ.
Now, using the new variable y instead of k, one finds:

W = Wcl

∫
dy sin θ dθ dϕ w(y), w(y) =

27
128π3

y2

λ5(1 + ξy)4 Φ, (45)

where Wcl =
8

27 e2m2ξ2 is the classical result for the total power of the synchrotron radiation
and w(y) is the spectral distribution. In what follows, we shall denote it as w. We also
express it through the quantity Φ = 4S̄/η2, since Φ represents the angular distribution in a
rather convenient way (see the results below).

The quantum corrections to the radiation are included in terms with powers of the
dimensionless quantity ξ (43):

ξ =
3 eHE
2 m3 →

3 eh̄ HE
2 m3c5 ∼ h̄. (46)

It is easily seen that h̄ emerges exactly through ξ in our problem. At the same time, h̄ is
canceled out in the leading order (classical) expressions, e.g.,

Wcl =
8

27
e2m2ξ2 → 8

27
e2m2c3

h̄2 ξ2 =
2e2

3c

(
eH
mc

)2( E
mc2

)2
. (47)

The quantity ξ may take arbitrary values (with arbitrary values of λ� 1, H � Hc). In this
way, our results include all the quantum corrections arising.

Exploiting (42), one can obtain the corresponding asymptotic expressions for S̄, Φ, and
thus, for w. Considering the σ and π components of the linear polarization of radiation (In
the case of the σ polarization, the electric field vector E is in the (xy)-plane, while for the π
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polarization, the magnetic field vector H lies in this plane.), one can choose f as follows
(see, e.g., [21]):

fσ = {1, 0, 0},
fπ = {0, cos θ,− sin θ},

(48)

and this corresponds to ϕ = π
2 in (30). The specific value of the angle ϕ is inessential due to

the axial symmetry present in our problem. Thus, one obtains:

S̄σ = |〈ᾱ1〉|2,

S̄π = |〈ᾱ2〉 cos θ − 〈ᾱ3〉 sin θ|2.
(49)

According to (34) and (44) (taking into account that p = 0), one has:

m
E′
≡ λ′ = λ(1 + ξy),

p′

E′
≡ p̄′ = −ξy cos θ, (50)

and this implies that λ′, p̄′ also have the order of smallness of λ. Note that, by means of
(16) and (38), the quantity Π can be expressed in terms of E and p̃ as follows:

Π = ζ
√

E2 − p̃2. (51)

Now, the final result for Φi, i = σ, π takes the form

Φi =
1 + ζζ ′

2
Φ+

i +
1− ζζ ′

2
Φ−i , (52)

where

Φ+
σ = λ̃2

(
(2 + ξy)λ̃K2/3(z)− ζ(ξy)(λ cos δ− cos θ sin δ)K1/3(z)

)2
,

Φ−σ = λ̃2
(
(ξy)(cos θ cos δ + λ sin δ)K1/3(z)

)2
,

(53)

and
Φ+

π = λ̃2
(
(2 + ξy) cos θ K1/3(z) + ζ(ξy) sin δ λ̃K2/3(z)

)2
,

Φ−π = λ̃2
(
(ξy)

(
cos δ λ̃K2/3(z) + ζλK1/3(z)

))2
.

(54)

When δ = 0, π/2, formulae (53) and (54) turn obviously into the well-known ones from
the synchrotron radiation theory of a transversally and longitudinally polarized electron
(see, e.g., [21]).

As can be seen from (53) and (54), distributions Φ±i (θ) relative to the plane of the
particle orbit, θ = π/2, demonstrate asymmetry (for the longitudinal polarized electron),
which is due to the proposed existence of Lorentz invariance violation. Therefore, the
electron spin integral of motion receives an additional longitudinal part and takes the
form (17), and according to this, the electron electromagnetic radiation is changed. At the
same time, the anomalous magnetic moment (without Lorentz invariance violation) acts
only on the transversal polarization.

