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Abstract: Total Coloring of a graph G is a type of graph coloring in which any two adjacent vertices,
an edge, and its incident vertices or any two adjacent edges do not receive the same color. The
minimum number of colors required for the total coloring of a graph is called the total chromatic
number of the graph, denoted by χ′′(G). Mehdi Behzad and Vadim Vizing simultaneously worked
on the total colorings and proposed the Total Coloring Conjecture (TCC). The conjecture states that
the maximum number of colors required in a total coloring is ∆(G) + 2, where ∆(G) is the maximum
degree of the graph G. Graphs derived from the symmetric groups are robust graph structures used
in interconnection networks and distributed computing. The TCC is still open for the circulant graphs.
In this paper, we derive the upper bounds for χ′′(G) of some classes of Cayley graphs on non-abelian
groups, typically Cayley graphs on the symmetric groups and dihedral groups. We also obtain the
upper bounds of the total chromatic number of complements of Kneser graphs.

Keywords: total coloring; symmetric group; Cayley graph; dihedral group; Kneser graph
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1. Introduction

Let G be a graph with the set of vertices V(G) and the set of edges E(G), respectively.
Any two adjacent or incident elements are assigned different colors in a total coloring of
a graph. The total chromatic number of the graph G, denoted by χ′′(G), is the minimum
number of colors needed in a total coloring. It is easy to see that χ′′(G) ≥ ∆(G) + 1,
where ∆(G) is the maximum degree of G. Mehdi Behzad ([1]) and Vadim Vizing ([2])
independently conjectured that for every graph G, χ′′(G) ≤ ∆(G) + 2, which is called the
Total Coloring Conjecture (TCC). The graphs that have χ′′(G) = ∆(G) + 1 colors are called
type I, and those with χ′′(G) = ∆(G) + 2 are called type II. The TCC is close to 50 years
old and has not been completely proven yet. However, it has been shown that the decision
problem of determining the total chromatic number, given an upper bound, is NP-complete
even for cubic bipartite graphs [3,4]. Nevertheless, a lot of progress has been made toward
proving the TCC. It has been proved that complete graphs, bipartite graphs, and complete
multi-partite graphs satisfy the TCC. The total coloring conjecture has also been verified
for several other classes of graphs. Some good survey articles and books listing the basic
techniques and other results on total coloring are Yap [5], Borodin, [6], and Geetha et al. [7].

A weakening of the TCC is a weak TCC, which conjectures that the total chromatic
number is bounded above by ∆(G) + 3 ([8]).

A similar scenario exists in the edge coloring of graphs. According to Vizing’s Theorem,
only ∆(G) + 1 suffices for the proper edge coloring of graphs. The TCC was inspired by
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Vizing’s Theorem for edge coloring. A graph G is said to be class I if it requires ∆(G) colors
for its edge coloring.

A Cayley graph is a graph defined on a group H with respect to a symmetric generating
set S ⊂ H. The vertices of a Cayley graph are the elements of the group, and two vertices
x and y in the graph are adjacent if and only if x = ys for some s ∈ S. The definition of a
symmetric generating set is that if s ∈ S, then s−1 ∈ S. We also assume that the generating
set S does not contain the identity element of the group H. We denote the Cayley graph of a
group H to be C(H, S), where S is the symmetric generating set of the group and the graph.

2. Cayley Graphs of Permutation Groups with Transposition Generators

The symmetric group of order n, denoted by Sn, is the group that consists of all
bijective functions from a set of cardinality n to itself, with the composition of functions as
the group operation. The elements of the symmetric group are written in the parenthesis
(bracket) notation, with a resemblance to that used in SageMath software. The elements that
have exactly two elements in their bracket notations are called transpositions. The set of all
transpositions of Sn generates the whole group. A minimal generating set for the symmetric
group of order n contains the transpositions of the form (1, 2), (1, 3), . . . , (1, n) ([9]). For
j ∈ {1, 2, . . . , n}, it is easy to see that the set Tj(n) = {(i, j) : i, j ∈ {1, 2, . . . , n}, i 6= j} is
also a minimal generating set of Sn. Similarly, the set of all transpositions in a symmetric
group of order n is denoted by T(n). Two elements a, b of the symmetric group Sn are
similar with respect to elements c, d if we have a = cbd−1. If the elements a, b are similar
with respect to the same element, then they are conjugate.

