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Abstract: In this article, the stochastic Davey–Stewartson equations (SDSEs) forced by multiplicative
noise are addressed. We use the mapping method to find new rational, elliptic, hyperbolic and
trigonometric functions. In addition, we generalize some previously obtained results. Due to the
significance of the Davey–Stewartson equations in plasma physics, nonlinear optics, hydrodynamics
and other fields, the discovered solutions are useful in explaining a number of intriguing physical
phenomena. By using MATLAB tools to simulate our results and display some of 3D graphs, we
show how the multiplicative Brownian motion impacts the analytical solutions of the SDSEs. Finally,
we demonstrate the effect of multiplicative Brownian motion on the stability and the symmetry of
the achieved solutions of the SDSEs.
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1. Introduction

The majority of nonlinear physical phenomena that occur in a variety of scientific
areas, including chemical kinetics, optical fibers, fluid dynamics, solid-state physics and
mathematical biology, may be modeled via nonlinear partial differential equations (PDEs).
The investigate of the analytical solutions of these PDEs is critical for comprehension most
nonlinear physical phenomena and their applications. Various approaches for discover-
ing the analytical solutions of PDEs have been presented to overcome this issue. Some
examples of the most significant methods are tanh-sech [1–3], extended tanh-function [4],
the Sine-Gordon expansion [5], the trial function [6], the Darboux transformation [7], the
Jacobi elliptic function [8,9], the sine-cosine [10,11], (G′/G)-expansion [12,13], Hirota’s
function [14], exp(−φ(ς))-expansion [15], perturbation [16,17], the qualitative theory of
dynamical systems [18–21], the direct method [22], the Riccati–Bernoulli sub-ODE [23],
and the F-expansion method [24].

On the other side, the advantages of taking random influences into account in the
analysis, simulation, prediction and modeling of complex processes have been highlighted
in several fields including chemistry, geophysics, fluid mechanics, biology, atmosphere,
physics, climate dynamics, engineering and other fields [25–28]. Since noise may produce
statistical features and significant phenomena, it cannot be ignored. In general, it is more
difficult to obtain exact solutions to PDEs forced by stochastic terms than to obtain those to
classical ones.
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The Davey–Stewartson equations affected by multiplicative noise in the Stratonovich
sense are taken into consideration as follows:

iut +
1
2

δ2(uxx + δ2uyy) + κ|u|2u− uv + iσu ◦ Bt = 0, (1)

vxx − δ2vyy − 2κ(|u|2)xx = 0, (2)

where u(x, y, t) ∈ C, v(x, y, t) ∈ R, κ = ±1 and δ2 = ±1. The constant κ measures the
cubic nonlinearity. The case δ = 1 is known as the DS-I equation, while δ = i is known as
the DS-II equation. They occur in a variety of applications, including the description of
gravity–capillary surface wave packets in shallow water. B(t) is Brownian motion, and σ is
the strength of the noise.

We notice that there are various ways such as the Itô and Stratonovich calculus to
interpret the stochastic integral

∫ t
0 YdB . The stochastic integral is Itô (indicated by

∫ t
0 YdB)

when it is assessed at the left-end as opposed to a Stratonovich stochastic integral (indicated
by

∫ t
0 Y ◦ dB), which is computed in the center [29]. The following equation is how the Itô

integral and Stratonovich integral are related:∫ t

0
Y(Zτ)dB(τ) =

∫ t

0
Y(Zτ) ◦ dB(τ)− 1

2

∫ t

0
Y(Zτ)

∂Y(Zτ)

∂z
dτ, (3)

where Y is supposed to be sufficiently regular and {Zt, t ≥ 0} is a stochastic process.
The Davey–Stewartson equation was created in 1974 by Davey and Stewartson [30].

This equation is employed to demonstrate how a three-dimensional wave packet evolves
over time in a restricted depth of water. The solutions of the deterministic Davey–Stewartson
equations (DDSEs) (1) and (2), i.e., σ = 0, have been used in hydrodynamics, nonlinear
optics, plasma physics and other fields. For example, the solutions of the DDSEs might ex-
plain the interaction of a properly matched spatiotemporal optical pattern and microwaves.
As a result, many authors have investigated the analytical solutions for this equation by
using different methods such as the extended Jacobi’s elliptic function [31], the first inte-
gral method [32], the trial equation method [33], the uniform algebraic method [34], the
double exp-function [35], generalized (G′/G)-expansion [36], (G′/G)-expansion [37] and
sine–cosine [38].