In order to characterize the asymmetry of the angular distribution of the synchrotron
radiation, one can use, e.g., the quantity:

a =
wup − wdown

wup + wdown
, (55)

where

wup =
∫ π

2

0
sin θ dθ Φ, wdown =

∫ π

π
2

sin θ dθ Φ. (56)
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The typical curves for the normalized functions Φ̃±i (θ) = Φ±i (θ)/N, where N =
∫ π

0 sin θ
dθ Φ±i (θ)), are depicted in Figures 1 and 2. The corresponding asymmetry, governed by a,
is shown in each diagram. In Figure 2, the curves for the high values of H, δ and the low
value of E are plotted. The asymmetry in Φ+

i (θ) is demonstrated in a more evident form.

Φ̃+
σ (θ), ζ = −1; a ' −1.2 · 10−8 Φ̃−σ (θ), ζ = −1; a ' 0.11
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3. Synchrotron Radiation in the Presence of a Stimulating Electromagnetic Wave

Recently, in connection with the more intense development of maser technology,
much attention has been paid to stimulated electromagnetic emission. Therefore, it is
interesting, besides the study of the interaction with a constant pseudovector field and
with an anomalous vacuum magnetic moment, to calculate synchrotron radiation in the
presence of a stimulating electromagnetic wave and accounting for the inhomogeneity
of an external magnetic field (In this section, the velocity of light is written as c and the
Plank constant as h̄.). In this section, radiative transitions of relativistic electrons moving
in a stationary, but inhomogeneous magnetic field are investigated in the presence of a
stimulating electromagnetic wave. The regions of variation of the harmonics of the wave
for which the stimulated radiation should exceed absorption is found.

3.1. The Electron Energy Spectrum

In this subsection, developing further the previous studies (see, e.g., [20] ), where
similar emission in a constant and homogeneous magnetic field was investigated (for
spontaneous emission in an inhomogeneous magnetic field, see, e.g., [26]) and in which, as
is well known, no stability was obtained along the field direction, we considered stimulated
emission by an electron placed in an axially symmetrical focusing magnetic field:

H = Hzez, Hz = H0r−q,

where r = (x2 + y2)1/2 and q is the field fall-off exponent, which in the case of stable
motion, should lie in the range 0 < q < 1. The energy spectrum of the electron is given, in
the relativistic case (without accounting for the spin), by the expression:

Elsk = El + h̄ωl(
√

1− qs +
√

qk), (57)

where
El = ch̄[γ2(2− q)]2R2(1−q) + [k2

0]
1/2, ko = mc/h̄,

ωl =
eH(R)c

El
=

βc
R

,

γ =
eH0

(2− q)ch̄
, R = [l/γ(1− q)]1/(2−q),

where R is the radius of the equilibrium orbit, ω is the frequency of revolution of the
electron, and l, s, and k = 0, 1, 2 . . . are, respectively, the orbital, radial, and axial quantum
numbers.

3.2. Quantum Transitions

Let us consider the transitions l, s, k→ l′ 6= l, s′ = s, k′ = k, stimulated by an external
field of frequency ω ≈ (l − l′)ωl = ±νωl , where ν > 0 is the number of the harmonic; in
the case of light emission, l − l′ = ν, while in the case of absorption, l − l′ = −ν.

We assume that the external electromagnetic wave is linearly polarized and propagates
at an angle θ to the direction of the magnetic field. In this case, the probability of the
stimulated transition is given by the following formula (see, for example, [20]):

wll′ =
2πN(κ)e2

0c4

h̄L3ωElE′l
Sigl−l′(ω), i = x, z′. (58)

Here, N(κ) is the number of photons with momentum κ in the volume L3, τ is the average
lifetime of the electron in the initial state, and

gl−l′(ω) =
4τ

1 + 4τ2(ωll′ −ω)2 , Sx = |Px|2, Sz′ = |Py|2 cos2 θ.
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The indices x and z′ denote the polarization of the external wave: for the x component,
the vector of the electric field Ex lies in the plane of the electron orbit and is directed along
the x-axis; for the z′ component, the vector of the electric field Ez′ is perpendicular to Ex
and to the propagation direction of the wave (i.e., it is almost parallel with the z-axis).

