
Citation: Jiang, H.; Zhu, X.; Han, J.

Instruction-Fetching Attack and

Practice in Collision Fault Attack on

AES. Symmetry 2022, 14, 2201.

https://doi.org/10.3390/

sym14102201

Academic Editors: Kuo-Hui Yeh and

Christos Volos

Received: 31 August 2022

Accepted: 13 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Instruction-Fetching Attack and Practice in Collision Fault
Attack on AES
Huilong Jiang 1,2, Xiang Zhu 1,2,* and Jianwei Han 1,2,*

1 State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences,
Beijing 101499, China

2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhuxiang@nssc.ac.cn (X.Z.); hanjw@nssc.ac.cn (J.H.)

Abstract: A Fault Attack (FA) is performed mainly under the data corruption model and poses
a threat to security chips. Instruction corruption can enact the same purpose at the behavioral
level, which is produced by interfering with the instruction system. Laser Fault Injection (LFI) on
program memory during the instruction-fetching process, which we refer to as an instruction-fetching
attack, is studied in this paper. This process bears the ability to produce a controllable instruction-
fetching fault. Our work shows the implementation of the attack and its specific application case
on an 8-bit microcontroller. The main contributions of this paper include: (1) We have mapped the
sensitive areas precisely to the faulted instructions via laser injection and implemented controllable
instruction tampering. (2) A Collision Fault Attack (CFA) scheme based on instruction-fetching fault
is proposed. (3) The impacts of the faulted instructions are fully explored, including the influence
on subsequent operations and key recovery. (4) The fault mechanism of the on-chip Flash is further
investigated. Instruction-fetching fault means that the controller fetches a tampered instruction from
the program memory under external interference, which likely gives rise to an invalid or incorrect
operation. The experiment confirms that this specific fault can induce particular types of faults that
are different to realize, e.g., the byte-fault model in CFA. The realization, application and mechanism
of instruction-fetching fault are discussed in detail.

Keywords: collision fault attack; instruction-fetching fault; AES; laser injection; microcontroller;
Flash

1. Introduction

Security chips are usually a microcontroller or an ASIC embedded with a crypto-
graphic algorithm, which is crucial for trusted computing and data confidentiality. Since
the Side Channel Attack (SCA) was proposed, the security of physical implementation be-
comes as important as the cryptographic algorithm itself. There are various types of SCAs,
some are passive attacks such as Timing Attack [1], Electromagnetic (EM) Analysis [2] and
Power Analysis Attack (PA) [3], and others are active attacks such as the FA [4]. FA means
that the attacker performs Fault Injection (FI) on the device to obtain more information to
recover the key. FI can be realized by a voltage or clock glitch [5,6], an EM pulse [7], or
a laser beam [8]. Internal temporary memory, such as register file, Flip-Flop, and Static
Random Access Memory (SRAM) is usually the priority target. In addition, FI can also be
achieved by interfering with the logic circuit or instruction system, and this is the mech-
anism behind voltage or clock glitches. Recent studies have demonstrated researchers’
interests in instruction corruption, and some focus on disturbing the instruction-fetching
process of a chip. As a result, the normal instruction to be stored in the Instruction Register
(IR) may be replaced with an illegal instruction. A variety of methods have been proven to
be capable of instruction corruption, including voltage glitches [6], clock glitches [9], EM
pulses [10,11] and laser injection [12–15]. Research shows that laser injection could have an
effect with better controllability, as shown in Table 1, rather than clock glitch and EM pulse.

Symmetry 2022, 14, 2201. https://doi.org/10.3390/sym14102201 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14102201
https://doi.org/10.3390/sym14102201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6952-4019
https://doi.org/10.3390/sym14102201
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14102201?type=check_update&version=1

Symmetry 2022, 14, 2201 2 of 18

The effects of an instruction-fetching fault may be diverse: if the tampered instruction is
invalid, the effect is equivalent to instruction skip; if the tampered instruction is illegal, it
may lead to an unpredictable result.

Table 1. Comparison between several instruction-fetching attack methods.

Methods Temporal & Spatial Accuracy Performance of Instruction
Tampering

Voltage glitch High & Low Not controllable [6]
Clock glitch High & Low Not controllable [9]

Electromagnetic pulse High & Ordinary Ordinary [10,11]
Laser injection High & High Controllable [12], ours

In this paper, we execute an instruction-fetching attack on an 8-bit AVR microcontroller,
characterize the fault model of the on-chip Flash, and propose a practical CFA scheme on
AES. For this purpose, firstly, AVR assembly instructions are used to implement specific
operations (i.e., AddRoundKey), and possible target instructions are analyzed. In this
model, a critical evaluation surrounds whether the introduced faulted byte can lead to a
collision, and then several instructions are chosen as the target. At this stage, the instruction
skip model is the primary consideration. The CFA model was challenging to execute in
past attack practice since the traditional fault injection model is predominantly random
bit or byte changes. Instruction operations are primarily in words or bytes, which is more
suitable for certain particular scenarios. Next, we conduct the attack on a microcontroller
to demonstrate the actual effect of the instruction-fetching attack. Prior to this, we first
investigate the fault characteristics of the Flash during data reading under laser injection.
An accuracy mapping between the attack-sensitive areas and the faulted readback data is
established with the help of the small laser spot and high-precision test bench. With fault
characterization of the on-chip Flash, controllable instruction tampering is finally realized.
The execution process and results brought by the tampered content of the instruction
bear significant differences, and key recovery is valid for some content. Therefore, the
faulted instructions are classified according to the impacts. Finally, we provide further
discussion regarding the fault mechanism. At present, there exists no conclusive point
of view to explain the physical mechanism of the instruction-fetching fault. Based on the
existing works, we have discussed more sensitive area distributions to explain the current
fault model.

The rest of this article is organized as follows: Section 2 summarizes some previous
works and the progress of related research. Section 3 briefly introduces the AES algorithm
and details the proposed CFA model. In Section 4, We characterize the laser injection fault
model during data transmission of the on-chip Flash memory. Section 5 introduces results
of the instruction-fetching attack on the microcontroller and discusses it in different modes.
In Section 6, the mechanism behind the laser-induced fault model of Flash is discussed.
Finally, Section 7 provides a summary of the paper.