We know that all bipartite graphs satisfy the TCC ([5]). In addition, we know that
C(Sn, S) with S having only transpositions are bipartite graphs. Hence, it satisfies the TCC.
In Theorem 1, we prove that the χ′′(C(Sn, S)) = ∆(C(Sn, S)) + 1 for some S.

Theorem 1. Let X be any generating set of Sn−1 that consists only of transpositions with a subset
of Tj(n− 1) for at least one j. If the graph C(Sn−1, X) is of type I, then the graph C(Sn, Yn) is also
of type I for all n, where Yn = Tj(n) ∪ X.

Proof. We first prove that the vertices of all the graphs C(Sn, Yn) can be colored in the same
manner as in a type I total coloring of the graph C(Sn−1, X).

Let us assume that we have divided the vertices of the graph C(Sn−1, X) as in a
type I total coloring of C(Sn−1, X). Let the independent sets be labeled I1, I2, . . . , Ik.
In addition, let the left cosets of Sn−1 with Sn be labelled Sn−1, (1, n)Sn−1, (2, n)Sn−1,
(3, n)Sn−1, . . . , (n − 1, n)Sn−1. We now divide the vertices of each of the n cosets iden-
tical to the division of the vertices of Sn−1 and label them correspondingly, I11, I12, . . . , I1k
(corresponding to Sn−1), I21, I22, . . . , I2k (corresponding to (1, n)Sn−1), and so on, up to
In1, In2, . . . , Ink (corresponding to (n− 1, n)Sn−1. To form independent sets of C(Sn, Yn),
we concatenate the independent sets of all cosets by shifting the independent sets of all
the cosets, except for the first coset (principal coset corresponding to Sn−1) one position
down (modulo k). This means that the independent sets of elements of C(Sn, Yn) are
[I11, I2k, . . . , Ink], [I12, I21, . . . , In1], . . . , [I1n, I2(k−1), . . . , In(k−1)].

The concatenation so formed would form independent sets of C(Sn, Yn), as shifting
one position downward would omit the adjacency formed due to the generating element
(j, n). This is because no element of the symmetric group Sn−1 is conjugate to any other
element with respect to two transpositions of the form (i, n), (j, n), where i, j are any of the
integers 1, 2, 3, . . . , n.

To see this, if we have adjacencies between an element g1 of one of the independent
sets of I1s, s = 1, 2, . . . , k (corresponding to the principal coset Sn−1) and any other
element (i, n)g2 in the same independent set corresponding to any other coset (Isp, s =
2, 3, . . . , n; p = {1, 2, . . . , k}), we should have g1(j, n) = (i, n)g2, where i ∈ {1, 2, 3, . . . , n−
1}. This implies, by right multiplication, that g1 = (i, n)g2(j, n). Then, if g1 takes an element
a, a 6= i ∈ {1, 2, . . . , n− 1}, to b ∈ {1, 2, . . . , n− 1}, g2 also should take a to b, for (i, n) fixes
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the element a. As for i, both g1 and g2 must take i to j by similar reasoning. Thus, g1 = g2.
However, in our concatenation of independent sets, g1 6= g2; by shifting one independent
set of vertices downward, we can rule out this possibility. This gives us independence of
the principal coset I1s (corresponding to (Sn−1)) from the rest of the cosets.

Similarly, let us have g2 = g1m, m ∈ Sn−1. To see the independence among the
elements in the same independent sets of I2s up to Ins, s = 1, 2, . . . , k (corresponding to
non-principal cosets), we can see that if there was an adjacency between one element (i, n)g1
and another element (k, n)g2 in the same independent set, we would have (i, n)g1(j, n) =
(k, n)g2 =⇒ g1 = (i, n)(k, n)g2(j, n) =⇒ (k, n)(i, n) = g1m(j, n)g−1

1 , provided i 6= k
as before. Now, we know that two elements in the symmetric group Sn are conjugate if
and only if they have the same cycle structure and transposition decomposition. Here, as
(k, n)(i, n) is a 3-cycle having two transpositions in their product structure, we can say that
m must either be a 4-cycle with one transposition factor being (j, n) or must be a simple
transposition having one symbol in common with (j, n). Since m fixes n, we must have
m = (a, j), where a = {1, 2, . . . , n− 1} − {j}. However, this violates the fact that g1, g2
are elements in the same independent set of C(Sn−1, Yn−1). Therefore, we can say that
we can divide all the vertices of C(Sn, Yn) into the same number of sets as the vertices of
C(Sn−1, X).