The matrix elements:

Px,y =
∫

ψ+
l′ ,s,ke−iκr P̂x,yψl,s,kd3x

are, assuming the amplitudes of the radial and axial oscillations to be small,

Px,y =
h̄

2R

{
iXl,l∓ν(θ, κ)

Yl,l∓ν(θ, κ)
, (59)

where κ = κκ0 is the wave vector of the incident photon, and the quantities

Xl,l∓ν = −2l
2− q
1− q

J′ν(η)±
ν(ν2 − η2 − q)

η(1− q)
Jν(η), Yl,l∓ν = ±2l(2− q)ν + η2

η(1− q)
Jν(η)−

(ν2 − q)
(1− q)

J′ν(η) (60)

are expressed in terms of the Bessel function Jν and its derivative, which depends on the
argument η = κR sin θ = νβ sin θ.

The denominator in (58) is equal to

1
ElE′l

=
1

E2
l
(1± β2 1− q

2− q
ν

l
), (61)

and for the factor gl−l′(ω), we have

gν(ω) =
4τ

1 + 4τ2(ωl,l+ν −ω)2 =
4τ

1 + ν2δ2 , (62)

g−ν(ω) =
4τ

1 + 4τ2(ωl,l−ν −ω)2 =
4τ

1 + ν2δ2

−16ν3τ2δβ2ω(1− q + qβ−2)
1

(2− q)l(1 + ν2δ2)2 ,

where δ = 2τ(ωl,l+ν −ω/ν).
We now determine the power radiated by the electron in resonant transitions under

the influence of an external electromagnetic wave, at the harmonic ν:

W(ν) = h̄ωl,l−νwl,l−ν − h̄ωl,l+νwl,l+ν. (63)

Introducing the intensity of the electric field of the wave E , connected with N(κ) by
the relation:

E2/4π = h̄ωN(κ)/L3,

we obtain the following expressions for the radiation power in the weakly relativistic limit
(β2 > 0 and β4 ≈ 0)—dipole radiation (ν = 1):

W = Wx + Wz′ = −
e2

0E2τ

m0

1 + cos2 θ

1 + δ2
2− 3q

2(1− q)
+ (β2 +

q
1− q

)
2δΩτ

1 + δ2 , (64)

where Ω = e0H(R)/m0c. It then follows that, in an inhomogeneous field (q 6= 1), stimulated
emission is possible (W > 0) at the fundamental harmonic in the case of resonance (δ = 0)
when q > 2/3.

In the ultrarelativistic approximation (β → 1), just as in the case of a homogeneous
field (see [20]), we have a region of variation of the harmonics ν in which even stimulated
emission can prevail over absorption (W > 0) in the presence of resonance.
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To find this region, let us consider first the case when the external electromagnetic
wave has only an x component and is incident at an angle θ close to π/2, i.e., the wave
vector lies near the plane of the electron orbit. Then,

sin θ = 1− α2/2 (α = π/2− θ), 1− β2 � 1

and the following approximations of the Bessel functions in terms of the Macdonald
functions Km hold:

Jν(νβ sin θ) =
(1− β2 sin2 θ)1/2

π
√

3
K1/3(

ν

3
(1− β2 sin2 θ)1/2),

J′ν(νβ sin θ) =
1− β2 sin2 θ

π
√

3
K2/3(

ν

3
(1− β2 sin2 θ)1/2). (65)

If we assume that the argument of the functions K1/3 and K2/3 is small:

ν

3
(1− β2 sin2 θ)1/2 � 1,

then it follows from (65) that

Jν(η) =
Γ(1/3)

22/331/6πν1/3 , J′ν(η) =
Γ(2/3)31/6

21/3πν2/3 , (66)

and in the resonance case δ = 0, we obtain for the radiated power the expression:

Wx(ν) =
92/321/3[Γ(2/3)]2e2

0c2E2τ

π2ν4/3El

× { 3− 2q
3(1− q)

− 25/3πν4/3(1− β2 + α2 − q/ν2)

311/6[Γ(2/3)]2(1− q)
}. (67)

We put here
1− β2 sin2 θ ≈ 1− β2 + α2.