2. Related Works

An FA based on physical implementation requires defining an abstract fault model
of erroneous device behaviors, and fault analyses need to consider both the mathematic
structures of the algorithm and the status of the working device [13]. FA usually consists of
two steps: attack practice and key recovery. In the first step, attackers require the ability to
make a slight alteration to the device to perform fault injection. It is necessary to observe
the status of the device and collect data in this phase. In the next step, the key is calculated
through a specific fault analysis model. These analysis models include Differential Fault
Attack (DFA) [16], Key-Expansion Attack [17], Invalid Fault Attack [18], Algebraic Fault
Attack (AFA), Persistent Fault Attack (PFA) [19], CFA [20,21], etc. DFA is a traditional and
efficient fault analysis model, and currently the most commonly used model. DFA against

Symmetry 2022, 14, 2201 3 of 18

the eighth round of AES requires only one ciphertext and a small search volume to recover
the complete key, representing the most efficient FA model at present [22].

Most of the above attack models are based on operand errors, which can be reflected
in the tampering of operands directly or the indirect disturbing of the logical circuit and
instruction system. The latter can be divided into instruction-executing fault and instruction-
fetching fault as shown below.

• Instruction-executing fault: This kind of fault is induced by disturbing the normal
execution of instructions, e.g., making the executed operation not complete normally
by underpowering or providing a clock glitch, which is widely used in actual attacks.
The core idea of this technology is that reducing the supply voltage of the device can
temporarily extend the key-path of the circuit, or the rising edge of the clock glitch
will cause an error data to be stored in the Flip-Flop in advance [23,24].

• Instruction-fetching fault: This article focuses only on this type of fault. The core idea is
to modify the program data to be stored in the instruction register by introducing inter-
ference to the on-chip Flash during instruction-fetching, and then the microcontroller
executes a wrong instruction. There is no uniform name for this type of attack. Some
works only focused on Instruction Skip [25,26], and some other works summarized
it as Instruction Replacement [12] or Instruction Corruption [13]. To describe this
concept more accurately, the term instruction-fetching fault is applied in this paper.

Microcontrollers widely adopt the Harvard architecture, i.e., the design of independent
access to program flow and data flow. For attackers, active attacks can be used to threaten
secret data stored in SRAM or interfere with instructions accessed from the Flash memory.
Early research on instruction-fetching fault mainly relied on voltage glitches or clock
glitches. The primary purpose at this point was to skip specific instructions [6]. Ref. [9]
showed that controlling the generation timing of glitches can lead to different types of
instruction-fetched data errors, although the changes are limited. In later research, EM
pulse and laser injection were applied. In [10], Moro et al. found that certain instructions
were more sensitive to EM pulses. Ref. [11] demonstrated that the accuracy of the EM attack
could be improved by pipeline architecture analysis and equipment spatial and temporal
parameter improvement. Another study investigated the performance of EM pulse on
an ARM processor, and subsequently found that multiple instruction skip could also be
achieved [27]. In [28], Kumar et al. set an ATmega328p microcontroller as the target, and
their research showed that laser injection can lead to bit-reset faults of instruction flow. Our
research also shows a similar result regarding this feature. Ref. [13] carries out instruction
corruption attacks on a 32-bit microcontroller platform and proposes a possible explanation
for the fault model of Flash. In [12], researchers implement fully controllable instruction
replacement and put forward a corresponding explanation for the fault mechanism by
irradiating sense amplifier in Flash memory with laser. To achieve this goal, extremely
expensive equipment is needed. In addition to the single instruction, a series of laser
pulses can be used to skip multiple instructions [26]. Khuat et al. reported an instruction
replay fault model caused by buffer update failure [29]. Their other work characterized
the instruction transmission pipeline with the faulted instructions [14]. Ref. [30] reports
instruction skip attack on a more complex ARM cortex A9 Microprocessor, and another
work is also carried out in the mobile phone processor to obtain higher permissions [31].
One of the thorny problems of an instruction-fetching attack concerns the production of
controllable instruction tampering, especially for an EM pulse even with the improved
scheme proposed in [28]. A better fault model can be obtained by laser injection, but little
work has established accurate mapping between the attack area and the fault model. Fault
characterization depends on a special target architecture, and requires a high cost [12]. In
this paper, we introduce interference into the execution of AVR Flash access instruction
using an irradiating laser to finally achieve this goal. The fault characterization and the
controllable instruction tampering scheme will be detailed.

Symmetry 2022, 14, 2201 4 of 18

3. Attack Model

In this part, we detail the CFA model based on instruction skip, an application case of
the instruction-fetching fault proposed in this paper.

3.1. The Advanced Encryption Standard

AES is a symmetric encryption algorithm based on the Substitution-Permutation
Network (SPN) structure, which was released in 2001 to replace the Data Encryption
Standard (DES) [32]. The operand data named State Matrix is fixed to 128 bits, and the
key size is variable at 128, 192 or 256 according to the security requirement. Further, the
iterations are 10, 12 or 14, respectively. The operations of AES are built in the finite field, and
the basic operations of each round are SubBytes (SBox operation), ShiftRows, MixColumns
(except the last round) and AddRoundKey. AES has high security and performance and is
widely applied in various confidentiality scenarios.

3.2. CFA Model Based on Instruction Skip

The collision of the first AddRoundKey operation can be used to recover the complete
key. Let pi(0 ≤ i ≤ 15) and ki denote ith byte plaintext and key, respectively, then the result
ci of this operation satisfies:

pi ⊕ ki = ci (1)

If ci is set to a known or fixed value vi, the key can be calculated by

ki = p′i ⊕ vi (2)

It needs to traverse from 0 to 255 to find the p′i that leads to a collision of ciphertexts. If
i = 0, collision detection of ciphertexts is shown in Figure 1, and c′0 = v0 is satisfied when
the collision occurs.

The crucial operation is to set ci to a fixed value. Listing 1 shows a possible imple-
mentation of AddRoundKey operation. Register R20 and R21 are loaded with plaintext
byte and key byte, respectively, and they are refreshed with the operations. One possible
speculation is that tampering with the instructions LD, EOR or ST may result in a fixed
value of the operation.