Our motivation in this paper is to attain the analytical solutions of the stochastic
Davey–Stewartson equations (SDSEs). This work is the first to obtain the analytical so-
lutions of SDSEs (1) and (2). We employ the mapping method to obtain a wide range of
stochastic solutions, such as rational, elliptic, trigonometric and hyperbolic functions. Due
to the significance of the Davey–Stewartson equations in nonlinear optics, plasma physics,
hydrodynamics and other areas, the discovered solutions are useful in explaining a number
of intriguing physical phenomena. In addition, we extend previously obtained results,
such as the one described in [31,37,38]. Moreover, to study the impacts of Brownian motion
on the stability and symmetry of the obtained solutions of SDSEs (1) and (2), we built 3D
graphs for some of the developed solutions by using MATLAB tools.

This is how the paper is organized: We use a suitable wave transformation in Section 3
to provide the wave equation of SDSEs. We employ the mapping method in Section 4
to obtain the analytical solutions of the SDSEs (1) and (2). In Section 5, we examine the
impact of Brownian motion on the derived solutions. Finally, we state the conclusions of
this paper.

2. Wave Equation for SDSEs

The following wave transformation is utilized to obtain the wave equation for the
SDSEs (1) and (2):

u(x, y, t) = ϕ(ζ)e(iρ−σB(t)−σ2t), v(x, y, t) = ψ(ζ)e(−2σB(t)−2σ2t), (4)
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with
ζ = ζ1x + ζ2y− ζ3t and ρ = ρ1x + ρ2y + ρ3t,

where ψ and ϕ are deterministic functions and {ζ j}3
j=1, {ρj}3

j=1 are nonzero constants.
Putting Equation (4) into Equation (1) and utilizing

ut = (−ζ3 ϕ′ + iρ3 ϕ− σϕBt −
σ2

2
ϕ)e(iρ−σB(t)−σ2t),

= (−ζ3 ϕ′ + iρ3 ϕ− σϕ ◦ Bt)e(iρ−σB(t)−σ2t),

where we used (3), and

uxx = (ζ2
1 ϕ′′ + 2iρ1ζ1 ϕ′ − ρ2

1 ϕ)e(iρ−σB(t)−σ2t),

uyy = (ζ2
2 ϕ′′ + 2iρ2ζ2 ϕ′ − ρ2

2 ϕ)e(iρ−σB(t)−σ2t),

(|u|2)xx = ζ2
1(ϕ2)′e(−2σB(t)−2σ2t),

vx = ζ1ψ′e(−2σB(t)−2σ2t), vxx = ζ2
1ψ′′e(−2σB(t)−2σ2t),

we obtain, for the real part,

(
1
2

ζ2
1δ2 +

1
2

ζ2
2δ4)ϕ′′ − (ρ3 +

1
2

δ2ρ2
1 +

1
2

δ4ρ2
2)ϕ + (κϕ3 − ϕψ)e(−2σB(t)−2σ2t) = 0, (5)

(ζ2
1 − δ2ζ2

2)ψ
′′ − 2ζ2

1κ(ϕ2)′′ = 0 (6)

and, for the imaginary part,

(−ζ3 + 2ζ1ρ1 + 2ζ2ρ2)ϕ′ = 0, (7)

From Equation (7), we obtain

ζ3 = 2ζ1ρ1 + 2ζ2ρ2. (8)

Now, integrating Equation (6) once, we attain

ψ =
2ζ2

1κ

(ζ2
1 − δ2ζ2

2)
ϕ2. (9)

Substituting Equation (9) into Equation (5), we obtain

ϕ′′ − γ2 ϕ + γ1 ϕ3e(−2σB(t)−2σ2t) = 0, (10)

where

γ1 =
2κ

δ2(ζ2
1 − δ2ζ2

2)
and γ2 =

2ρ3 + δ2ρ2
1 + δ4ρ2

2
ζ2

1δ2 + ζ2
2δ4

. (11)

We take the expectation E(·) on both sides

ϕ′′ − γ2 ϕ− γ1 ϕ3e−2σ2tE(e−2σB(t)) = 0. (12)

Since B(t) is normally distributed , E(e−2σB(t)) = e2σ2t. Hence, Equation (12) becomes

ϕ′′ − γ1 ϕ3 − γ2 ϕ = 0. (13)

3. The Analytical Solutions of the SDSEs

We use here the mapping method [39] to obtain the solutions to Equation (13). Conse-
quently, we obtain the analytical solutions of SDSEs (1) and (2).
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3.1. Method Description

Let the solutions of Equation (13) have the form

ϕ(ζ) =
N

∑
i=1

aiZ i, (14)

where Z solves

Z ′ =
√

1
2
`1Z4 + `2Z2 + `3, (15)

where `1, `2 and `3 are real parameters.
We see that there are several different solutions, relying on `1, `2 and `3, of Equation (15)

as follows (Table 1):

Table 1. All the solutions of Equation (15) for various values of `1, `2 and `3.