The power Wx will be positive (radiation) in two cases:
(1) If α2 < 1− β2, then ν < (1− β2)−3/4 =

√
νmax (νmax corresponds to the maximum

of spontaneous emission);
(2) If α2 > 1− β2, then ν < α−3/2.
When one of these inequalities is violated, the system becomes absorbing, i.e., Wx < 0.

To increase the interval of harmonics in which the amplification of the radiation takes place,
it is convenient to choose an angle α <

√
1− β2 = m0c2/E.

For the z′ component in the ultrarelativistic case, in the presence of resonance, only
absorption will be observed (Wz′ < 0), and this can be used, for example, for electron
acceleration.

4. Electron in a Superposition of Electromagnetic Waves
4.1. Plane Wave

The Hamilton–Jacobi relativistic equation is:(
∂S
∂x

+ eA
)2

= m2, (68)

where c = 1. Consider a plane electromagnetic field with the vector potential:

A = A(φ), where φ = nx, n2 = 0. (69)
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The following condition is applied to the potentials:

∂A = (n
dA
dφ

) = 0, (70)

which is equivalent to (An) = 0. We seek a solution of Equation (68) in the form

S = −(px) + F(φ), pµ = const, p2 = m2, (71)

where function F is to be found. We have ∂S
∂x = −p + F′n, and hence,

(
∂S
∂x

+ eA)2 = p2 + (eA)2 − 2e(pA)− 2(pn)F′.

Equation (68) is transformed to

(eA)2 − 2e(pA)− 2F′(np) = 0 (72)

and its solution is as follows:

F =
1

2(np)

∫
dφ
[
(eA)2 − 2e(pA)

]
. (73)

Thus, the complete integral of the H-J equation results (sic):

S = −(px) + F = −(px) +
1

2(np)

∫
dφ
[
(eA)2 − 2e(pA)

]
. (74)

Here, p2 = m2, and hence, we may choose independent components (We here use the metric
(+ - - - ), ab = a0b0 − ab, and again a system of units with h̄ = c = 1, α = e2 = 1/137.):

(np) = p0 − p1, and p = (p2, p3),

so that
(px) = p0x0 − p1x1 − pr

and
(p)2 = (p0)2 − (p1)2 − (p)2 = (np)(p0 + p1)− (p)2 = m2,

and hence,

p0 + p1 =
m2 + p2

(np)
,

px =
1
2
(p0 + p1)(x0 − x1) +

1
2
(p0 − p1)(x0 + x1)− pr

=
1
2

m2 + p2

(np)
(x0 − x1) +

1
2
(np)(x0 + x1)− pr. (75)

According to the Jacobi theorem, in order to obtain the equations of motion, we have to
put derivatives of S over constants p and (np) equal to new constants, which we chose to
be equal to zero (initial conditions) (In what follows, we chose a special reference frame,
where n = (1, 1, 0, 0) and φ = (nx) = (x0 − x1).)

∂S
∂p

=
∂

∂p
(−(px) +

1
2(np)

∫
dφ
[
(eA)2 − 2e(pA)

]
)

= r +
e

(np)

∫
dφA− p

(np)
φ = 0, , (76)
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so that (sic)

r =
p

(np)
φ− e

(np)

∫
dφA. (77)

Now, we find derivatives of S over (np):

∂S
∂(np)

= −
∫

dφ

[
(eA)2 − 2e(pA)

2(np)2 − m2 + p2

2(np)2

]
− x0 + x1

2
= 0, (78)

and hence, we find an equation for x1 (sic):

x1 =
1
2

(
m2 + p2

(np)2 − 1
)

φ−
∫

dφ

[
(eA)2 − 2e(pA)