Listing 1. An assembly case of the AddRoundKey operation on the AVR platform.

1 #Initialize the Y, Z and R24 register.
2 MOVW R28,&m
3 MOVW R30,&k
4 CLR R24
5 loop:
6 #Load a plaintext byte indirectly addressed by the Y register
7 LD R20,Y
8 #Load a key byte indirectly addressed by the Z register
9 LD R21,Z

10 #Perform the XOR operation
11 EOR R20,R21
12 #Write result back to the original address
13 ST Y,R20
14 #Address offset
15 ADIW R28,0x01
16 ADIW R30,0x01
17 #Iterative round control
18 ADIW R24,0x01
19 CPI R24,0x10
20 BRNE loop

Symmetry 2022, 14, 2201 5 of 18

0p

0k

0c

1p

1k

1c

...

10 iterations

Output

0p

0k

0c

1p

1k

1c

...

10 iterations

Output

0v

Collision

Detection

Figure 1. Collision detection of the first AddRoundKey operation of AES.

3.2.1. Skiping the LD Instruction

Assuming that the instruction LD is skipped, the initial value (maybe zero or another
value) is still stored in the R21 register, and then an incorrect value is written to the address
pointed to by Y after EOR and ST operation. Suppose the initial value of register R21
is v0, then the register value will be updated with the operation process, as shown in
Table 2. To calculate the first key byte, one should to traverse v0 from 0 to 255 and make
collision detection for each value, and then the corresponding key byte can be calculated
by Equation (2), respectively. p′0 is the byte value satisfying collision. The second key byte
can be calculated in a similar manner, which is equivalent to replacing v0 with k0. The
calculation scheme of the complete key is shown in Equation (3), and it should be noted
that there are 255 schemes for the combination of all key bytes. Algorithm 1 presents a key
recovery algorithm based on the skip of the LD instruction.

k0 = p0 ⊕ v0 ⊕ p′0
k1 = p1 ⊕ k0 ⊕ p′1
k2 = p2 ⊕ k1 ⊕ p′2
. . .
k15 = p15 ⊕ k14 ⊕ p′15

(3)

Table 2. An update of R20 and R21 with the operation process by skipping LD.

Index of the
Key Byte Register Instruction

Skip LD EOR ST

1st R20 Before
After

p0
p0

p0 ⊕ k0
p0 ⊕ v0

p0 ⊕ k0
p0 ⊕ v0

R21 Before
After

k0
v0

k0
v0

k0
v0

2nd R20 Before
After

p1
p1

p1 ⊕ k1
p1 ⊕ k0

p1 ⊕ k1
p1 ⊕ k0

R21 Before
After

k1
k0

k1
k0

k1
k0

.

15th R20 Before
After

p15
p15

p15 ⊕ k15
p15 ⊕ k14

p15 ⊕ k15
p15 ⊕ k14

R21 Before
After

k15
k14

k15
k14

k15
k14

Symmetry 2022, 14, 2201 6 of 18

Algorithm 1: An algorithm of key calculation for LD skipping model.

Input: p = (p0, p1, . . . , p15), c = (c0, c1, . . . , c15)
Output: k = (k0, k1, . . . , k15)

1 Some descriptions: p, c and k represent plaintext, ciphertext and key, respectively.
En(p) indicates normal encryption operation, and En′(p|pi) indicates the fault
encryption targeting the ith byte.

2 for 0 ≤ i ≤ 15 do
3 for 0 ≤ p′i ≤ 255 do
4 if En(p|pi ← p′i) = En′(p|pi) then
5 tmpi ← pi ⊕ p′i;
6 break;

7 for 0 ≤ v0 ≤ 255 do
8 k0 ← v0 ⊕ tmp0;
9 for 1 ≤ i ≤ 15 do

10 ki ← ki−1 ⊕ tmpi;

11 k← (k0, k1, . . . , k15);
12 if k is correct then
13 out k;
14 break;

3.2.2. Skippping EOR or ST Instruction

It can be seen that skipping EOR or ST can produce a similar effect, and as a result, the
address pointed to by the Y register still holds the original plaintext byte. That is, for the ith
plaintext byte, the value held in the original address is pi after the ST operation. The key
can be calculated in a similar way as before. The attacker needs to traverse p′i from 0 to 255
and use ki = pi ⊕ p′i to calculate the key byte ki when a collision occurs. Algorithm 2 shows
the key recovery algorithm under the fault model, and it can be seen that this scheme is
more efficient than the previous model.

Algorithm 2: An algorithm of key calculation for EOR or ST skipping model.

Input: p = (p0, p1, . . . , p15), c = (c0, c1, . . . , c15)
Output: k = (k0, k1, . . . , k15)

1 for 0 ≤ i ≤ 15 do
2 for 0 ≤ p′i ≤ 255 do
3 if En(p|pi ← p′i) = En′(p|pi) then
4 ki ← pi ⊕ p′i;
5 break;

6 out k← (k0, k1, . . . , k15);

3.3. Summary

In this section, we describe the CFA model based on instruction skip, and in the
assembly case of the model, three instructions are set as targets. In the following sections,
the attack will be implemented on a microcontroller.

4. Experimental Setting
4.1. The Pulsed Laser Fault Injection Platform

The experimental platform we designed, as shown in Figure 2, mainly includes the
following elements:

• A pulsed laser and optical path system
• A 3D mobile station
• Synchronous control system (responsible for timing control of different elements)

Symmetry 2022, 14, 2201 7 of 18

• An oscilloscope
• A control PC

The laser can produce 1064 nm infrared light, and the width of a single pulse is about
15 ps. Narrow pulse width can ensure that the energy of a single pulse is absorbed by Si
material and reduces the influence of the thermal effect. We can trigger it at any time with
a 5V square wave, and it will emit a laser beam after a delay of about 1 µs. The maximum
accuracy of the 3D mobile station is 0.1 µm and the mobile station can be programmed to
realize automatic scanning.

CCDCCD
Pulsed Laser

3D Motorized Stage

Microscope

System

DUT

Synchronization

Control System

PC

Experimental

Scene

Figure 2. The experimental system of pulsed laser fault injection.