Now, we give the edge coloring of C(Sn, Yn) in the following way. Let the maximum
degree of C(Sn−1, X) be ∆X and that of C(Sn, Yn) be ∆Yn . We can color all the corresponding
edges of the cosets of C(Sn−1, X) in C(Sn, Yn) in a similar way, except that the edges induced
by the sets I2s up to Ins, s = 1, 2, . . . , k (corresponding to non-principal cosets) receive a
shift in coloring. The edges that were colored with the first color in the induced graph
formed by the sets I1s, s = 1, 2, . . . , k (corresponding to the principal coset) will receive the
second color, the edges colored with the second color in the principal coset will receive the
third color in the other cosets, and so on. For the remaining edges connecting the different
cosets, we use the class I nature of the graph C(Sn, Yn) to give a coloring. The remaining
edges can be factorized into 1-factors, one for each transposition in Yn − X. Since the graph
C(S4, X) is of type I, the number of colors required to totally color the graph C(Sn, Yn) is
∆X + 1 + (∆Yn − ∆X) = ∆Yn + 1. Hence, the graph C(Sn, Yn) is also of type I.

Corollary 1. The graph G = C(Sn, T1(n)), n ≥ 3 is of type I. For n = 2, C(S2, T1(2)) is the
single edge K2, which is trivially seen to be of type II.

Proof. We note that C(S3, T1(3)) is a 6-cycle, which is well known to be of type I (from [5]).
Having j = 1 in the notation of the previous theorem gives us the set X = Tm(3) = T1(3).
We obtain the desired result using the previous theorem by putting j = 1 to the graph
C(S3, X).

Corollary 2. The graph G = C(Sn, S), n ≥ 4 with S = T(n)−U, where U is any combination
of two transpositions from Z = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, is of type I.

Proof. We computed the total chromatic number of all the graphs C(S4, X) with X = T(4)−U
using the SageMath software, which output a value of 5; in other words, they were of type
I. The code is given in Appendix A.1. Using the previous theorem by putting j = 1 or j = 2
to the graph C(S4, S), we obtain the desired result.

Corollary 3. The graph G = C(Sn, T(n)) for n ≥ 4 is of type I.

Proof. The algorithm used in the program of the previous corollary used a greedy-like
algorithm to compute the total chromatic number. Instead, we used an algorithm based
on mixed-integer linear programming (MILP), which was faster than the usual approach.
The code is given in Appendix A.2. Again, using the above theorem with j = 1, 2, 3, 4 with
X = T(4) for the base graph C(S4, T(4)) gives us the desired result.
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We note that in the last two corollaries, the condition n ≥ 4 is necessary, otherwise, we
have the graph C(S3, T(3)) being a complete regular bipartite graph, which is of type II.

Example 1. By using the 3-total coloring of C(S3, T1(3)), we can obtain the 4-total coloring of
C(S4, T1(4)), in which the vertices or elements of S4 are divided into independent sets as

[e, (2, 3), (1, 4, 3), (1, 4, 3, 2), (1, 3)(2, 4), (1, 3, 2, 4), (1, 3, 4), (1, 3, 4, 2)],

[(1, 2), (1, 3, 2), (1, 4), (1, 4)(2, 3), (2, 4), (2, 4, 3), (3, 4), (2, 3, 4)],

[(1, 3), (1, 2, 3), (1, 4, 2), (1, 4, 2, 3), (1, 2, 4), (1, 2, 4, 3), (1, 2)(3, 4), (1, 2, 3, 4)].

We use the algorithm described above to give a 3 coloring of the elements of S5, which is
achieved by dividing the elements into three independent sets as