]
2(np)2 , (79)

where φ is a parameter.
In what follows, we chose the gauge:

A0 = 0, (nA) = 0, i.e. A = (0, A2, A3). (80)

Generalized momentum p = P + eA and energy ε are defined by differentiating the action
with respect to coordinates and time, which gives

p2 = P2 + eA2, p3 = P3 + eA3,

i.e., for kinematic momentum, we have

P2 = p2 − eA2, P3 = p3 − eA3,

P1 = p1 = − (np)
2

+
m2 + p2

2(np)
− e

(np)
pA +

e2

2(np)
A2,

ε = (np) + P1, (81)

which is in agreement with [10].

4.2. Bichromatic Wave

Consider a bichromatic wave A = A(1) + A(2) as a superposition of two circularly
polarized waves with frequencies ω1 and ω2 propagating in the direction n (|n| = 1),
where

A(1) = −E(1)

ω1
(e2 sin ω1φ− g1e3 cos ω1φ),

A(2) = −E(2)

ω2
(e2 sin(ω2φ + α)− g2e3 cos(ω2φ + α)).

Here, e2, e3 are unit vectors orthogonal to each other and to n‖Ox, φ = t− (nr) = x0 − x1,
and circular polarizations g1 = ±1, g2 = ±1.

Now,
S(φ) = −SH(φ) + pr− (np)x0,
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hence (sic),

SH(φ) = −S(φ) + pr− (np)x0

=
1
2

m2 + p2

(np)
(x0 − x1)

+
1
2
(np)(x0 + x1)− pr + pr− (np)x0

− 1
2(np)

∫
dφ
[
(eA)2 − 2e(pA)

]
=

1
2

m2 + p2

(np)
(x0 − x1)− 1

2
(np)(x0 − x1)

− 1
2(np)

∫
dφ
[
(eA)2 − 2e(pA)

]
, (82)

which is in agreement with the Herrmann formula [27] For this configuration, the action
SH(φ), according to [27], can be found in the explicit form:

SH(φ) =
1

2(np)

[
p2 + m2(1 + γ2)− (np)2

]
φ

+
eE(1)

(np)ω2
1
(p2 cos ω1φ + g1 p3 sin ω1φ)

+
eE(2)

(np)ω2
2
(p2 cos(ω2φ + α) + g2 p3 sin(ω2φ + α))

+g
e2E(1)E(2)

(np)ω1ω2

sin[(ω1 − gω2)φ− gα]

ω1 − gω2
. (83)

Here, g = g1g2 = ±1 determines the relative polarization of waves, and

γ =
e
m

√
A2 (84)

with

γ2 = γ2
1 + γ2

2, (γ2
i =

e2E(i)2

m2ω2
i
) (85)

as the wave intensity parameter. One should note that the averaged value of A2 is

A2 = (A(1) + A(2))2 = A(1)2 + A(2)2.

This classical solution (83) enters into a quantum solution of the Dirac equation [27].

4.3. Crossed Fields

Constant crossed fields may be considered as a special case of the field of a plane wave,
if one takes a potential of the field as a particular form of the four-potential (69). Then, as a
limiting case, we consider the crossed fields’ configuration E ⊥ H, |E| = |H| = B, given by
the four-potential (see [10], p. 468):

Aµ = (nx) aµ, (86)

so that, in our special frame, we have

aµ = (0, 0, B, 0), n||Ox, (nx) = x0 − x1 = φ,

E = −A,t = (0,−B, 0), H = rotA = (0, 0,−B). (87)
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The solutions of Equations (77) and (79) can be written as

r =
p

(np)
φ− e

(np)
φ2

2
B, (88)

and

x1 =
1
2

(
m2 + p2

(np)2 − 1
)

φ +
∫

dφ

[
(eA)2 − 2e(pA)

]
2(np)2

=
1
2

(
m2 + p2

(np)2 − 1
)

φ +
1

2(np)2

[
φ3

3
e2B2 − eφ2 p2B

]
. (89)