Case `1 `2 `3 Z(ζ)

1 2m2 −(1 + m2) 1 sn(ζ)
2 2 2m2 − 1 −m2(1−m2) ds(ζ)

3 2 2−m2 (1−m2) cs(ζ)
4 −2m2 2m2 − 1 (1−m2) cn(ζ)

5 −2 2−m2 (m2 − 1) dn(ζ)

6 m2

2
(m2−2)

2
1
4

sn(ζ)
1±dn(ζ)

7 m2

2
(m2−2)

2
m2

4
sn(ζ)

1±dn(ζ)

8 −1
2

(m2+1)
2

−(1−m2)2

4
mcn(ζ)± dn(ζ)

9 m2−1
2

(m2+1)
2

(m2−1)
4

dn(ζ)
1±sn(ζ)

10 1−m2

2
(1−m2)

2
(1−m2)

4
cn(ζ)

1±sn(ζ)

11 (1−m2)2

2
(1−m2)2

2
1
4

sn(ζ)
dn±cn(ζ)

12 2 0 0 c
ζ

13 0 1 0 ceζ

where dn(ζ) = dn(ζ, m), sn(ζ) = sn(ζ, m), cn(ζ) = cn(ζ, m) for 0 < m < 1 are the Jacobi
elliptic functions (JEFs). If m → 1, then the following hyperbolic functions are created
from JEFs:

cs(ζ) → csch(ζ), sn(ζ)→ tanh(ζ), cn(ζ)→ sech(ζ),

dn(ζ) → sech(ζ), ds→ csch(ζ).

When m→ 0, the following e triangular functions are created:

sn(ξ) → sin(ξ), cn(ξ)→ cos(ξ), dn(ξ)→ 1,

cs(ξ) → cot(ξ), ds→ csc(ξ).

3.2. Solutions of SDSEs

Let us balance ϕ′′ with ϕ3 in Equation (13) to determine the parameter M as follows:

M + 2 = 3M =⇒ M = 1.

Equation (15) is rewritten with M = 1 as

ϕ = a0 + a1Z . (16)
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Upon differentiating Equation (16) twice, we have, by using (15),

ϕ′′ = a1`2Z + a1`1Z3. (17)

Upon plugging Equation (16) and Equation (17) into Equation (13), we have

(a1`1 − γ1a3
1)Z3 − 3a0a2

1γ1Z2 + (a1`2 − 3γ1a2
0a1 + γ2a1)Z − (γ1a3

0 − γ2a0) = 0.

By setting each coefficient of Zk for k = 0, 1, 2, 3 equal to zero, we attain

a1`1 − γ1a3
1 = 0,

3a0a2
1γ1 = 0,

a1`2 − 3γ1a2
0a1 + γ2a1 = 0,

and
γ1a3

0 − γ2a0 = 0.

We obtain, by solving these equations,

a0 = 0, a1 = ±

√
`1

γ1
, `2 = −γ2,

Thus, Equation (13) has the following solution:

ϕ(ζ) = ±

√
`1

γ1
Z(ζ), for

`1

γ1
> 0. (18)

The following are two sets that rely on `1 and γ1 :
First set: If `1 > 0 and γ1 > 0, then there are many cases:
First case: If `1 = 2m2, `2 = −(m2 + 1) and `3 = 1, then Z(ζ) = sn(ζ) and the

solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
sn(ζ).

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1
sn(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (19)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
sn2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (20)

If m→ 1, then Equations (19) and (20) become

u(x, y, t) = ±

√
`1

γ1
tanh(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (21)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
tanh2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (22)
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Second case: If `1 = 2, `2 = (2− m2) and `3 = 1− m2, then Z(ζ) = cs(ζ) and the
solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
cs(ζ).

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1
cs(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (23)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
cs2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (24)

If m→ 1, then Equations (23) and (24) become

u(x, y, t) = ±

√
`1

γ1
tanh(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (25)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
tanh2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (26)

Third case: If `1 = 2, `2 = 2m2 − 1 and `3 = −m2(1−m2), then Z(ζ) = ds(ζ) and the
solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
ds(ζ).