[e, (2, 3), (1, 4, 3), (1, 4, 3, 2), (1, 3)(2, 4),
(1, 3, 2, 4), (1, 3, 4), (1, 3, 4, 2), (1, 5, 3), (1, 5, 2, 3), (1, 5, 4, 2), (1, 5, 4, 2, 3),
(1, 5, 2, 4), (1, 5, 2, 4, 3), (1, 5, 2)(3, 4), (1, 5, 2, 3, 4), (2, 5)(1, 3), (1, 2, 5, 3),
(1, 4, 2, 5), (1, 4, 2, 5, 3), (1, 2, 5, 4), (1, 2, 5, 4, 3), (1, 2, 5)(3, 4), (1, 2, 5, 3, 4),
(1, 3, 5), (1, 2, 3, 5), (3, 5)(1, 4, 2), (1, 4, 2, 3, 5), (3, 5)(1, 2, 4), (1, 2, 4, 3, 5),
(1, 2)(3, 5, 4), (1, 2, 3, 5, 4), (4, 5)(1, 3), (4, 5)(1, 2, 3), (1, 4, 5, 2), (1, 4, 5, 2, 3),
(1, 2, 4, 5), (1, 2, 4, 5, 3), (1, 2)(3, 4, 5), (1, 2, 3, 4, 5)],

[(1, 2), (1, 3, 2), (1, 4), (1, 4)(2, 3), (2, 4), (2, 4, 3),
(3, 4), (2, 3, 4), (1, 5, 2), (1, 5, 3, 2), (1, 5, 4), (1, 5, 4)(2, 3),
(1, 5)(2, 4), (1, 5)(2, 4, 3), (1, 5)(3, 4), (1, 5)(2, 3, 4), (1, 2, 5), (1, 3, 2, 5),
(2, 5)(1, 4), (1, 4)(2, 5, 3), (2, 5, 4), (2, 5, 4, 3), (2, 5)(3, 4), (2, 5, 3, 4),
(3, 5)(1, 2), (1, 3, 5, 2), (3, 5)(1, 4), (1, 4)(2, 3, 5), (3, 5)(2, 4), (2, 4, 3, 5),
(3, 5, 4), (2, 3, 5, 4), (4, 5)(1, 2), (4, 5)(1, 3, 2), (1, 4, 5), (1, 4, 5)(2, 3),
(2, 4, 5), (2, 4, 5, 3), (3, 4, 5), (2, 3, 4, 5)]

[(1, 3), (1, 2, 3), (1, 4, 2), (1, 4, 2, 3), (1, 2, 4), (1, 2, 4, 3),
(1, 2)(3, 4), (1, 2, 3, 4), (1, 5, 2), (1, 5, 3, 2), (1, 5, 4), (1, 5, 4)(2, 3),
(1, 5)(2, 4), (1, 5)(2, 4, 3), (1, 5)(3, 4), (1, 5)(2, 3, 4), (1, 2, 5), (1, 3, 2, 5),
(2, 5)(1, 4), (1, 4)(2, 5, 3), (2, 5, 4), (2, 5, 4, 3), (2, 5)(3, 4), (2, 5, 3, 4),
(3, 5)(1, 2), (1, 3, 5, 2), (3, 5)(1, 4), (1, 4)(2, 3, 5), (3, 5)(2, 4), (2, 4, 3, 5),
(3, 5, 4), (2, 3, 5, 4), (4, 5)(1, 2), (4, 5)(1, 3, 2), (1, 4, 5), (1, 4, 5)(2, 3),
(2, 4, 5), (2, 4, 5, 3), (3, 4, 5), (2, 3, 4, 5)].

Now, the edge coloring is performed as described in the algorithm, that is, the edges of the
induced graph corresponding to S4 are given the usual type I coloring (the total coloring is of type
I, as the induced graph formed by any two independent sets is a regular bipartite graph). The
corresponding edges of the induced subgraphs of cosets (1, 5)S4, (2, 5)S4), 3, 5)S4, (4, 5)S4, which
are isomorphic, are also given the same color while concatenating the independent edges; the edges of
the induced subgraphs corresponding to the non-principal cosets are shifted one position down to
that of the principal coset edges.

The next theorem is a direct consequence of the main theorem of [10].

Theorem 2. The graph G = C(An, S) with S = {(1, 2, 3), (1, 2, 4), . . . , (1, 2, n), (1, n, 2),
. . . , (1, 4, 2), (1, 3, 2)} is a class I.

Proof. We use the information in [10] to partition the edges of G to n− 2 edge-disjoint
Hamiltonian cycles. Then, we bi-color each disjoint Hamiltonian cycle to obtain the class 1
coloring of the edges of G.
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The above theorem, combined with the fact that the graphs C(An, S) for n = 3, 4, 5, 6
are of type I, leads us to conjecture that the graphs C(An, S) for all n are of type I.