Then, the following expression for the action (74) results:

S = −(px) + F = −(px) +
1

2(np)

[
φ3

3
e2B2 − eφ2 p2B

]
. (90)

5. Radiation of a Charged Particle in a Superposition of Electromagnetic Waves
5.1. Radiation in the Field of a Plane Monochromatic Wave

According to [10], we have in general for the radiation power:

I =
2e4

3m2
(E + v×H)2 − (Ev)2

1− v2 . (91)

This problem was considered previously in [10] and also in [28]. We have for the
monochromatic plane wave field according to Equation (80):

A = − E
ω
(0, sin ωφ,−g cos ωφ),

E = −A,t = E(0, cos ωφ, g sin ωφ),

H = E(0,−g sin ωφ, cos ωφ). (92)

For the kinematics, we have, according to (77),

r =
p

(np)
φ− e

(np)

∫
dφA,

v =
d
dt

r =
p− eA
(np)

=
1

(np)
(0, p2 + e

E
ω

sin ωφ, p3 − eg
E
ω

cos ωφ). (93)

In the reference frame, where p = 0, we have the electric field E orthogonal to v and a
magnetic field H parallel with v (vE = 0, H× v = 0). We also assume that the velocity
along the x-axis, i.e., parallel with n, is averaged to zero p1 = 0 along with the initial
condition p = 0 [10]. Then, we may use the known formula m2

1−v2 = p2
1 + P2 + m2 to obtain

1
1− v2 = 1 +

e2A2

m2 . (94)

We find the radiation power using the general formula (91), leading to

I =
2e4

3m2
(E + v×H)2 − (Ev)2

1− v2

=
2e4

3m2
E2

1− v2 =
2e4

3m2 E2
(

1 + (eE/mω)2
)

. (95)
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5.2. Radiation in the Field of a Plane Bichromatic Wave

We have:

A(1) = −E(1)

ω1
(e2 sin ω1φ− g1e3 cos ω1φ),

A(2) = −E(2)

ω2
(e2 sin(ω2φ + α)− g2e3 cos(ω2φ + α)).

then the electric field:

E(1) = E(1)(0, cos ω1φ, g1 sin ω1φ),

E(2) = E(2)(0, cos(ω2φ + α), g2 sin(ω2φ + α)), (96)

so that

E = e2(E(1) cos ω1φ + E(2) cos(ω2φ + α))

+ e3(g1E(1) sin(ω1φ) + g2E(2) sin(ω2φ + α)) (97)

and the magnetic field:

H(1) = E(1)(0,−g1 sin ω1φ, cos ω1φ),

H(2) = E(2)(0,−g2 sin(ω2φ + α), cos(ω2φ + α)). (98)

For the kinematics, we have, as a generalization of (93),

v =
1

(np)
(0, p2 + e

E(1)

ω1
sin ω1φ, p3 − eg1

E(1)

ω1
cos ω1φ)

+
1

(np)
(0, p2 + e

E(2)

ω2
sin(ω2φ + α), p3 − eg2

E(2)

ω2
cos(ω2φ + α)). (99)

Now, we use again the general expression (91) to find the radiation power. First, we have
for the velocity:

v =
eE(1)

(np)ω1
(0, sin ω1φ,−g1 cos ω1φ)

+
eE(2)

(np)ω2
(0, sin(ω2φ + α),−g2 cos(ω2φ + α))

= e2

[
eE(1)

(np)ω1
sin ω1φ +

eE(2)

(np)ω2
sin(ω2φ + α)

]

+ e3

[
−g1

eE(1)

(np)ω1
cos ω1φ− g2

eE(2)

(np)ω2
cos(ω2φ + α)

]
. (100)

According to (81), in the reference frame where the particle is at rest on average, we have

P2 = −eA2, P3 = −eA3,

P1 = p1 = 0, ε = (np). (101)

We also assume that the velocity along the x-axis, i.e., parallel with n, is averaged to zero
p1 = 0 along with the initial condition p = 0 [10]. Now, we can obtain the following:

(E + v×H)2 − (Ev)2

= E2 + 2E[v×H] + [v×H]2 − (Ev)2 = E2. (102)
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Indeed, we have E[v×H] = v[H× E] = 0, since v lies in the yz plane. Moreover,

(Ev)2 = ([H× n]v)2 = ([v×H]n)2 = [v×H]2.