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1
ds(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (27)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
ds2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (28)

If m→ 1, then Equations (27) and (28) become

u(x, y, t) = ±

√
`1

γ1
csch(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (29)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
csch2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (30)

If m→ 0, then Equations (27) and (28) become

u(x, y, t) = ±

√
`1

γ1
csc(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (31)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
csc2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (32)
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Fourth case: If `1 = m2

2 , `2 = (m2−2)
2 and `3 = 1

4 (or m2

4 ), then Z(ζ) = sn(ζ)
1±dn(ζ) and the

solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1

sn(ζ)
1± dn(ζ)

.

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1

sn(ζ)
1± dn(ζ)

e(iρ−σβ(t)−σ2t), (33)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

sn(ζ)
1± dn(ζ)

]2e(−2σβ(t)−2σ2t). (34)

If m→ 1, then Equations (33) and (34) become

u(x, y, t) = ±

√
`1

γ1

tanh(ζ)
1± sech(ζ)

e(iρ−σβ(t)−σ2t), (35)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

tanh(ζ)
1± sech(ζ)

]2e(−2σβ(t)−2σ2t), (36)

where ζ = ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t and ρ = ρ1x + ρ2y + ρ3t.

Fifth case: If `1 = 1−m2

2 , `2 = (1−m2)
2 and `3 = (1−m2)

4 , then Z(ζ) = cn(ζ)
1±sn(ζ) and the

solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1

cn(ζ)
1± sn(ζ)

.

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1

cn(ζ)
1± sn(ζ)

e(iρ−σβ(t)−σ2t), (37)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

cn(ζ)
1± sn(ζ)

]2e(−2σβ(t)−2σ2t). (38)

If m→ 0, then Equations (37) and (38) become

u(x, y, t) = ±

√
`1

γ1

cos(ζ)
1± sin(ζ)

e(iρ−σβ(t)−σ2t), (39)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

cos(ζ)
1± sin(ζ)

]2e(−2σβ(t)−2σ2t). (40)

Sixth case: If `1 = (1−m2)2

2 , `2 = (1−m2)2

2 and `3 = 1
4 , then Z(ζ) = sn(ζ)

dn±cn(ζ) and the
solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1

sn(ζ)
dn± cn(ζ)

.
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Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1

sn(ζ)
dn± cn(ζ)

e(iρ−σβ(t)−σ2t), (41)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

sn(ζ)
dn± cn(ζ)

]2e(−2σβ(t)−2σ2t). (42)

If m→ 0, then Equations (41) and (42) become

u(x, y, t) = ±

√
`1

γ1

sin(ζ)
1± cos(ζ)

e(iρ−σβ(t)−σ2t), (43)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

sin(ζ)
1± cos(ζ)

]2e(−2σβ(t)−2σ2t), (44)

where ζ = ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t and ρ = ρ1x + ρ2y + ρ3t.
Seventh case: If `1 = 2, `2 = 0 and `3 = 0, then Z(ζ) = c

ζ and the solutions of the
wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1

c
ζ

.

Therefore, the solution of SDSEs (1) and (2) has the form

u(x, y, t) = ±

√
`1

γ1

c
[ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t]

e(iρ−σβ(t)−σ2t), (45)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

c
ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t

]2e(−2σβ(t)−2σ2t). (46)

Second set: If `1 < 0 and γ1 < 0, then there are many cases:
First case: If `1 = −2m2, `2 = 2m2 − 1 and `3 = (1−m2), then Z(ζ) = cn(ζ) and the

solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
cn(ζ).

Therefore, the solution of SDSEs (1) and (2) takes the form

u(x, y, t) = ±

√
`1

γ1
cn(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (47)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
cn2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (48)

Second case: If `1 = −2, `2 = 2−m2 and `3 = (m2 − 1), then Z(ζ) = dn(ζ) and the
solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
dn(ζ).

Therefore, the solution of SDSEs (1) and (2) takes the form

u(x, y, t) = ±

√
`1

γ1
dn(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (49)
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v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
dn2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (50)

Third case: If `1 = −1
2 , `2 = (m2+1)

2 and `3 = −(1−m2)2

4 , then Z(ζ) = mcn(ζ)± dn(ζ)
and the solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1
[mcn(ζ)± dn(ζ)].