4.2. Test Chip

Our target chip is an 8-bit AVR microcontroller ATmega163L, designed as a Harvard
architecture with a 2-stage fetch-execute pipeline. It contains 1K bytes of data memory
(SRAM), 16K bytes of program memory (Flash) and 32 general registers (R0: R31). AVR
controller allows the CPU to concurrently use both the data bus and instruction bus in a
clock cycle, therefore, it can complete the current operation and obtain the next instruction
in one clock cycle [9].

For the convenience of communication and power consumption, as shown in Figure 3,
we design it into a smart card matching the SASEBO-W development board and set its
working frequency to 3.57 MHz. In Figure 3, some important modules of the microcontroller
have been highlighted, and the focus of the attack is the Flash. An oscilloscope is used to
monitor the execution state of instruction in real-time, and the laser trigger signal produced
by a Spartan-6 FPGA in the SASEBO-W board can also be monitored, as shown in Figure 4.

S
R

A
M

Flash

Logic

IO

Figure 3. The ATmega163L microcontroller and its back-side layout. The back photo is taken via
infrared imaging, and certain important parts have been highlighted.

Symmetry 2022, 14, 2201 8 of 18

Figure 4. The power curve of instruction execution (blue) and the laser trigger signal (red). The
oscilloscope is used to detect the working state, so as to accurately control the laser signal timing.

5. Experimental Result

In this section, we target a special instruction LPM to clarify the data organization
features and the fault models of Flash, and then we conduct specific attack practices to
several instructions.

5.1. Laser-Induced Flash-Data-Accessing Error

In order to clarify the influence induced by the laser of the on-chip Flash, we chose a
specific instruction, LPM (Load form Program Memory), which is applied to load one-byte
data from program memory pointed to by the Z register (stores 16-bit address data) into
any of general registers in the MCU, as shown in Table 3. Since the instruction is associated
with Flash access, it will help to characterize the failure model.

Table 3. Opcodes and three usage formats of the LPM instruction.

Format Opcodes

LPM 1001 0101 1100 1000
LPM Rd *, Z 1001 000d dddd 0100
LPM Rd, Z+ 1001 000d dddd 0101

* Rd is one of the general purpose registers.

5.1.1. Target the LPM instruction

Figure 5a shows the power trace of the LPM execution process represented in Listing 2,
and the red pulse signal reveals the trigger signal of the laser. Since there is a delay of about
1 µs between the pulse signal and the laser emission, the pulse signal needs to be set in
advance. The LPM requires three clock cycles to execute, as shown in Figure 5a, and needs
an additional clock cycle to process the address data, that is, the data to be saved in the Z
register. As mentioned above, the process of instruction fetching is completed in the last
clock cycle of the previous instruction execution. Therefore, the Flash read-operation is
performed in the second clock cycle. To verify this conjecture, we calculate the correlation
between the Hamming Weight of storage data and the power consumption when executing
the LPM instruction. The selected memory address ranged from 0x00 to 0xFF and a total
of 600 power consumption points were sampled. Let hi denote the Hamming Weight
of data stored in ith address and ti denotes the corresponding power consumption, the
jth (1 ≤ j ≤ 600) column correlation coefficient rj satisfies:

rj = corr(H, T) =

n
∑

i=1
(hi − h̄)(ti − t̄)√

n
∑

i=1
(hi − h̄)2 ·

√
n
∑

i=1
(ti − t̄)2

(4)

Symmetry 2022, 14, 2201 9 of 18

where H = [h1, h2, · · · , hn] and T = [t1, t2, · · · , tn].
As shown in Figure 5b, the correlation of address data is also calculated. Subsequently,

the result shows consistency with our expectations. The blue curve indicates the correlation
of stored data. It can be seen that there is a strong correlation in the second clock cycle
of the LPM instruction, indicating that storage data are loaded from Flash memory into
the register at this time. The orange curve indicates the correlation of address data, and
there are several spikes in the previous and first clock cycle of the LPM instruction. This
may indicate that the two spikes should correspond to the two-stage of LPM instruction
fetching.

Listing 2. Test code for attacking the LPM instruction.

1 #Pull up the trigger signal
2 SBI PORTB, 7
3 #Delay 3 NOPs to allow sufficient time for laser trigger
4 NOP
5 NOP
6 NOP
7 #Execute the LPM instruction and increment the Z register by 1
8 LPM R12, Z+
9 #Pull down the trigger signal

10 CBI PORTB, 7

NOP LPMNOP NOP

(a)

(b)

Figure 5. Implementing the attack on the LPM instruction by analyzing timing and power leakage.
(a) Reveals the power curve of instruction execution and the laser trigger signal. The timing of the
LPM instruction should be confirmed before the attack. (b) Shows the correlation analysis of stored
data and address data with power consumption. These peaks are associated with points in time for
instruction and data processing.

Symmetry 2022, 14, 2201 10 of 18

X()m

Y

()m

4500 4500m m

Scan area

High 8-bit Low 8-bit

High 8-bitLow 8-bit

High 8-bit Low 8-bit

High 8-bitLow 8-bit

(a) (b)

(c)

Figure 6. Experimental results of laser attack during Flash data-accessing operation. (a) Shows the
scanning scheme, and the bottom left corner is set as the coordinate origin. (c) Shows a scanning
area covering the whole Flash, and the sensitive areas of all bits have been highlighted. In addition,
(b) also shows the photon leak imaging of the Flash area. The 16 bright spots may correspond to 16
sensitive positions on the upper right of (c), respectively.

Our scanning scheme is shown in Figure 6a. The size of the chip is about 4500 × 4500 (µm2),
and we set the lower left corner as the coordinate origin. We select a suitable area to cover
the whole Flash, and then scan the area at 10 µm interval, as shown in Figure 6c. After
storing specific data in an address space, LPM is executed to read back these data, and the
laser is triggered during the reading operation. By detecting whether the readback data
match the known value, we finally obtain the attack-sensitive areas of all data.

5.1.2. Sensitive Areas of Laser Injection

Figure 6 shows all the sensitive areas that lead to readback data error. Through careful
analysis of the experimental results, we offer the following conclusions:

• All error data bits are changed from 1 to 0 (bit-reset fault), and no bit changes
from 0 to 1. This conclusion is consistent with those from previous works, and the
asymmetric fault model related to the specific structure and encoding scheme of
Flash [13,28].