3. Cayley Graphs on Dihedral Groups

The dihedral groups, denoted by D2n, are the groups that consist of symmetries of an
n-gon. The minimal generators of dihedral groups in the following are {r, s}, where r is a
reflection element having order 2 and s is a rotation element having order n with the usual
group defining the relation (rs)2 = e. We see that the rotation element generates the cyclic
group of order n (Zn), and its elements are denoted by {0, 1, 2, . . . , n− 1}.

As 1 is always a generating element for the cyclic group Zn, let us assume s = 1. Then,
we could write the elements rsa as ra. We use this notation in the following theorems. Note
that r0 is the same as r.

Theorem 3. If n is even and G = C(D2n, S) with S = {ri, 1, 2, . . . , k, n − k, . . . , n − 2, n −
1}, i ∈ {0, 1, 2, . . . , n− 1}, then G satisfies the TCC.

Proof. We see that G has two induced subgraphs (one formed by the vertices {0, 1, 2, . . . , n− 1}
and the other formed by the vertices {r, r1, r2, . . . , r(n− 1)}) of order n corresponding to the
generating subset {1, 2, . . . , k, n− k, n− k− 1, . . . , n− 1}, which correspond to the power
of cycle Ck

n. Hence, the graph G can be seen as the Cartesian product of K2 with Ck
n. Using

the results of Campos and de Mello [11], we know that Ck
n satisfies the TCC. Hence, by the

fact that the Cartesian product of a graph X with a graph Y satisfies the TCC, X�Y also
satisfies the TCC (Theorem 1 of [12]) and we obtain the results immediately.

Example 2. We take C(D72, S) with the generating set S = {1, 2, 3, 4, 32, 33, 34, 35, r}. Then,
we have the graph induced by the vertices 0, 1, . . . , n− 1 is the power of cycle C4

36, which satisfies
the TCC. This total coloring of C4

36 can be extended to color all vertices of C(D72, S) using the
above method.

A generalization of the last theorem is the following corollary, which is an immedi-
ate consequence.

Corollary 4. Suppose that T = T1 ∪ T2, where T1 ⊂ {0, 1, 2, . . . , n− 1}, and H is the circulant
graph of order n with generating set T1. If H has χ′′(H) = |T1| + 2 and T2 = {ri}, where
i ∈ {0, 1, 2, . . . , n− 1}, then C(D2n, T) satisfies the TCC.

Proof. Here, the graph could be seen as the Cartesian product of C(Zn, T1) with K2. Since
C(Zn, T1) is seen to satisfy the TCC by the conditions given in Theorem 1 of [12] on the
total coloring of the Cartesian products of graphs, the results follow immediately.

Note that in the above theorem and corollary, if the graph Ck
n or C(Zn, T1) were of

type I, then G will also be of type I, again using Corollary 2 of [12]. Some classes of graphs,
where Ck

n are of type I, are highlighted in [13–16].

Example 3. Consider the group D36 with generating set {1, 3, 5, 7, 9, 11, 13, 15, 17, r2}. Then,
we have the graph induced by the vertices 0, 1, . . . , n− 1 and r, r1, r2, . . . , r(n− 1) as a unitary
Cayley graph on 18 vertices, which is known to satisfy the TCC from [15], which can be extended to
color all vertices of the Cayley graph on D36.

Theorem 4. If n is even, then C(D2n, S) with S = {r, r(n − 1), . . . , r(n − x), 1, 2, . . . , k, n −
k, . . . , n− 2, n− 1} and x < k satisfies the TCC.

Proof. We see that G has two induced subgraphs of order n corresponding to the generating
subset {1, 2, . . . , k, n− k, n− k− 1, . . . , n− 1}, which is the power of cycle Ck

n. We color the
first copy of the power of cycle (corresponding to the vertices {0, 1, 2, . . . , n− 1}) according



Symmetry 2022, 14, 2173 6 of 9

to the coloring described in [11] to give a total coloring with at most 2k + 2 colors. The
second copy of Ck

n (corresponding to the vertices {r, 1r, . . . , (n− 1)r}) is given a shifted
coloring, that is, we give the vertex r the color given to vertex 1, the vertex 1r gets the
color given to vertex 2, and so on with the last vertex (n− 1)r receiving the color given
to vertex 0. Since x < k, this shifted coloring ensures that the edges connecting one
copy of Ck

n with the other do not clash vertices of the same color. This is because any
k + 1 consecutive vertices form a clique in Ck