Therefore, the solution of SDSEs (1) and (2) takes the form

u(x, y, t) = ±

√
`1

γ1
[mcn(ζ)± dn(ζ)]e(iρ−σβ(t)−σ2t), (51)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[mcn(ζ)± dn(ζ)]2e(−2σβ(t)−2σ2t). (52)

Fourth case: If `1 = m2−1
2 , `2 = (m2+1)

2 and `3 = (m2−1)
4 , then Z(ζ) = dn(ζ)

1±sn(ζ) and the
solutions of the wave Equation (13) are

ϕ(ζ) = ±

√
`1

γ1

dn(ζ)
1± sn(ζ)

.

Therefore, the solution of SDSEs (1) and (2) takes the form

u(x, y, t) = ±

√
`1

γ1

dn(ζ)
1± sn(ζ)

e(iρ−σβ(t)−σ2t), (53)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

dn(ζ)
1± sn(ζ)

]2e(−2σβ(t)−2σ2t). (54)

If m→ 1 in Equations (47)–(50), then these equations transform into

u(x, y, t) = ±

√
`1

γ1
sech(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(iρ−σβ(t)−σ2t), (55)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
sech2(ζ1x + ζ2y− (2ζ1ρ1 + 2ζ2ρ2)t)e(−2σβ(t)−2σ2t). (56)

If m→ 0 in Equations (53) and (54), then these equations transform into

u(x, y, t) = ±

√
`1

γ1
[

1
1± sin(ζ)

]e(iρ−σβ(t)−σ2t), (57)

v(x, y, t) =
2ζ2

1κ`1

(ζ2
1 − δ2ζ2

2)γ1
[

1
1± sin(ζ)

]2e(−2σβ(t)−2σ2t). (58)

Remark 1. If we set σ = 0 in Equations (19)–(32), then we attain the same results stated in [31].

Remark 2. If we set σ = 0 in Equations (25), (29), (31) and (55), then we attain the same results
stated in [38].

Remark 3. If we set σ = 0 in Equations (55) and (56), then we attain Equations (49) and (50)
with n = 1 as stated in [37].
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4. The Impact of Noise on the SDSE Solutions

In this article, the impact of noise on the acquired solutions of the SDSEs (1) and (2) is
addressed. Depending on the research on the topic [40–44], the stabilizing and destabilizing
influences caused by noisy terms in deterministic systems are currently well understood. It is
now beyond question that these effects are important for understanding the long-term behavior
of actual systems. For various noise strengths σ, we utilize the MATLAB tools (for more details,
see, for example, [45]) to create some figures for some solutions such as (19) and (20). The
following parameters are fixed: κ = −1, δ = i, ρ1 = ζ1 = 0.3, ρ2 = ζ2 = 1, ρ3 = 0.2 and
y = 0.5. Then, ζ3 = 2.18, γ1 = 2

1.09 and γ2 = 149
91 . In this case, m = 0.8, `1 = 1.28 and

ζ = 0.3x + 0.5− 2.8t.
In Figure 1, when σ = 0, we notice that the surface fluctuates.

(a) Equation (19) with σ = 0 (b) Equation (20) with σ = 0

Figure 1. A 3D plot of Equations (19) and (20) with σ = 0.

Meanwhile, in Figure 2, if the intensity of the noise is raised, the surface becomes more
planer after small transit behaviors, as follows:

(a) Equation (19) with σ = 1 (b) Equation (20) with σ = 1

(c) Equation (19) with σ = 2 (d) Equation (20) with σ = 2

Figure 2. A 3D plot of Equations (19) and (20) with σ = 1, 2.
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We conclude from the previous figures that the noise term must be included in the
Davey–Stewartson Equations (1) and (2) in order to produce accurate results and stable
solutions that are near to zero.

5. Conclusions

This work took into account the stochastic (2+1)-dimensional Davey–Stewartson
Equations (1) and (2) forced by multiplicative noise. Using the mapping method, we were
able to generate stochastic trigonometric, elliptic, hyperbolic and rational solutions. For fur-
ther study in fields such as hydrodynamics nonlinear optics, plasma physics, and others,
the discovered solutions will be very beneficial. Due to the significance of the Davey–
Stewartson equations in plasma physics, nonlinear optics, hydrodynamics and other fields,
the obtained solutions are useful in explaining a number of intriguing physical phenom-
ena. Additionally, we generalized previously obtained results, such as the one described
in [31,37,38]. As a result of our results, we deduced that multiplicative Brownian motion
stabilizes the solutions at zero. Finally, a demonstration of how multiplicative Brownian
motion influences the exact solutions of the SDSEs is provided. We may take into account
the additive noise in future work, as the multiplicative noise was covered in this paper.
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