• Sensitive areas of laser injection of the same bit of all words are distributed in
clusters in the same area.

• There are 16 highlighted areas in the upper right corner of the Flash, which also
correspond to 16-bit sensitive areas, respectively. The attack effect against these
areas is consistent with the above. We further track the photon radiation of the Flash
region and find 16 conspicuous photon leakage points in the upper right corner,
as shown in Figure 6b, which indicates that there are frequent transistor switching
operations in this area. These areas may indicate the control register location in the
Flash read–write control circuit.

Symmetry 2022, 14, 2201 11 of 18

• These faults are not permanent. These faults only correspond to the error of read-out
data and do not change data stored in Flash cells.

• There is a large effective time window for triggering the laser, which is about 840ns.
This may be due to the long duration of Flash data access.

Our further experiments show that these fetched instructions could be tampered with
by focusing the laser to a special bit-1 position.

5.2. Attacks on LD, EOR and ST Instructions

We attempted to focus the laser in special areas that correspond to the sensitive areas
of bit-1 of instructions, and experiments show that not all bit-reset faults can produce the
excepted error ciphertexts. Only modifying special bits can produce the appropriate fault.
Figure 7 shows the actual attack effect against three instructions, and every sensitive area
corresponds to a bit-1 of the instruction. In order to detail the effect of instruction corruption,
we divide it into three levels: Instruction Skip, Unpredictable Fault and Predictable Fault,
as shown in Tables 4–6.

1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

(a)

0 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1

(b)

1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0

(c)

Figure 7. Sensitive areas of laser-induced instruction-fetching fault for three instructions: (a–c) shows
the sensitive areas of the LD, EOR and ST instructions separately. Due to the scanning granularity,
some sensitive areas may not be fully covered. Each sensitive area corresponds exactly to a bit-1.
Note that not all bits of each instruction can produce effective modifications by laser injection.

Symmetry 2022, 14, 2201 12 of 18

Table 4. Laser-induced Instruction-Fetching Fault of LD.

Modified Bit-1
Position Opcodes Operation

Instruction Effect

None 1000 0001 0101 0000 LD R21, Z Normal
1st 0000 0001 0101 0000 MOVW R10, R0 Skipping
2nd 1000 0000 0101 0000 LD R5, Z Skipping
3rd 1000 0001 0001 0000 LD R17, Z Skipping
4th 1000 0001 0100 0000 LD R20, Z Unpredictable

Table 5. Laser-induced Instruction-Fetching Fault of EOR.

Modified Bit-1
Position Opcodes Operation

Instruction Effect

None 0010 0111 0100 0101 EOR R20, R21 Normal
1st 0000 0111 0100 0101 CPC R20, R21 Skipping
2nd 0010 0011 0100 0101 AND R20, R21 Predictable
3rd 0010 0101 0100 0101 EOR R20, R5 Unpredictable
4th 0010 0110 0100 0101 EOR R4, R21 Skipping
5th 0010 0111 0000 0101 EOR R16, R21 Skipping
6th 0010 0111 0100 0001 EOR R20, R17 Unpredictable
7th 0010 0111 0100 0100 EOR R20, R20 Predictable

Table 6. Laser-induced Instruction-Fetching Fault of ST.

Modified Bit-1
Position Opcodes Operation

Instruction Effect

None 1000 0011 0100 1000 ST Y, R20 Normal
1st 0000 0011 0100 1000 FMUL R20, R16 Skipping
2nd 1000 0001 0100 1000 LD R20, Y Skipping
3rd 1000 0010 0100 1000 ST Y, R4 Unpredictable
4th 1000 0011 0000 1000 ST Y, R16 Unpredictable
5th 1000 0011 0100 0000 ST Z, R20 Predictable

5.2.1. Instruction Skip

Instruction skip is our expected fault and will generally not lead to an additional
impact on other operations. For the instruction LD R21, Z (opcode is 0x8150), after tamper-
ing with the highest bit, it becomes MOVM R10, R0 (0x0150). Since the latter instruction
operates on other unrelated registers instead of R20 or R21, the effect at this time is equiva-
lent to that when the instruction is skipped. The key recovery schemes, in this case, were
mentioned earlier.

5.2.2. Unpredictable Fault

This kind of fault is caused by executing an illegal instruction and tampering with
related registers. The intermediate data stored in registers could not be determined, and
the calculation result may also be random at this time. If the fifth bit of the instruction LD
R21, Z is tampered with, the instruction executed actually is LD R20, Z. Since the key byte
is not properly loaded into the R21 register, the next operation EOR R20, R21 will produce
an uncertain result, and the final ciphertext may also be an uncertain value. The key cannot
be recovered from this case.

5.2.3. Predictable Fault

Although this fault does not behave like an instruction skip, the result can be predicted.
For example, after tampering with the least bit of EOR R20, R21 (0x2745), it becomes EOR
R20, R20 (0x2744), which causes the value loaded into the R20 register and written back to Y
address to be zero. Key recovery for this case will be discussed in detail in the next section.

Symmetry 2022, 14, 2201 13 of 18

5.3. Key Recovery for the Predictable Fault

Here, we focus on key recovery for the predictable faults. A predictable fault can
cause the register to store in a value that can be inferred and key recovery can be achieved
by adopting a similar strategy of instruction skip. The experiment shows three kinds of
predictable faults, which will be discussed in the following part.

5.3.1. EOR R20, R21→ AND R20, R21

Similar to the above, for the ith plaintext byte pi and its collision byte p′i satisfy:

pi ∧ ki = p′i ⊕ ki (5)

To solve this equation, one should traverse ki from 0 to 255, but there will be multiple
candidate values that satisfy this. Therefore, attackers should perform multiple fault
injections to determine the unique correct key byte. Key recovery can be achieved by
following these steps: (1) Generate a plaintext randomly and then perform encryption with
fault injection. (2) Collect the fault ciphertext, traverse the relevant plaintext byte from 0 to
255 and then perform normal encryptions to detect a collision. (3) Calculate the candidate
space of the key byte according to Equation (5). (4) Check the size of the candidate space: If
the size has not decreased to 1, return to step (1); Otherwise, output the unique key byte.
The main part of the calculation process can be described by Algorithm 3.