n, and since the generating set consists of
the elements r, r(n− 1), r(n− 2), . . . , r(n− x), the downward shifted coloring will give
different colors to adjacent vertices by the total coloring given to the first copy of Ck

n. The
edges of the second copy of Ck

n are colored in the same way as the first copy, except that
the downward shift of vertices means that the corresponding edges that were colored
with the second color in the first copy would receive the first color in the second copy, the
corresponding edges that were colored with the third color in the first copy would receive
the second color in the second copy, and so on. The remaining edges, which are the edges
connecting one copy of Ck

n with the other, can be easily one-factorized, which can clearly be
seen, as each of the generating elements r, r(n− 1), r(n− 2), . . . , r(n− x) gives a perfect
matching; or we could invoke Corollary 2.2.3 of [17]. These edges could be given one color
corresponding to each extra generating element (one for each of r, r(n− 1), . . . , r(n− x),
thus proving that the graph G also satisfies the TCC.

Theorem 5. The graph C(D2n, T) satisfies the TCC if the following conditions hold:

1. T = T1 ∪ T2 with T1 ⊂ {0, 1, 2, . . . , n− 1}.
2. The circulant graph G of order n with generating set T1 satisfies the TCC.
3. In a total coloring of G with at most ∆(G) + 2 colors, each total independent set has at most k

vertices, and any pair of vertices x, y in an independent set satisfy x− y = md, m ≤ k− 1.
4. T2 = T1 − {0, ri, r(i− d), . . . , r(i− kd + d)}.

Proof. We first color the vertices {0, 1, 2, . . . , n − 1} as in a |T1| + 2 total coloring of G
so that the difference between any pair of vertices is equal to md, m ≤ k − 1. We can
extend this vertex coloring to the vertices of C(D2n, T) by forming orbits of the former
independent sets (right cosets) with the element ri. This is because, T2 excludes the elements
{ri, r(i− d), . . . , r(i− kd + d)}, whereby the adjacencies of the elements of G are excluded.

For the edge coloring of C(D2n, T), we can bifurcate the edges into two parts—one among
the induced graphs formed by the vertices {0, 1, 2, . . . , n − 1} and {r, r1, r2, . . . , r(n− 1}
(which are isomorphic), and another between the two induced subgraphs. For coloring the
edges in the induced graphs formed by vertices {0, 1, 2, . . . , n− 1} and {r, r1, r2, . . . , r(n− 1)},
we use the same edge coloring used for the edges of G. For the edges between these two
induced subgraphs, we give one color for each of the edges (matchings) generated by an
element in T2. Therefore, we require at most |T1|+ |T2|+ 2 = |T|+ 2 colors to totally color
the graph, which therefore verifies the TCC.

Example 4. If n = 8k + 4 and the graph to be colored is C(D2n, T) with T = T1 ∪ T2 and
T1 = {1, 2, . . . , k, n − k, . . . n − 2, n − 1}, T2 = D2n − T1 − {0, r(2k + 1), r(4k + 2), r(6k +
3), r(8k + 4)}, we see that G = C(Zn, T1) is the power of cycle graph Ck

8k+4, which, has χ′′(G) =
2k + 1 colors. In addition, the difference between the pairs of vertices in any independent set of
vertices is equal to a multiple of 2k + 1 by the coloring used in ([15], Theorem 2.6). In addition, each
independent set of vertices in the former total coloring has exactly four vertices. Using the above
theorem, this total coloring of G can be extended to C(D2n, T), in which we can color the graph using
|T|+ 1 = 2n− 2k− 2 colors, which implies that C(D2n, T) is of type I.

4. Complement of Kneser Graphs

We denote the Kneser graphs by K(n, k). These graphs consist of (n
k) vertices, which

correspond to the k-element subsets of an n-element set. Two vertices in K(n, k) are adjacent
if those vertices correspond to disjoint sets.
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Hypergraphs are generalizations of simple graphs. They consist of n vertices with hyper-
edges corresponding to some ki-element subsets of an n-element set where i ∈ {1, 2, . . . , n}. A
hypergraph is said to be k-uniform if the hyperedges all have the same cardinality, that is,
ki = k, which is a constant. Furthermore, if all the k-element sets are hyperedges, then the
hypergraph is said to be k-complete, denoted by H(n, k). It is then readily seen that the
line graph (a graph whose vertices are the hyperedges, and two vertices are adjacent if the
hyperedges are incident at a vertex in H(n, k)) of a complete hypergraph corresponds to
the complement of K(n, k). In particular, the complement of the line graph of the complete
graph K5 is the Petersen graph. An odd graph On is the Kneser graph K(2n− 1, n− 1). The
TCC was proved for the odd graphs On [15].