Finally, with the help of Equations (94) and (91), we obtain the radiation power in a
bichromatic wave:

I =
2e4

3m2
(E + v×H)2 − (Ev)2

1− v2

=
2e4

3m2
E2

1− v2 =
2e4

3m2 E2
(

1 + γ2
)

, (103)

with γ2 defined in Equations (84) and (85).

5.3. Radiation in Crossed Fields

Let E and H be crossed fields (87), then we have (E = p0):

I =
2e4B2

3m2
(1− v1)

2

1− v2 =
2e4B2

3m4 E
2(1− v1)

2

=
2e4B2

3m4 (p0 − p1)
2. (104)

This expression is in full agreement with the formula from Nikishov and Ritus [29] (p. 534).

6. Discussion

The calculation of the angular distribution (e.g., [23,24]) was made in the framework
of the Standard Model. In this paper, we made our calculations accounting for the SME
technique and employed the standard methods of QED. Our results were based on exact
solutions of the Dirac equation for an electron with a vacuum magnetic moment in a
constant magnetic field. They were due to the specific non-perturbative interaction of the
electron vacuum magnetic moment µ with the condensate, violating Lorentz invariance. In
our work, we considered the radiation phenomena in the entirely quantum approach and
obtained the asymptotic expressions for the spectral–angular distribution for the case of a
high-energy particle moving in a relatively weak magnetic field; these expressions include
all the quantum corrections in our problem.

It was also mentioned that there exists a way to use corresponding semiclassical solu-
tions to the Dirac equation themselves to consider synchrotron radiation in a nonuniform
magnetic field instead of using it for the radiative amplitudes, which may help to consider
radiation in more realistic conditions.

We calculated the stimulated radiation of SR in a nonuniform magnetic field regardless
of the spin variables of the electron. The conditions for the amplification of the radiation
were found.

It can be demonstrated that there is a way to use a corresponding semiclassical solution
to the Dirac equation to consider synchrotron radiation without approximating (as was
done, for instance, in ([20] and in the text above (42)) the radiative amplitudes, but finding
the approximation for the electron wave functions themselves. In this way, in a magnetic
field H = Hez, H > 0, with the vector potential A0 = 0, A = (0, xH, 0), one can use Airy
functions for approximating the electron wave function in trajectory

Φ(−x1,2) =
1

2
√

π

∫ +∞

−∞
dt exp(−ix1,2t + it3/3),

where
x1,2 = (2eHp⊥)1/3(x∓ 1/2p⊥)),
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and
p⊥ =

√
E2 −m2 − p2.

This last way of calculation with approximating the electron wave function only on a short
part of its trajectory might be of use for studying SR in real circumstances of radiation in
an astrophysical magnetic field and in a nonuniform magnetic field, where the electron
trajectories are far from being circular.

7. Conclusions

The form of the Lorentz symmetry breaking we considered in this paper is only one of
the possible types of SM violations. The results of our work may give us one possible way
to detect a violation of Lorentz invariance. The form of other types of external influences we
considered in this paper, such as a superposition of two electromagnetic waves or crossed
fields, are just possible types of external influences that should be taken into account
in experiments with electrons in external fields. For instance, the consideration of the
stimulating influence of an external electromagnetic wave on SR in a nonuniform magnetic
field may find some application in using lasers in the studies of the SR in accelerators. It
was also mentioned that there exists a way to use corresponding semiclassical solutions to
the Dirac equations themselves to consider synchrotron radiation in a nonuniform magnetic
field instead of using it for the radiative amplitudes, which may help to consider radiation
in more realistic conditions. This may be considered in our forthcoming publications.
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