Algorithm 3: Key recovery algorithm for the fault instruction AND R20, R21.

Input: A certain number (N) of ciphertexts {p0, p1, . . . , pN−1}, and
pi = (pi

0, pi
1, . . . , pi

15), 0 ≤ i ≤ N − 1, is a 16-byte ciphertext
Output: The jth key byte k j(0 ≤ j ≤ 15)

1 Λk ← {0, 1, . . . , 255};
2 for 0 ≤ i ≤ N − 1 do
3 Γ← ∅;
4 for 0 ≤ g ≤ 255 do
5 if En(pi|pi

j ← g) = En′(pi|pi
j) then

6 Γ← Γ ∪ {g};
7 break;

8 Λk ← Λk ∩ Γ;
9 if the size of Λk decreases to 1 then

10 out k j ← the only element in Λk;
11 break;

We further investigated the average number of fault injections required for key recov-
ery. The possible key byte values (0~255) are fully considered and loaded in turn into the
chip for 100 times of encryptions with laser injections in each experiment separately. The
sequence of the 100 fault pairs of plaintexts and ciphertexts is used for key recovery. After
selecting a plaintext as the starting position for the calculation, the subsequent plaintexts
are also used to calculate the candidate key bytes until the correct one is obtained, and then
the number of plaintexts required is recorded. The offset after each complete calculation is
1, and the sequence connection is constructed as a cycle. Finally, 100 calculation results for
each key byte and 256× 100 for all possible key bytes are obtained.

The running speed of encryptions exceeds four times per second on the microcontroller,
and the experiment took more than 1.5 h. Figure 8 shows the attack result of the first-key-
byte position, and the average number of candidate key bytes will decrease to 1 with about
4.54 (5 for actual) fault encryptions. Hence, approximately 73 fault encryptions are required
to recover the complete key.

Symmetry 2022, 14, 2201 14 of 18

5.3.2. EOR R20, R21→ EOR R20, R20

In this case, the result of the XOR operation is zero, and the value to be stored in
R20 after the ST operation is also zero. Here, the key byte and collision plaintext byte
satisfy p′i ⊕ ki = 0, that is, ki = p′ i. The number of candidate keys will decrease to 1 after
performing 16 fault injections.

5.3.3. ST Y, R20→ ST Z, R20

This situation is very interesting because the address pointed to by the Z register stores
the key and the key may possibly be modified at this time. We assume that this type of
fault will occur and the correct key can only be recovered after a restart. It can be inferred
that pi is still stored in the address pointed to by Y, and the key stored in the address Z
becomes pi ⊕ ki. When a collision occurs, the following shall be satisfied:

p′i ⊕ pi ⊕ ki = pi (6)

that is, ki = p′ i when collision occurs. Therefore, the complete key can be recovered after
16 fault injections.

(a) (b)

Figure 8. The number of ciphertexts to obtain the first key byte under the fault model. The figure
shows the attack results on all possible key byte values (0~255) by performing a total of 25,600 fault
injections: (a) Shows that the key byte candidate space decreases rapidly with the increase in available
fault ciphertexts produced by fault injections. As the number of fault injections increases, only the
unique correct key bytes will be retained. (b) Shows the probability of the number of ciphertexts
required to obtain the correct key byte under multiple experiments. The number of plaintexts or
ciphertexts corresponding to a higher blue bar is more likely to reduce the candidate space to 1, and
the average number required is about 4.54.

6. Discussion on the Fault Model of Flash

The experiment shows the bit-reset faults cluster, which is most likely related to the
Flash shared bit-lines [15]. Ref. [13] pointed out that these transistors connected to the
raised bit line could be sensitive to laser irradiation. However, we have observed some
sensitive positions that were not in the storage array area. Here, we further analyze the
fault model based on the experiment, mainly discussing the possible sensitive areas under
laser injection.

Figure 9 shows the structure of the NOR Flash storage array. By applying a voltage
to the control gate, the working status of the cell transistor depends on the number of
electrons in the floating gate. When the Flash executes read-operation, the bit-line and the
word-line are pre-charged to a high level, and the storage bit is generally determined by
detecting the current from the bit-line. The transistor in the normal OFF state failed to
produce a current in the bit-line, but the laser-induced carriers lead to a photocurrent that
provides compensation. The compensation of the photocurrent no longer demonstrates
efficacy when the transistor is in the ON state. The reverse biased PN-junctions are the

Symmetry 2022, 14, 2201 15 of 18

sensitive nodes of laser injection [33]. The photocurrent is transmitted along the bit-line to
the sense amplifier, where it can then also be amplified hundred-fold.

According to the experimental results, three sensitive nodes could be inferred as the
laser-sensitive areas. The first sensitive nodes are the transistors belonging to storage
cells. The bit-line is directly connected to the drain of any storage transistor, therefore,
the photocurrent generated in the drain region of each transistor could pull down the
level of the whole bit-line, whether there are electrons in the floating gate or not. The
second sensitive nodes could be in the column decoder. The local and global bit-line
architecture is widely used in the Nor Flash to achieve high-access performance [34]. These
switch transistors concerned with the local bit-lines in the column decoder could become
sensitive areas for laser injection because the photocurrent generated in the nodes will also
be collected and amplified by the sense amplifier. The third sensitive nodes could be the
transistors belonging to the sense amplifier, and the input or inside disturbances of the
photocurrent could also change the logic output. Note that the sensitive areas in the upper
right corner of Figure 6c may correspond to those nodes. The reverse biased PN-junctions
of the transistor exist in the green-marked regions in Figure 9b, and these nodes are the
sensitive areas of laser injection. All these faults seem to correspond to a transition from
the OFF state to the ON state. This asymmetric fault model of the Flash is determined by
its storage mechanism of the floating gate structure, and is also a temporary fault with a
short time window of attack.

C
e
ll

A
rr

a
y
 o

f
b

0

Column Decoder

R
o
w

 D
e
c
o

d
e
r

Sense Amplifiers
Control

Logic

C
e
ll

A
rr

a
y
 o

f
b

1

C
e
ll

A
rr

a
y
 o

f
b

i

C
e
ll

A
rr

a
y
 o

f
b

1
5

... ...