Theorem 6. If n is even and k | n, then the complement of the Kneser graph K(n, k), G = K(n, k)
satisfies the weak TCC.

Proof. Using Baranayai’s theorem (see [18]), we can factorize the hyperedges of H(n, k)

evenly into (n
k)
n
k

= (n−1
k−1) classes. This, in turn, means that we can divide the vertices of

K(n, k) into n
k disjoint cliques having (n−1

k−1) vertices, which gives a (n−1
k−1) coloring of the

vertices. For the edge coloring of G, we use the edge coloring in a total coloring of the
complete graph of order (n−1

k−1). We first color the vertices and edges of each clique of
order (n−1

k−1) using the total coloring of a clique of order (n−1
k−1). This gives a partial (n−1

k−1) or
(n−1

k−1) + 1-total coloring of K(n, k). We can then extend it to G by adding extra colors to
color the connecting edges between the cliques. Since at most (n−1

k−1) + 1 colors are required
to color all the disjoint cliques, therefore, according to Vizing’s Theorem, we require at
most (n−k

k )− (n−1
k−1) + 2 colors to color the connecting edges joining the cliques. Thus, the

total number of colors required is at most (n−k
k ) − (n−1

k−1) + 2 + (n−1
k−1) + 1 = (n−k

k ) + 3 =

∆(K(n, k)) + 3 colors. Hence, K(n, k) satisfies the weak TCC.

Corollary 5. If n is even and (n−1
k−1) is odd, then K(n, k) satisfies the TCC. In addition, if the

subgraph consisting of the remaining edges (induced by the connecting edges between the cliques of
order n

k ) is of class I, then the graph K(n, k) is of type I.

Proof. The proof is a direct consequence of the former theorem, as we know that the clique
of odd order (n−1

k−1) has χ′′(G) = (n−1
k−1).
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Appendix A

Appendix A.1. Code 1

The code is as follows:

import itertools
from sage.graphs.graph_coloring import chromatic_number
def totalgrap(g):

g.subdivide_edges(g.edges(),1)
h=g.distance_graph(list(range(1,3)))
return h

G = SymmetricGroup(4)
l = [G((1, 2)),G((1, 3)),G((1, 4)),G((2, 3)),G((2, 4)),G((3, 4))]
m = itertools.combinations(l, 4)
H = [G.cayley_graph(generators=list(s)) for s in m]
I = [h.to_undirected() for h in H]
T = [totalgrap(i) for i in I]
k = [t.chromatic_number() for t in T]
k

The output was: [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5].

Appendix A.2. Code 2

from sage.numerical.mip import MIPSolverException
def total_chromatic_number(G, certificate=False):

d = G.average_degree()
for n in range(d+1,d+3):

p = MixedIntegerLinearProgram()
a = p.new_variable(binary=True)
b = p.new_variable(binary=True)
for v in G.vertices():

p.add_constraint(sum(a[v,c] for c in range(n)) == 1)
for e in G.edges(labels=False):

p.add_constraint(sum(b[e,c] for c in range(n)) == 1)
for v in G.vertices():

for c in range(n):
p.add_constraint(a[v,c] + sum(b[e,c] for e in
G.edges_incident(v, labels=False)) <= 1)

for v,w in G.edges(labels=False):
for c in range(n):

p.add_constraint(a[v,c] + a[w,c] + b[(v,w),c] <= 1)
try:

p.solve()
if certificate:

a_sol = p.get_values(a)
b_sol = p.get_values(b)
coloration = {}
for v in G.vertices():

for c in range(n):
if a_sol[v,c] == 1:

coloration[v] = c
for e in G.edges(labels=False):

for c in range(n):
if b_sol[e,c] == 1:

coloration[e] = c
return coloration



Symmetry 2022, 14, 2173 9 of 9

else:
return n

except MIPSolverException:
pass

a=SymmetricGroup(4)
b=a.cayley_graph(generators=[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)])
i=b.to_undirected()
total_chromatic_number(i)

The output was found to be 7.
It should be noted that the above code is quite similar to and inspired by that found

in [19].
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