(a)

Laser Spot
Sensitive PN

Junction
Current

Direction

BLi BLi+1 BLi+2

WLi

WLi+1

WLi+2

Vread

GND

GND

GND GNDVdd

Column
Decoder

AiAi

Iref

Ai

Iref

Ai

Iref

Ai+1Ai+1

Iref

Ai+1

Iref

Ai+1

Iref

Ai+2Ai+2

Iref

Ai+2

Iref

Ai+2

Iref

I/V I/V I/V

(b)

Figure 9. Flash memory structure and its sensitive areas under laser injection when accessing the
ith bit cell. (a) Shows the main modules of NOR Flash, including storage array, decoder, sensitive
amplifier and control circuit. (b) Shows the sensitive areas, and a total of three areas are included:
areas near the storage cells, decoder and sense amplifier.

In the experiment, we adopt the scanning scheme to characterize the fault model of
the Flash memory and attempt to establish an attack template for microcontrollers of the
same type or series. In this process, these sensitive areas can be mapped to the faulted
readout data, which will reveal the data organization characteristics of the Flash memory.
Meanwhile, the instruction system of the microcontroller is also analyzed (as a white box),
and then the impacts of fault instructions will also be mapped to the sensitive areas. Thus,
in an actual attack, focusing the laser beam on a specific location can lead to an expected
fault for the same type of equipment.

Symmetry 2022, 14, 2201 16 of 18

7. Conclusions

In this paper, we have demonstrated our contribution to instruction-fetching Attack.
These works mainly focus on the characterization of fault models, the application of
instruction-fetching fault in the CFA model and the exploration of fault mechanisms. In
order to establish an accurate physical mapping between fault characteristics and sensitive
areas, we target a data transfer instruction (LPM), employ a small-size laser spot and
appropriate parameter settings to interfere with the on-chip Flash memory, and finally
obtain a controllable fault model. The instruction system mainly operates in words or
bytes, and thus, it is more suitable for the CFA model, which is critical for special scenarios
such as [35]. The storage structure of Flash memory results in an asymmetric fault model
embodied as the bit-reset fault in this work. The fault mechanism is discussed, and the
areas of the clustered fault are revealed. However, the process from instruction fetches
to the execution pipeline can still be further divided into several phases, and additional
mechanisms still remain to be explored [14]. In the next work, we will also explore
additional potential applications of the instruction-fetching fault.

Author Contributions: Conceptualization, H.J. and X.Z.; methodology, H.J. and X.Z.; software, H.J.;
validation, H.J. and X.Z.; formal analysis, H.J. and X.Z.; resources, X.Z. and J.H.; data curation, X.Z.
and J.H.; writing—original draft preparation, H.J. and X.Z.; writing—review and editing, H.J., X.Z.
and J.H.; supervision, X.Z. and J.H.; project administration, X.Z. and J.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Foundation Enhancement Planning Technology Field
Fund Project (2021JCJQJJ0926).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kocher, P.C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Proceedings of the Annual

International Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 1996; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 104–113.

2. Gandolfi, K.; Mourtel, C.; Olivier, F. Electromagnetic analysis: Concrete results. In Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems, Paris, France, 14–16 May 2001; Springer: Berlin/Heidelberg, Germany, 2001;
pp. 251–261.

3. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Annual International Cryptology Conference, Santa
Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 388–397.

4. Boneh, D.; DeMillo, R.A.; Lipton, R.J. On the importance of checking cryptographic protocols for faults. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques, Konstanz, Germany, 11–15 May 1997;
Springer: Berlin/Heidelberg, Germany, 1997; pp. 37–51.

5. Schmidt, J.M.; Herbst, C. A practical fault attack on square and multiply. In Proceedings of the 2008 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography, Washington, DC, USA, 10–10 August 2008; pp. 53–58.

6. Choukri, H.; Tunstall, M. Round reduction using faults. FDTC 2005, 5, 13–24.
7. Schmidt, J.M.; Hutter, M. Optical and em Fault-Attacks on Crt-Based Rsa: Concrete Results. In Proceedings of the Austrochip

2007, 15th Austrian Workhop on Microelectronics, Graz, Austria, 11 October 2007; pp. 61–67.
8. Skorobogatov, S.P.; Anderson, R.J. Optical fault induction attacks. In Proceedings of the International Workshop on Cryptographic

Hardware and Embedded Systems, Redwood Shores, CA, USA, 13–15 August 2002; Springer: Berlin/Heidelberg, Germany, 2002;
pp. 2–12.

9. Balasch, J.; Gierlichs, B.; Verbauwhede, I. An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs. In Proceedings of the 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, Nara, Japan, 28 September 2011;
pp. 105–114.

10. Moro, N.; Dehbaoui, A.; Heydemann, K.; Robisson, B.; Encrenaz, E. Electromagnetic fault injection: Towards a fault model on a
32-bit microcontroller. In Proceedings of the 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos,
CA, USA, 20 August 2013; pp. 77–88.

11. Trabelsi, O.; Sauvage, L.; Danger, J.L. Characterization of electromagnetic fault injection on a 32-bit microcontroller instruction
buffer. In Proceedings of the 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Kolkata, India, 15–17
December 2020; pp. 1–6.

Symmetry 2022, 14, 2201 17 of 18

12. Sakamoto, J.; Fujimoto, D.; Matsumoto, T. Laser-induced controllable instruction replacement fault attack. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 2020, 103, 11–20. [CrossRef]

13. Colombier, B.; Menu, A.; Dutertre, J.M.; Moëllic, P.A.; Rigaud, J.B.; Danger, J.L. Laser-induced single-bit faults in flash memory:
Instructions corruption on a 32-bit microcontroller. In Proceedings of the 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), McLean, VA, USA, 5–10 May 2019; pp. 1–10.

14. Khuat, V.; Danger, J.L.; Dutertre, J.M. Laser Fault Injection in a 32-bit Microcontroller: from the Flash Interface to the Execution
Pipeline. In Proceedings of the 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), Milan, Italy, 17
September 2021; pp. 74–85.

15. Menu, A.; Dutertre, J.M.; Rigaud, J.B.; Colombier, B.; Moellic, P.A.; Danger, J.L. Single-bit laser fault model in NOR flash memories:
analysis and exploitation. In Proceedings of the 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC),
Milan, Italy, 13 September 2020; pp. 41–48.

16. Biham, E.; Shamir, A. Differential fault analysis of secret key cryptosystems. In Proceedings of the Annual International
Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 513–525.

17. Kim, C.H.; Quisquater, J.J. New differential fault analysis on AES key schedule: Two faults are enough. In Proceedings of the
International Conference on Smart Card Research and Advanced Applications, London, UK, 8–11 September 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 48–60.

18. Blömer, J.; Seifert, J.P. Fault based cryptanalysis of the advanced encryption standard (AES). In Proceedings of the International
Conference on Financial Cryptography, Guadeloupe, French West Indies, 27–30 January 2003; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 162–181.

19. Zhang, F.; Zhang, Y.; Jiang, H.; Zhu, X.; Bhasin, S.; Zhao, X.; Liu, Z.; Gu, D.; Ren, K. Persistent fault attack in practice. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 2020, 172–195. [CrossRef]

20. Hemme, L. A differential fault attack against early rounds of (triple-) DES. In Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems, Cambridge, MA, USA, 11–13 August 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 254–267.

21. Blömer, J.; Krummel, V. Fault based collision attacks on AES. In Proceedings of the International Workshop on Fault Diagnosis
and Tolerance in Cryptography, Yokohama, Japan, 10 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 106–120.

22. Tunstall, M.; Mukhopadhyay, D.; Ali, S. Differential fault analysis of the advanced encryption standard using a single fault. In
Proceedings of the IFIP International Workshop on Information Security Theory and Practices, Heraklion, Crete, Greece, 1–3 June
2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 224–233.

23. Selmane, N.; Guilley, S.; Danger, J.L. Practical setup time violation attacks on AES. In Proceedings of the 2008 Seventh European
Dependable Computing Conference, Kaunas, Lithuania, 7–9 May 2008; pp. 91–96.

24. Bhasin, S.; Selmane, N.; Guilley, S.; Danger, J.L. Security evaluation of different AES implementations against practical setup time
violation attacks in FPGAs. In Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security and Trust,
San Francisco, CA, USA, 27 July 2009; pp. 15–21.

25. Yuce, B.; Ghalaty, N.F.; Santapuri, H.; Deshpande, C.; Patrick, C.; Schaumont, P. Software fault resistance is futile: Effective
single-glitch attacks. In Proceedings of the 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC); IEEE: Toulouse,
France, 2016; pp. 47–58.

26. Dutertre, J.M.; Riom, T.; Potin, O.; Rigaud, J.B. Experimental analysis of the laser-induced instruction skip fault model. In Pro-
ceedings of the Nordic Conference on Secure IT Systems, Santa Barbara, CA, USA, 16 August 2016; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 221–237.

27. Elmohr, M.A.; Liao, H.; Gebotys, C.H. EM fault injection on ARM and RISC-V. In Proceedings of the 2020 21st International
Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 25–26 March 2020; pp. 206–212.

28. Kumar, D.S.; Beckers, A.; Balasch, J.; Gierlichs, B.; Verbauwhede, I. An in-depth and black-box characterization of the effects of
laser pulses on atmega328p. In Proceedings of the International Conference on Smart Card Research and Advanced Applications,
Montpellier, France, 12–14 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 156–170.

29. Khuat, V.; Dutertre, J.M.; Danger, J.L. Analysis of a laser-induced instructions replay fault model in a 32-bit microcontroller. In
Proceedings of the 2021 24th Euromicro Conference on Digital System Design (DSD), Palermo, Italy, 1–3 September 2021; pp.
363–370.

30. Vasselle, A.; Thiebeauld, H.; Maouhoub, Q.; Morisset, A.; Ermeneux, S. Laser-induced fault injection on smartphone bypassing
the secure boot. In Proceedings of the 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Taipei, Taiwan,
25 September 2017; pp. 41–48.

31. Gaine, C.; Aboulkassimi, D.; Pontié, S.; Nikolovski, J.P.; Dutertre, J.M. Electromagnetic fault injection as a new forensic approach
for SoCs. In Proceedings of the 2020 IEEE International Workshop on Information Forensics and Security (WIFS), New York, NY,
USA, 6–11 December 2020; pp. 1–6.

32. Daemen, J.; Rijmen, V. Reijndael: The Advanced Encryption Standard. Dr. Dobb’s J. Softw. Tools Prof. Program. 2001, 26, 137–139.
33. Roscian, C.; Sarafianos, A.; Dutertre, J.M.; Tria, A. Fault model analysis of laser-induced faults in sram memory cells. In

Proceedings of the 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, 20 August 2013;
pp. 89–98.

http://doi.org/10.1587/transfun.2019CIP0028
http://dx.doi.org/10.46586/tches.v2020.i2.172-195

Symmetry 2022, 14, 2201 18 of 18

34. Richter, D. Fundamentals of non-volatile memories. In Flash Memories; Springer: Berlin/Heidelberg, Germany, 2014; pp. 5–110.
35. Amiel, F.; Villegas, K.; Feix, B.; Marcel, L. Passive and active combined attacks: Combining fault attacks and side channel analysis.

In Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), Vienna, Austria, 10 September
2007; pp. 92–102.

	Introduction
	Related Works
	Attack Model
	The Advanced Encryption Standard
	CFA Model Based on Instruction Skip
	Skiping the LD Instruction
	Skippping EOR or ST Instruction

	Summary

	Experimental Setting
	The Pulsed Laser Fault Injection Platform
	Test Chip

	Experimental Result
	Laser-Induced Flash-Data-Accessing Error
	Target the LPM instruction
	Sensitive Areas of Laser Injection

	Attacks on LD, EOR and ST Instructions
	Instruction Skip
	Unpredictable Fault
	Predictable Fault

	Key Recovery for the Predictable Fault
	EOR R20, R21 AND R20, R21
	EOR R20, R21 EOR R20, R20
	ST Y, R20 ST Z, R20

	Discussion on the Fault Model of Flash
	Conclusions
	References

